Threshold Phenomena In Nuclei: From Decay To Clustering

Alexander Volya Florida State University

Supported by the US Department of Energy Award number: DE-SC0009883

Perturbation from continuum

Perturbation from continuum

$$H'(\epsilon) = \int_0^\infty d\epsilon' \frac{|A(\epsilon')|^2}{\epsilon - \epsilon' + i0}$$

continuum

Threshold

width

Integration region involves no poles

$$H'(\epsilon) = \Delta(\epsilon) \qquad \Delta(\epsilon) = \int d\epsilon' \frac{|A(\epsilon')|^2}{\epsilon - \epsilon' + i0}$$

$$H'(\epsilon) = \Delta(\epsilon) - \frac{i}{2}\Gamma(\epsilon) \quad \Gamma(\epsilon) = 2\pi |A(\epsilon)|^2$$

Self energy, interaction with continuum

Effect of weak binding

Effect of weak binding

C. R. Hoffman, B. P. Kay, and J. P. Schiffer Phys. Rev. C 89, 061305(R) B. P. Kay, C. R. Hoffman, and A. O. Macchiavelli Phys. Rev. Lett. 119, 182502

Wave function realignment Superradiance

Example of interacting resonances

Wave function realignment Superradiance

$$H = \begin{pmatrix} \epsilon - \frac{i}{2}\Gamma & v \\ v & 0 \end{pmatrix} = H_0 - \frac{i\Gamma}{2}A^{\dagger}A \qquad A = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Stationary system $\Gamma = 0$

Energies
$$E_{1,2} = \frac{1}{2} \left(\epsilon \pm \sqrt{\epsilon^2 + 4v^2} \right)$$

Spectroscopic Factors

$$\mathrm{SF}_{1,2} = \frac{1}{2} \left(1 \pm \frac{\epsilon}{\sqrt{\epsilon^2 + 4v^2}} \right)$$

Observing superradiance

$$H = \begin{pmatrix} \epsilon - \frac{i}{2}\Gamma & v \\ v & 0 \end{pmatrix} = H_0 - \frac{i\Gamma}{2}A^{\dagger}A \qquad A = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Energies $\mathcal{E}_{1,2} = \frac{1}{2}\left(\epsilon - \frac{i}{2}\Gamma \pm \sqrt{\left(\epsilon - \frac{i}{2}\Gamma\right)^2 + 4v^2}\right)$

Width $\Gamma_{1,2} = -2 \operatorname{Im} \left(\mathcal{E}_{1,2} \right)$

Spectroscopic Factors $SF_{1,2} = \Gamma_{1,2}/\Gamma_{1,2}$

Observing superradiance

Spectroscopic factor for superradiant state

Isospin symmetry

	¹⁸ Ne			18O		
J	E (MeV)	Γ (keV)	SF	E (MeV)	Γ(keV)	SF
1-	9.08(1)	357	0.21(1)	9.19(2)	200	0.20(1)
1-	9.57(1)	1062	0.51(5)	9.76(2)	630	0.46(4)
1-	10.58(4)	416	0.15(5)	10.8(3)	630	0.29(4)
1-	13.730(2)	780	0.2(1)	14.3(3)	400	0.10(4)
2+	9.19(3)	265	0.21(2)	9.79(6)	90	0.10(3)
2+	10.94(6)	1302	0.52(3)	12.21(8)	1000	0.37(9)
2+	13.4 (2)	1755	0.45(8)	12.8(3)	4800	1.56(13)
2+	16.9(2)	1515	0.3(2)			
3-				8.29(6)	2.9	0.18(1)
3-	8.77(8)	419	1.0(4)	9.35(2)	110	0.48(13)
3-	11.0(1)	497	0.28(7)	11.95(1)	300	0.17(2)
3-	12.7(2)	2025	0.7(2)	12.98(4)	770	0.32(5)
3-	14.8(2)	3967	1.0(2)	14.0(2)	2100	0.7(1)
4+	8.16	31	0.8(3)	7.11*		
4+	13.3(3)	845	0.37(4)	13.46(2)	210	0.12(1)
4+	14.15(21)	375	0.14(10)	14.77(5)	680	0.28(2)
5-	11.31(4)	15	0.03(2)	11.63(1)	30	0.13(1)
5-	12.9(2)	532	0.48(12)	13.08(1)	120	0.17(1)
5-	13.79(8)	219	0.14(10)	14.1(1)	260	0.23(2)
5-	14.6(7)	521	0.27(20)	14.7(1)	230	0.16(6)
6+	11.8(2)	54	0.30(7)	11.69(5)	12	0.23(1)
6+	12.4(2)	167	0.56(26)	12.57(1)	50	0.38(8)

M. Barbui *et al.*, "α-cluster structure of ¹⁸Ne," *Phys. Rev. C*, vol. 106, no. 5, p. 054310, Nov. 2022, doi: <u>10.1103/PhysRevC.106.054310</u>.

