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What are the data needed to constrai
models ?

THE DRAMA:

@ Theorists here in the room :
“None ! We don’t need any !”

@ Experimentalists here in the room :
“All of them | Let’'s measure all of them !”

Fortunately, life has made us more reasonable ... and things
more simple !



Shell Model: Physics Goals

Collective excitations: Weak processes:
e 3 decay
o Deformation, Superdeformation, o 33 decay

Dipole/M1 resonances \ ’ [T1°72(o+ = 0oH™" = Gou IMP )2 (my)?

e Superfluidity
S ov BB
e Symmetries

o define Effective Interaction b3t
® HeffWeit = EWeif

o build and diagonalize Energy matrix

\

Ab Initio calculations:

Shell evolution far from stability:

® Vanishing of shell closures o Chiral EFT realistic interactions

e New magic numbers
g "0 3N forces

o 100 | Anders & Grevesse 1989
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Shell Model: Giant Computations

@ exponential growth of basis
dimensions:

o~(3)(%)

In pf shell :
48Cr 1,963,461
56Ni  1,087,455,228
In pf-sdg space :
78Ni  210,046,691,518

Actual limits in limits in giant
diagonalizations: 0.2 1072 for 114Sn
core excitations

Some of the largest diagonalizations
ever are performed in Strasbourg
with relatively modest
computationnal ressources:

Phys. Rev. C82 (2010) 054301, ibidem 064304

e mscheme  ANTOINE code
e coupled scheme  NATHAN code

E. Caurier et al., Rev. Mod. Phys. 77 (2005) 427;

ANTOINE website

@ Largest matrices up

to now contain up

to ~ 10'* non-zero
matrix elements.

This would require
more than

CD-ROM’s to store
the information for
a single matrix !

They cannot be

stored on hard disk
and are computed

on the fly.



Discrete Non-Orthogonal Shell Model

Generator Coordinate Method: |Wey) =3, fi|®i)

1) Deformed Hartree-Fock (HF) Slater determinants

2) Restoration of rotational symmetry

3) Mixing of shapes: |\Ijeﬁ->:é+@+@“.

Basis Truncation Method

@ | choice of relevant deformed Hartree-Fock states |

e E. Caurier’s Minimization Technique:
(E. Caurier, Proc. on GCM, BLG report 484 (1975))

© Based on the variational principle
0 <& Minimization of the energy of given

states {J7}

e lterative procedure:

Q)= (1,02) = (1,P2,P3) - - -

- @ @




Discrete Non-Orthogonal Shell Model

Generator Coordinate Method: W) =3, fi|®i)

1) Deformed Hartree-Fock (HF) Slater determinants

2) Restoration of rotational symmetry
ver)- @) @ @
3) Mixing of shapes:

Intrinsic/Laboratory Description
o Deformation structure of nuclear states: {JJ}, 9= (8,7)
M (g, k) = 3" N2 (' @) 1, K)
/ K/

o Probability of a configuration (3, ~):

D(g) =Y MY (g, K]

K

e particle-hole interpretation: e K-quantum numbers:
d3/2 ——e—
§1/2 —se— PYK) =Y M (a. k)
d5/2 -ee-e0t i

M-scheme



ogonal Shell Model

PHYSICAL REVIEW C 105, 054314 (2022)

Nuclear structure within a discrete nonorthogonal shell model approach: New frontiers
D.D. Dao® and F. Nowacki ©
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Landscape of medium mass nuclei
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Landscape of medium mass nu

N
©®

New gaps: 240, 48Ni, 54Ca, 78Ni, 100Sn
Vanishing of shell closure: 12Be, 32Mg, 42S;i, 64Cr, 807r ...

Island of deformation around A~ 32, A~ 64
Low-lying dipole excitations in Ne, Ni isotopes

Variety of phenomena dictated by shell structure
Close connection between collective behaviour and underlying
shell structure

e Monopole field (spherical mean field)

Interplay between e Multipole correlations (pairing, Q.Q, ...)

