FLORIDA STATE
UNIVERSITY

Kévin Fossez

Assistant Professor
FRIB Bridge

FRIB Topical Program
May 17, 2023

=" NATIONAL LABORATORY

DOE: DE-SC0013617 (Office of Nuclear Physics, FRIB Theory Alliance)



The exploration of the drip lines

Established at N = 9 and Z = 13. Many new isotopes to discover on the neutron-rich side.
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J. Erler et al., Nature 486, 509 (2012)

Neutron number, N

Where should we look first and why?
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Theoretical challenges in near-threshold physics

Drip lines, higher excitation energies.
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D. Bazin et al., Few-Body Syst. 64, 25 (2023)
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Theoretical approaches for near-threshold physics

Many methods developed over time, but in practice, only a few methods can go beyond 2 nucleons in the
continuum.

Feshback projection Berggren basis: ; In theory, the GSM \

formalism: ' can have all nucleons

CSM. SMEC GSM, NCGSM, G-DMRG, in the continuum, but

' CCT, IM-5RG, GCC, PRM in practice it needs ‘
truncations beyond

Complex-scaling techniques: Resonating group method ~4-9 B

. reactions with structure):
Faddeev-Yakubowsky, lattice ( )

NCSM+RGM, NCSMC, (NC)GSM-CC,
l Symplectic-NCSM And more...

Limited to 5 particles (need further
development to go beyond) The (current) G-DMRG code can handle Hamiltonians of

theoretical dimension up to dim = 10!

So far up to 9 particles in the continuum.

K. Fossez, FSU - FRIB Bridge 5



Gamow density matrix renormalization group

Configuration interaction + renormalization group.
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Studying drip line nuclei in practice

We want to have predictive power and to make usable predictions (= precise enough).

n P
ot
Virtual
‘ n
P '
/

S

Nuclei are complex systems

nu(.,Qeor‘

rk7m'olo\'

( nuL.QﬁA('
\/ Xorc,w

N

nv CQQQ('
pro Fe chen

N

Small change in the input

v

Large change in the output

Even it we had exact ab initio solutions including 1-, 2-, ..., A-body continua, our representation of nuclear forces

will always have some error that will be magnified in the many-body problem — Emergent phenomena.

Current ab initio methods precise within ~ 1.0 MeV at best on binding energies — We need EFTs.
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Nuclei are complex systems

Small change in the input — large change in the output.
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How do we go from nuclear forces to exotic nuclei?
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Studying drip line nuclei in practice 3, > 9,

o 9o

Building an EFT for the shell model appears to be the best compromise to deal with drip line nuclei.

Still working on the details, but adjusting a phenomenological contact interaction in the EFT spirit promising.

Core-nucleon interaction must Then, nucleon-nucleon interaction
reproduce core-nucleon phase shitts. adjusted on A+2,3 systems only.
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Studying drip line nuclei in practice

Similar results form an effective core of 160 in sd space with continuum (very preliminary):
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Far from USDB but approaching
current ab initio precision.

All nucleons can couple to the
continuum (s1/2, d5/2, d3/2).

Extension to a core of 40Ca
possible.

(The emergence of universality might
make it possible to reach 60Ca.)



An (old?) idea for future high-impact FRIB experiments
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Where should we look first (and why)?

" Drip line systems provide excellent opportunities

thanks to near-threshold physics modifying nuclear

structure in sometimes new and various ways.

Universal behaviors, complex interplays between decay and clustering,

deformation, rotational motion, new forms of radioactivity...
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Known examples

Halo structures

|. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985)

A. S. Jensen et al., Rev. Mod. Phys. 76, 215 (2004)
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Many-body dynamic in the én-continuum:
toward universal behaviors.

K. Fossez et al., Phys. Rev. C 98, 061302(R) (2018)
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D. Votaw et al., Phys. Rev. C 102, 014325 (2020)

experimentally!
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Continuum inducing deformation?

Continuum couplings decrease the vlp;,-10f;,, gap.

<52 1e-09

A. Revel et al., Phys. Rev.
Lett. 124, 152502 (2020)

S. Bagchi et al., Phys. Rev.
Lett. 124, 222504 (2020)
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Suggestion for finding interesting mechanisms

_

Continuum-induced deformation: Look for areas where s/p-waves come down (neutron). See H. lwasaki's talk |

— 38Ne, 39Na (N=20) fill the 0t7/2, the 1p3/2 might go down as in 28-31F.
D. S. Ahn et al., Phys. Rev. Lett.123, 212501 (2019)

— 22Si (Z=14, N=8), should fill the 0d5/2 but the 1s1/2 might go down. Similar in neutron-rich N isotopes.

Universality: Look for situations with a well-bound spherical core + many neutrons like in neutron-rich He and O,
and compare with their mirrors.

— systematic of masses in neutron-rich C (Z=6), Ca (Z=20), and proton-rich N=6, 8, 20 chains.

— correlations between the valence nucleons.

lﬂSee D. Lee’s talk ’

— multi-neutron/proton decay (neutron-rich Be, O).

Interplays between week binding/decay and clustering:

— radii/moments = f(N/Z) in deformed/clustered + weakly bound/unbound n/p (neutron-rich Li, Be).

— look for systems with nearby proton, neutron, and cluster decay channels and search for new states.

dSee A. Volya's talk |
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Suggestion tor finding similar mechanisms
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Thank you for your attention!

DOE: DE-SC0013617 (Office of Nuclear Physics, FRIB Theory Alliance)
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