A. Volya, M. Barbui, V. Z. Goldberg, and G. V. Rogachev, "Superradiance in alpha clustered mirror nuclei," *Commun Phys*, vol. 5, no. 1, Art no. 1, Dec. 2022, doi: <u>10.1038/s42005-022-01105-9</u>.

Clustering and continuum

Configuration interaction approach and clustering

Traditional shell model configuration m-scheme

Cluster configuration

Translational invariance and Center of Mass (CM)

Shell model, Glockner-Lawson procedure

K. Kravvaris and A. Volya, "Study of nuclear clustering from an ab initio perspective," *Phys. Rev. Lett.*, vol. 119, no. 6, p. 062501, 2017. K. Kravvaris and A. Volya, "Clustering in structure and reactions using configuration interaction techniques," *Phys. Rev. C*, vol. 100, no. 3, p. 034321, Sep. 2019, doi: 10.1103/PhysRevC.100.034321.

Resonating group method and reactions

alpha+alpha scattering phase shifts

Experimental data from S. A. Afzal, A. A. Z. Ahmad, and S. Ali, Rev. Mod. Phys. 41, 247 (1969).

Ttriple-alpha RGM

parent	channel	overlap
${}^{12}C[4](0_1^+)$	$\alpha[0] + \alpha[0] + \alpha[0]$	0.841
$^{12}C[4](0_2^+)$	$\alpha[0] + \alpha[0] + \alpha[0]$	0.229

N_{max}(rel)=12

11Be beta-delayed proton decay

11Be beta-delayed proton decay

E. Lopez-Saavedra *et al.*, *Phys. Rev. Lett.*, vol. 129, no. 1, p. 012502, Jun. 2022, doi: <u>10.1103/</u> PhysRevLett.129.012502.

 $1/2^+$ 9.820

Y. Ayyad *et al.Phys. Rev. Lett.*, vol. 129, no. 1, p. 012501, Jun. 2022, doi: <u>10.1103/</u> PhysRevLett.129.012501.

Observed half-life (???)

 $t_{\mathrm{Be}\to\beta p} \approx 1 \times 10^6 \,\mathrm{s}$

 $\alpha + \frac{7}{3}$ Li

A. Volya, "Assessment of the beta-delayed proton decay rate of 11Be," *EPL*, vol. 130, no. 1, p. 12001, 2020, doi: <u>10.1209/0295-5075/130/12001</u>.

Time dependence of decay

Winter, Phys. Rev., 123,1503 1961.

Internal dynamics in decaying system Winter's model

M. Peshkin, A. Volya, and V. Zelevinsky, "Non-exponential and oscillatory decays in quantum mechanics," *EPL*, vol. 107, no. 4, p. 40001, 2014.

Time-dependent Continuum Shell Model Approach

•Expand Using evolution operator in Chebyshev polynomials

$$\exp(-iHt) = \sum_{n=0}^{\infty} (-i)^n (2 - \delta_{n0}) J_n(t) T_n(H)$$

•Chebyshev polynomial $T_n[\cos(\theta)] = \cos(n\theta)$

•Use iterative relation and matrix-vector multiplication to generate $|\lambda_{u}\rangle = T_{u}(H)|\lambda\rangle$

$$|\lambda_{n}\rangle = |\lambda\rangle, \quad |\lambda_{1}\rangle = H|\lambda\rangle \quad |\lambda_{n+1}\rangle = 2H|\lambda_{n}\rangle - |\lambda_{n-1}\rangle$$
$$\langle\lambda'|T_{n+m}(H)|\lambda\rangle = 2\langle\lambda'_{m}|\lambda_{n}\rangle - \langle\lambda'|\lambda_{n-m}\rangle, \quad n \ge m$$

•Use FFT to find return to energy representation

A. Volya, Phys. Rev. C 79, 044308 (2009).

Probing the Non-exponential Decay Regime in Open Quantum Systems

- Broad threshold resonance (9N,9He)
 - Pronounced non-exponentiality
 - Very short half-life
- Three-body decay (⁶Be, ¹³Li, ¹⁶Be)
 - Nucleon-nucleon correlations
 - Energy dependence
- Overlapping resonances (¹³C, ¹³N)
 - Interference, pronounced non-exponentiallity
 - Superradiance

Time-dependent picture

$$\mathcal{G} = \frac{1}{E - E_o + i/2\,\Gamma(E)}$$

$$\Gamma(E) \propto \sqrt{E}$$

Power-law remote decay rate!