“Pairing plus Quadrupole pr%pose, Monopole disposes”
A. Zuker, Coherent and Random Hamiltonians, CRN Preprint




Development of deformation at

F. Nowacki, A. Obertelli and A. Poves Progress in Particle and Nuclear Physics 120 (2021) 103866

@ Magic numbers are associated to enegy gaps in the spherical mean
field. Therefore, to promote particles above the Fermi levels costs
energy

@ However some intruders configurations can overwhelm their loss of
monopole energy with their huge gain in correlation energy

@ Several examples of this phenomenon exist in stable magic nuclei

(as in “°Ca nucleus) in the form of coexisting spherical, deformed
and superdeformed states in a very narrow energy range

@ At the very neutron rich or very proton rich edges, the T=0 and T=1
channels of the effective nuclear interaction weight very differently
than they do at the stability line. Therefore the effective single
particle structure may suffer important changes, leading in some
cases to the vanishing of established shell closures or to the
appearance of new ones

Fig. 40. Schematic view of the valence spaces at N = 8, 20, 40 and 70. The intruder configurations that develop quadrupole collectivity are highlighted.



elopm f deformation at N=8

F. Nowacki, A. Obertelli and A. Poves Progress in Particle and Nuclear Physics 120 (2021) 103866
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Fig. 40. Schematic view of the valence spaces at N = 8, 20, 40 and 70. The intruder configurations that develop quadrupole collectivity are highlighted.



Development of deformation at N=1

F. Nowacki, A. Obertelli and A. Poves Progress in Particle and Nuclear Physics 120 (2021) 103866
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Fig. 41. Schematic view of the valence spaces at N = 14, 28, 50 and 82. The intruder configurations that develop quadrupole collectivity are
highlighted.



The nuclear interaction: the co
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The nuclear interaction: the simple view
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Separation of the effective Hamilto
Monopole and multipole

From the work of M. Dufour and A. Zuker (PRC 54 1996 1641)
Separation theorem:

Any effective interaction can be split in two parts:
H= Hmonopole + Hmultipole
Hmonopole: SPherical mean-field
rresponsible for the global saturation properties and for the
evolution of the spherical single particle levels.

Hmutipote: correlator
= pairing, quadrupole, octupole...

Important property:

(CS+1|H|CS £ 1) = (CS * 1|Hmonoporel CS + 1)



Multipole Hamiltonian

Hmuripoe CAN D€ Written in two representations, particle-particle
and particle-hole. Both can be brought into a diagonal form.
When this is done, it comes out that only a few terms are
coherent, and those are the simplest ones:

@ L = 0isovector and isoscalar pairing
Elliott's quadrupole
G757
Octupole and hexadecapole terms of the type r* Yy - r Y,

Besides, they are universal (all the realistic interactions give
similar values) and scale simply with the mass number

PPWT) ph(Ar)
10 01 21 20 40 10 A
KB -583 496 -321 -353 -1.38 +1.61 +3.00
USD-A 562 -550 -3.17 -324 -1.60 +156 +2.99
CCEl 679 -468 -293 -340 -1.39 +121 +2.83

NN+NNN-MBPT -6.40 -4.36 -291 -328 -123 +1.10 +2.43
NN-MBPT -6.06 -438 -292 -335 -1.31 +1.03 +2.49




Multipole Hamiltonian

Hmutipole CAN & Written in two representations, particle-particle
and pe _, )

e Pairing regime: spherlcal nuclei

WI;] ground state = pairs of like-particles coupled at J=0 (seniority v=0)
conere o state (break of pair; v=2) at high energy
@ L- Jj m>
@ Ell 7
@ 57
@ Oc superfluid nucleus:
Beside
similar Typical example: Tin isotopes
e Quadrupole regime: deformed nuclei
KB .
USL prolate nucleus:
CCE
NN+

NN- Typical example: open shell N=Z nuclei




Multipole Hamiltonian

Hmuripoe CAN D€ Written in two representations, particle-particle
and particle-hole. Both can be brought into a diagonal form.
When this is done, it comes out that only a few terms are
coherent, and those are the simplest ones:

@ L = 0isovector and isoscalar pairing
Elliott's quadrupole
G737
Octupole and hexadecapole terms of the type r* Yy - r Yy

Besides, they are universal (all the realistic interactions give
similar values) and scale simply with the mass number

pp(T) ph(\7)
10 01 21 20 40 10 11
KB 583 -496 -321 -353 -1.38 +1.61 +3.00
USD-A 562 -550 -3.17 -324 -160 +1.56 +2.99
CCEl 679 -468 -293 -340 -1.39 +1.21 4283

NN+NNN-MBPT 640 -4.36 -291 -328 -1.23 +1.10 +2.43
NN-MBPT 606 438 -292 335 -1.31 +1.03 +2.49




Multipole Hamiltonian

Hmuripoe CAN D€ Written in two representations, particle-particle
and particle-hole. Both can be brought into a diagonal form.
When this is done, it comes out that only a few terms are
coherent, and those are the simplest ones:

@ L = 0isovector and isoscalar pairing
Elliott's quadrupole
G737
Octupole and hexadecapole terms of the type r* Yy - r Yy

Besides, they are universal (all the realistic interactions give
similar values) and scale simply with the mass number

L) ph(A7)
10 01 21 20 40 10 11
KB -5.83 496 J3.21 -353 -1.38 +1.61 +3.00
USD-A -5.62f -550 §3.17 -3.24 -160 +1.56 +2.99
CCEl -6.79] -4.68 J293 -3.40 -1.39 +1.21 +2.83
NN+NNN-MBPT  -6.40f -4.36 §2.91 -328 -1.23 +1.10 +2.43
NN-MBPT -6.06f -438 J292 -3.35 -1.31 +1.03 +2.49




Multipole Hamiltonian

Hmuripoe CAN D€ Written in two representations, particle-particle
and particle-hole. Both can be brought into a diagonal form.
When this is done, it comes out that only a few terms are
coherent, and those are the simplest ones:

@ L = 0isovector and isoscalar pairing
Elliott's quadrupole
G737
Octupole and hexadecapole terms of the type r* Yy - r Yy

Besides, they are universal (all the realistic interactions give
similar values) and scale simply with the mass number

PP(T) ph(A7)
10 01 21 20 40 10 11
KB -5.83 -496 -32¢ -3.53 J-1.38 +1.61 +3.00
USD-A 5662 -550 -3.14 -3.24 j-1.60 +1.56 +2.99
CCEl -6.79 -468 -293 -3.40 J-1.39 +1.21 +2.83
NN+NNN-MBPT  -6.40 -436 -294¢ -3.28 j-1.23 +1.10 +2.43
NN-MBPT -6.06 -438 -294 -3.35 J-1.31 +1.03 +2.49




Landscape of medium mass nuclei
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Playground

In the valence space of two major shells

2p1 /2
2p3/2

pf-shell

1d3/2
2812

1d5/2

sd-shell
EFFECTIVE INTERACTION: SDPF-U-MIX (update 2020)



Island of Inversion: Trends

ESPE (MeV)
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At the neutron drip line, the ESPE’s of
280 are completely at variance with
those of “°Ca at the stability valley. The
change from the standard ESPE’s of
60 to the anomalous ones in 220 is
totally due to the interactions of sd shell
neutrons among themselves

Notice that the sd shell orbits remain
always below th pf shell with the v 0f;

and v0Ops — Op: orbitals DO get
inverted

The monopole part of the
neutron-proton interaction restores the
N=20 shell gap when the valley of
stability is approached

Spin-Tensor decomposition shows it is
mainly a Central and Tensor effect



ESPE (MeV)

Islands Of Inversion: Trends
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@ Spin-Tensor decomposition shows it is
mainly a Central and Tensor effect




ESPE (MeV)

Further away from Stability
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Proton number

At the neutron drip line, the ESPE’s of
280 are completely at variance with

those of “°Ca at the stability valley. The
change from the standard ESPE’s of

60 to the anomalous ones in 220 is
totally due to the interactions of sd shell
neutrons among themselves