Probing the Non-exponential Decay Regime in Open Quantum Systems

- Broad threshold resonance (9N,9He)
 - Pronounced non-exponentiality
 - Very short half-life
- Three-body decay (⁶Be, ¹³Li, ¹⁶Be)
 - Nucleon-nucleon correlations
 - Energy dependence
- Overlapping resonances (¹³C, ¹³N)
 - Interference, pronounced non-exponentiallity
 - Superradiance

Time-dependent picture Two-neutron decay

S. M. Wang, W. Nazarewicz, A. Volya, and Y. G. Ma, "Probing the Non-exponential Decay Regime in Open Quantum Systems." arXiv, Nov. 21, 2022. doi: <u>10.48550/</u> <u>arXiv.2211.11619</u>.

Probing the Non-exponential Decay Regime in Open Quantum Systems

- Broad threshold resonance (9N,9He)
 - Pronounced non-exponentiality
 - Very short half-life
- Three-body decay (⁶Be, ¹³Li, ¹⁶Be)
 - Nucleon-nucleon correlations
 - Energy dependence
- Overlapping resonances (¹³C, ¹³N)
 - Interference, pronounced non-exponentiallity
 - Superradiance

Two-level system

Other topics

- Collectivization by decay and many-body complexity
- Competition between decay and other collective modes (pairing, etc)
- Eigenstate thermalization hypothesis and universal relaxation of observables
- From open nuclear systems to quantum information and fundamental physics.

References:

[1] M. Peshkin, A. Volya, and V. Zelevinsky, "Non-exponential and oscillatory decays in quantum mechanics," EPL, vol. 107, no. 4, p. 40001, 2014.

[2] V. Zelevinsky and A. Volya, Mesoscopic Nuclear Physics: From Nucleus to Quantum Chaos to Quantum Signal Transmission. WORLD SCIENTIFIC, 2023. doi: 10.1142/13049.

[3] K. K. W. Ma, A. Volya, and K. Yang, "Eigenstate thermalization and disappearance of quantum many-body scar states in weakly interacting fermion systems," Phys. Rev. B, vol. 106, no. 21, p. 214313, Dec. 2022, doi: 10.1103/PhysRevB.106.214313.

[4] A. Volya, M. Barbui, V. Z. Goldberg, and G. V. Rogachev, "Superradiance in alpha clustered mirror nuclei," Commun Phys, vol. 5, no. 1, Art. no. 1, Dec. 2022, doi: 10.1038/s42005-022-01105-9.

[5] E. Lopez-Saavedra et al., "Observation of a near-threshold proton resonance in ¹¹B," Phys. Rev. Lett., vol. 129, no. 1, p. 012502, Jun. 2022, doi: 10.1103/PhysRevLett.129.012502.

[6] M. Barbui et al., "α-cluster structure of 18Ne," Phys. Rev. C, vol. 106, no. 5, p. 054310, Nov. 2022, doi: 10.1103/PhysRevC.106.054310.

[7] A. Volya and V. Zelevinsky, "Time-dependent relaxation of observables in complex quantum systems," J. Phys. Complex., vol. 1, no. 2, p. 025007, 2020, doi: 10.1088/2632-072x/ab79bc.

[8] A. Volya, H. A. Weidenmüller, and V. Zelevinsky, "Neutron resonance widths and the porter-thomas distribution," Phys.Rev.Lett., vol. 115, no. 5, p. 052501, Jul. 2015, doi: 10.1103/PhysRevLett.115.052501.

[9] A. Volya, "Computational approaches to many-body dynamics of unstable nuclear systems," in Nuclear theory in the super- computing era – 2014, A. M. Shirokov and A. I. Mazur, Eds., 2015, Ju 2014, p. 21.

[10] A. Volya, "Physics of unstable nuclei: from structure to sequential decays," EPJ Web of Conf., vol. 38, p. 03003, 2012.

[11] A. Volya, "Porter-Thomas distribution in unstable many-body systems," Phys. Rev. C, vol. 83, no. 4, p. 044312, 2011, doi: 10.1103/ PhysRevC.83.044312.

[12] A. Volya, "Time-dependent approach to the continuum shell model," Phys. Rev. C, vol. 79, no. 4, p. 044308, 2009, doi: 10.1103/ PhysRevC.79.044308.

[13] A. Volya and V. Zelevinsky, "Continuum shell model," Phys. Rev. C, vol. 74, no. 6, p. 064314, 2006.

[14] A. Volya and V. Zelevinsky, "Non-Hermitian effective Hamiltonian and continuum shell model," Phys. Rev. C, vol. 67, no. 5, p. 054322, May 2003.

[15] S. M. Wang, W. Nazarewicz, A. Volya, and Y. G. Ma, "Probing the Non-exponential Decay Regime in Open Quantum Systems." arXiv, Nov. 21, 2022. doi: <u>10.48550/arXiv.2211.11619</u>.

Funding Acknowledgements: Funding: U.S. DOE contract DE-SC0009883.