Notice that the sd shell orbits remain
always below th pf shell with the v0fz

and vOps — Op: orbitals DO get
inverted

The monopole part of the
neutron-proton interaction restores the
N=20 shell gap when the valley of
stability is approached

Shell Evolution favors natural geometry
for low-lying M1 excitations

V1Si l/1p§
vods ® uips
2 2



Island of Inversion: Trends

@ At the neutron drip line, the ESPE’s of
280 are completely at variance with
those of “°Ca at the stability valley. The
change from the standard ESPE’s of
60 to the anomalous ones in 220 is
totally due to the interactions of sd shell

| ™ neutrons among themselves
Lt
of 1.9 H -
. @ Notice that the sd shell orbits remain
51 always below th pf shell with the v 0f;
10 ° - and v0Ops — Op: orbitals DO get
-10 o 2 2
d5/2 e ) inverted
sl/2 e
d3/2 . °
712 —-m
20 ] p32 om | @ The monopole part of the
pl/2 = neutron-proton interaction restores the
5/2 ~-m ° N=20 shell gap when the valley of
T T T T stability is approached
8 14 16 20

Proton number
@ Spin-Tensor decomposition shows it is
mainly a Central and Tensor effect



Inverse shape coexistence Shell clos
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Merging of 10Is at N=20 and N=28

2" excitation energy in MeV

BE2(e?.fm*)

F s

34 36 38 40 42 44
A

2" excitation energy in MeV

By

IS

I I
18 20

I I I L
2 24 26 28 30 32

10 12 16
150
ol 1\- |
501 @®5E |
BHE BE2) th
0 Il Il Il Il Il Il
30 32 34 36 38 40




Atthe neutron rpne, e

PHYSICAL REVIEW C 85, 011302(R) (2012)
Low-lying neutron fp-shell intruder states in 2’Ne
S. M. Brown,' W. N. Catford,' J. $. Thomas,' B. Fernindez-Dominguez>* N. A. Orr.> M. Labiche.*
M. Rejmund.® N. L. Achouri,? H. Al Falou.” N. I. Ashwood,® D. Beaumel,” Y. Blumenfeld.” B. A. Brown.*
R. Chapman,” M. Chartier,® N. Curtis,% G. de France,® N. de Sereville,” F. Delaunay,> A. Drouart," C. Force,’ S. Franchoo,”
1. Guillot,” P. Haigh,® F. Hammache,” V. Lapoux,'” R. C. Lemmon,* A. Leprince,” F. Maréchal,” X. Mougeot,"’ B. Mouginot,
L. Nalpas,'® A, Navin,® N. P Patterson,' B. Pietras,* E. C. Pollacco,'” A. Ramus,” J. A. Scarpaci,” L Stefan,” and G. L. Wilson'

LOW-LYING NEUTRON fp-SHELL INTRUDER STATES ...

TABLE I. Comparison between experimental and calculated (see
text) excitation energies and spectroscopic factors for states in *’Ne.
Experimental excitation energies are from [10] except for the 1.74-
MeV state (present work). For C28, the errors include uncertainties
from the reaction model.

g~ E: Bl s

exp

(MeV) (MeV) Ref. [10] Present WBP-M

3/2% 0 0 0.2(2) 0.42(22) 0.63
3/2- 0.765 0.809 0.6(2) 0.64(33) 0.67
1/2* 0.885 0.869 0.3(1) 0.17(14) 0.17
7/2- 1.74 1.686 = 0.35(10) 0.40

{

ESPE’s of 220 are completely at
variance with those of “°Ca at the
stability valley. The change from
the standard ESPE’s of '°0O to the
anomalous ones in <°O is totally
due to the interactions of sd shell
neutrons among themselves

Notice that the sd shell orbits

remain always below th pf shell

with the ©0f; and v0ps — 0p:
2 2 2

orbitals DO get inverted

The monopole part of the
neutron-proton interaction restores
the N=20 shell gap when the valley
of stability is approached

Evidence for shell inversion
towards 260



At the drip line

Sn (MeV)

T ‘ T
SDPF-MIX

16 18 20
Neutron number

Nowacki/Poves 2014

At the neutron drip line, the ESPE’s of
20 are completely at variance with

those of “°Ca at the stability valley. The
change from the standard ESPE’s of
60 to the anomalous ones in 220 is
totally due to the interactions of sd shell
neutrons among themselves

Notice that the sd shell orbits remain
always below th pf shell with the v0fz
and vOps — Op: orbitals DO get

2 2
inverted

The monopole part of the
neutron-proton interaction restores the
N=20 shell gap when the valley of
stability is approached

@ ill" behaviour mainly due to %P

separation energy



At the drip line

PHYSICAL REVIEW LETTERS 124, 152502 (2020)

Extending the Southern Shore of the Island of Inversion to 2*F

A. Revel,'"? O. Sorlin,' .M. Marqués®,” Y. Kondo," I. Kahlbow,** T. Nakamura,” N. A. Orr.* F. Nowacki,"’

14
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(B )— =— B —C i+
—_ 4+
[ 1280 1321 s
)12 (1+):§2; — 3%
R ——.1
2 0.940 (3= > }1+
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29Ne(-1p) 2F(-1n)  sdpf-u-mix

At the neutron drip line,
the ESPE’s of 280 are
completely at variance
with those of “°Ca at the
stability valley.

Notice that the sd shell
orbits remain always
below th pf shell with the
v0f; and v0ps — Op:

2
orbitals DO gét inveried

Recent evidence for
intruder states in 28F
low-lying spectrum

In addition, extraction of
80% of “I=1" content in the
GS



At the drip line

Sn (MeV)

SDPF-MIX20
Exp.

16 18 20
Neutron number

Nowacki/Poves 2020

At the neutron drip line, the ESPE’s of
20 are completely at variance with
those of “°Ca at the stability valley. The
change from the standard ESPE’s of
60 to the anomalous ones in 220 is
totally due to the interactions of sd shell
neutrons among themselves

Notice that the sd shell orbits remain
always below th pf shell with the v 0fz
and vOps — Op: orbitals DO get

2 2
inverted

The monopole part of the
neutron-proton interaction restores the
N=20 shell gap when the valley of
stability is approached

New *°F data from
NeuLAND-SAMOURAI collaboration
(J. Kahlbow phD work, submitted)

%P separation energy + ps j2-f7»
splitting matches Fluorine chain S, trend



Landscape of medium mass nuclei
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Island of inversion at N=40, an old sto

The Physics around the doubly-magic “®Ni Nucleus

Leuven, Bejeftlt
November 4 %

A. Poves

j(olblt-ZPL)-_ I 20

Jloph - YpL) = 8.30

A= -9.0 b2 €S < 1%
Bz 4.3 b¥ INCAYER
A ewy_
e i3 = s, v)]
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A STURION THAT Reminds WHAT
IS WowN Ay p=220 FFS.



mental informati

RAPID COMMUNICATION

PHYSICAL REVIEW C 81, 051304(R) (2010)
Collectivity at N = 40 in neutron-rich *Cr

A. Gade,'” R. V. F. Janssens,’ T. Baugher,"” D. Bazin,' B. A. Brown,” M. P. Carpenter,’ C. J. Chiara,** A. N. Deacon,’
S.J. Freeman,’ G. F. Grinyer,' C. R. Hoffman,’ B. P. Kay,? F. G. Kondev,® T. Lauritsen,’ S. McDaniel,"” K. Meierbachtol,"’
A. Ratkiewicz,'? S. R. Stroberg,'”> K. A. Walsh,"? D. Weisshaar,' R. Winkler,' and S. Zhu®
! National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
2Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
3Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

RAPID COMMU;

ON

PHYSICAL REVIEW C 81, 061301(R) (2010)
Onset of collectivity in neutron-rich Fe isotopes: Toward a new island of inversion?

J. Ljungvall,">3 A. Gorgen,' A. Obertelli,' W. Korten,' E. Clément,” G. de France,” A. Biirger," J.-P. Delaroche,” A. Dewald,”
A. Gadea,” L. Gaudefroy,” M. Girod,” M. Hackstein, J. Libert,* D. Mengoni,” F. Nowacki,'” T. Pissulla,® A. Poves,'!
F. Recchia,'” M. Rejmund,” W. Rother,® E. Sahin,'? C. Schmitt,> A. Shrivastava,” K. Sieja,'’ J. J. Valiente-Dobén,'?
K. O. Zell,’ and M. Zieliriska'?
'CEA Saclay, IRFU, Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France
2GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen, France




Island of inversion around %*Cr

S. Lenzi, F. Nowacki, A. Poves and K. Sieja

©

- = = = 452
]

Phys. Rev. C82, 054301, 2010

©

pL2
512
p3/2

E—]
ANNRNRRNRNRNNNY
48

Ca

LNPS interaction:
based on realistic TBME
new fit of the pf shell (KB3GR, E. Caurier)
monopole corrections
g9/2-05 /2 gap now constrained to 2.5
Mev in 68Ni

Calculations:
Up to 14hw excitations across Z=28 and
N=40 gaps
Matrix diagonalizations up to 2.10°

m-scheme code ANTOINE (non public
parallel version)



Triple coexistence in °°Ni

@ at first approximation, 68Ni has a shell model exp.
dGoSubIe closed shell structure for

87 ———439%
67T ——4244 gt 4308
. 6*— 13009
@ But low lying structure much more
complex
- 4" ———3184 4+ 3117
@ three coexisting 0+ states appear oF 2863 B
between 0 and ~ 2.5 MeV TS o 5———2848
757 +_
= 2* 2743
0 2627 or——— 2511
2* 2169
@ new location of 07 state ! 2 2034
Configuration mixing and relative transition - "
rates between low-spin states in 88Ni: o 1611 0 1600
F. Recchia et al.
Phys. Rev. C88, 041302(R) (2013)
41
52
@ prediction of very low-lying
superdeformed band (82 ~ 0.4) of
6p6h nature!
S. Lenzi et al. ot—L o ot—Lt—o
Phys. Rev. C82, 054301 (2010) 68 ..
oA. Dijon et al. Ni

Phys. Rev. C85, 0311301(R) (2012)



Shape transition at N=40
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Shape transition at N=40
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Neutron effective single particle en
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same ordering as CC calculations
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@ inversion of P3/2 and f7» orbitals



(=l = IMeV)

PRL 109, 032502 (2012) PHYSICAL RE’

TABLE II. Energies of the 5/27 and 9/2% resonances in
335561Ca. Re[E] is the energy relative to the one-neutron
emission threshold, and the width is I' = —2Im[E] (in MeV).

FCa BCa 8lCa

JT Re[E] r Re[£] r Re[E] r
5/2+ 1.99 197 163 133 114 062
9/2* 475 028 443 023 219 002

G. Hagen et al.

Phys. Rev. Lett. 109, 032502 (2012)

removing f7 /2 protons
@ proximity of the quasi-SU3 partner
a2

@ inversion of d5,» and gy > orbitals
same ordering as CC calculations

d3/2 —e—

72 —e— N=20
p3/2 —v—

8 14 16

reduction of the vd/»-f /2 gap with
removing ds /> protons

proximity of the quasi-SU3 partner

@ inversion of P3/2 and f7» orbitals



Spin-orbit shell closure far from sta
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Spin-orbit shell closure far from sta
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Spin-orbit shell closure far from sta
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Spin-orbit shell closure far from sta
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Physics around "°Ni

PFSDG-U interaction:

realistic TBME

pf shell for protons and gds shell
for neutrons

monopole corrections ( 3N
forces )

proton and neutrons gap “8Ni
fixed to phenomenological
derived values

Calculations:

excitations across Z=28 and
N=50 gaps

up to 5*10'° Slater Determinant
basis states

up to 3*10'3 non-zero terms in
the matrix!

m-scheme code ANTOINE (non
public version)

J-scheme code NATHAN
(parallelized version): 0.5*10° J
basis states
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Shape coexistence in “°Ni

78N

@ At first approximation, 78Ni has a double
closed shell structure for GS

@ But very low-lying competing structures

@ From the diagonalization,

the first excited states in 78Ni are :
e 0-27 predicted at 2.6-2.9 MeV and to be
deformed intruders of a rotationnal band !!!

@ “1p1h” 2] predicted at ~ 3.1 MeV 0 ] ||| o
0 009 018 027 036 B 045

@ Necessity to go beyond (fpg% dg) LNPS Constrained deformed HF in the
space and beyond ab-initio description SM basis
(Duy Duc Dao, DNO-SM calc.,

@ Portal to a new Island of Inversion
Strasbourg)



Shape coexistence in “°Ni
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@ At first approximation, 78Ni has a double [ 7 —
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F. Nowacki et al., PRL 177, 272501 (2016) 78N}j I




Shape coexistence in “°Ni
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Shape coexistence in “°Ni

5
@ At first approximation, 78Ni has a double
closed shell structure for GS
4
@ But very low-lying competing structures
@ From the diagonalization, > 3
the first excited states in 78Ni are : )
e 03-27 predicted at 2.6-2.9 MeV and to be =
deformed intruders of a rotationnal band !!! 2

@ “1p1h” 2] predicted at ~ 3.1 MeV

@ Necessity to go beyond (foge dg) LNPS
2
space and beyond ab-initio description

@ Portal to a_ new Island of Invers
F. Nowacki et al., PRL 177, 272501 (2016)
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ape coexistence in °N

@ At first approximation, 78Ni has a double 7T —

ARTICLE

https://doi.org/10.1038/541586-019-1155-x

’8Ni revealed as a doubly magic
stronghold against nuclear deformation
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Island of Inversion Mergers
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Island of Inversion at the N=Z line

o Strongly deformed states at N = Z:

@ Configuration mixing in 72Kr

@ Most deformed cases for 78S, 8zr

@ Shape transition between %Mo and %Mo
NSCL/GRETINA Experiment

R.D.O. Llewellyn et al, Phys. Rev. Lett.
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Island of Inversion at the N=Z line

o Strongly deformed states at N =2 ™ v
@ Configuration mixing in 72Kr gl o e
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Island of Inversion at the N=Z line

o Strongly deformed states at N =2
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Island of Inversion at t

o Strongly deformed states at N = Z

@ Configuration mixing in 72Kr
@ Most deformed cases for 78Sr, 8zr

@ Shape transition between #Mo and ®Mo
NSCL/GRETINA Experiment
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Island of Inversion at the N=Z line

o Strongly deformed states at N =2
@ Configuration mixing in 72Kr

@ Most deformed cases for 78S, 8zr

@ Shape transition between #Mo and %Mo

NSCL/GRETINA Experiment
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Island of Inversion at the N=Z line

o Strongly deformed states at N =2

@ Configuration mixing in 72Kr

@ Most deformed cases for 78S, 8zr

@ Shape transition between #Mo and %Mo
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@ Monopole drift develops in all regions but the Interplay
between correlations (pairing + quadrupole) and spherical
mean-field (monopole field) determines the physics.

It can vary from :

- island of deformation at N=20 and N=40

- deformation at Z=14, N=28 for 2Si and shell weakening
at Z=28, N=50 for "8Ni

@ The “islands of inversion” appear due to the effect of the
correlations, hence they could also be called “islands of
enhanced collectivity”. As quadrupole correlations are
dominant in this region, most of thei inhabitants are
deformed rotors. Shape transitions and coexistence show
up everywhere

@ Quadrupole energies can be huge and understood in
terms of symmetries



@ even at the drip in fluorine isotopes, bound approximation
holds

@ strong superfluid regime with pair scattering from sd to pf
shells

@ odd-even Sn energies staggering does not seem to
originate from continuum coupling
Special thanks to:
@ D. D. Dao, G. Martinez-Pinedo, A. Poves, S. Lenzi, K. Sieja
@ A. Gade, O. Sorlin, A. Obertelli

@ J. Herzfeld-Nowacki



