

Nuclear Structure Experiments I

Advancing Knowledge. Transforming Lives.

Monday

Preliminaries

Nuclear existence

Decay modes beyond the driplines

Ground-state half-lives

(Masses \rightarrow Guy Savard's lectures)

Tuesday

Nuclear Structure Experiments I

Advancing Knowledge. Transforming Lives.

Monday

Preliminaries

Nuclear existence

Decay modes beyond the driplines

Ground-state half-lives

(Masses → Guy Savard's lectures)

Tuesday Monday

Many observables need to be measured to tackle the challenges outlined in previous presentation

Advancing Knowledge. Transforming Lives.

Preliminaries (1)

Transforming Lives.

Goal: Establish physical properties of rare isotopes and their interactions to gain predictive power

Experiments: Measure observables

Observables: May or may not need interpretation to relate to physical properties

- e.g., half-life and mass connect directly to physical properties
- e.g., cross sections for reaction processes usually need interpretation to connect to physical properties (model dependencies are introduced)

Preliminaries (2)

Theories and models can relate observables to physical properties – often, experiments are motivated by theoretical predictions that need validation

But: Theories and models have their own realm of applicability that everybody involved in the experiment/data analysis/interpretation should be aware of!

Predictions or systematics come with a warning: Might lead to expectations that can influence the implementation of an experiment and ultimately limit the scope of discovery

Preliminaries (3)

Advancing Knowledge. Transforming Lives.

Nuclear physics experiments are complex and experiments with rare isotopes pose additional challenges

- Rare isotopes are typically available for experiment as beams of ions
- Many of the established and well-tested techniques are not applicable and new approaches have to be developed

Details in the lectures by S. Pain, D. Bazin and A. Wuosmaa

Production of exotic nuclei

Random removal of protons and neutrons from heavy projectile in peripheral collisions

- Transfer reactions
- •Fusion-evaporation
- Fission
- •Fragmentation

• Target fragmentation (TRIUMF, ISOLDE, SPIRAL, HRIBF)

projectile fragment

• Projectile fragmentation (NSCL, GSI, RIKEN, GANIL)

You will work with rare isotopes produced by fragmentation in your hands-on activity!

Limits of existence – the neutron and proton driplines

Advancing Knowledge. Transforming Lives.

- Limits of existence neutron dripline
- The dripline is a benchmark that all nuclear models can be measured against
- Nuclear structure is qualitatively different (halo structures and skins)
- Sensitive to aspects of the nuclear force (see theory lectures)

North on the nuclear chart: The limit of mass and charge Lecture by K. Rykaczewski on superheavy elements

Location of the driplines

Advancing Knowledge. Transforming Lives.

MICHIGAN STATE

Experimental task: How to find a needle in a haystack

How many neutrons can a proton bind?

Advancing Knowledge. Transforming Lives.

The limit of nuclear existence is characterized by the nucleon driplines

 B. Jonson: "The driplines are the limits of the nuclear landscape where additional protons or neutrons can no longer be kept in the nucleus - they literally drip out."

• P. G. Hansen & J. A. Tostevin: "(the dripline is) where the nucleon separation energy goes to zero."

Where is the neutron dripline?

Advancing Knowledge. Transforming Lives.

Predictive power, anybody?

																						_			J
		³¹ Cl	³² CI	³³ CI	³⁴ CI	³⁵ CI	³⁶ CI	³⁷ Cl	³⁸ CI	³⁹ CI	40CI	⁴¹ CI	⁴² CI	⁴³ CI	44CI	⁴⁵ Cl	⁴⁶ CI	47CI	⁴⁸ CI	⁴⁹ CI		⁵¹ CI			
²⁸ S	²⁹ S	30S	³¹ S	³² S	³³ S	³⁴ S	³⁵ S	³⁶ S	³⁷ S	³⁸ S	³⁹ S	⁴⁰ S	41S	⁴² S	⁴³ S	44S	⁴⁵ S	⁴⁶ S	47S	⁴⁸ S					
27p	28p	²⁹ P	30p	31p	³² P	33P	³⁴ P	³⁵ P	³⁶ P	³⁷ P	³⁸ P	39P	40p	41P	42P	43P	44P	⁴⁵ P	⁴⁶ P						
²⁸ Si	²⁷ Si	²⁸ Si	²⁹ Si	³⁰ Si	³¹ Si	³² Si	³³ Si	³⁴ Si	³⁵ Si	³⁸ Si	³⁷ Si	³⁸ Si	³⁹ Si	⁴⁰ Si	⁴¹ Si	⁴² Si	⁴³ Si								
²⁵ AI	²⁶ AI	²⁷ AI	²⁸ AI	²⁹ AI	³⁰ AI	³¹ AI	³² AI	³³ AI	³⁴ AI	³⁵ AI	³⁶ AI	³⁷ AI	³⁸ AI	³⁹ AI	⁴⁰ AI	⁴¹ AI									
²⁴ Mg	²⁵ Mg	²⁶ Mg	²⁷ Mg	²⁸ Mg	²⁹ Mg	³⁰ Mg	³¹ Mg	³² Mg	³³ Mg	³⁴ Mg	³⁵ Mg	³⁶ Mg	³⁷ Mg	³⁸ Mg							?				
²³ Na	²⁴ Na	⁵⁷ Na	²⁶ Na	²⁷ Na	²⁸ Na	²⁹ Na	³⁰ Na	³¹ Na	³² Na	³³ Na	³⁴ Na	³⁵ Na		³⁷ Na											
²² Ne	²³ Ne	²⁴ Ne	²⁵ Ne	²⁶ Ne	²⁷ Ne	²⁸ Ne	²⁹ Ne	³⁰ Ne	³¹ Ne	³² Ne		³⁴ Ne													
²¹ F	²² F	²³ F	²⁴ F	²⁵ F	²⁶ F	²⁷ F		²⁹ F		³¹ F										_	FRD	М			
²⁰ O	²¹ O	²² O	²³ O	²⁴ O																	HFB	-8			
¹⁹ N	²⁰ N	²¹ N	²² N	²³ N	['																HFB	-9			
¹⁸ C	¹⁹ C	²⁰ C		22C																					

Dripline history and a plan ...

Lukyanov et al., J. Phys. G 28, L41

Advancing Knowledge. Transforming Lives.

⁴⁸Ca (Z=20, N=28)

Production of ⁴⁰Mg from ⁴⁸Ca: Net loss of 8 protons with no neutrons removed!

Advancing Knowledge. Transforming Lives.

T. Baumann et al., Nature 449, 1022 (2007)

⁴⁰Mg and more!

nature T. Baumann *et al.*, Nature 449, 1022 (2007)

MICHIGAN STATE

Advancing Knowledge. Transforming Lives.

Data taking: 7.6 days at 5 x10¹¹ particles/second 3 events of ⁴⁰Mg 23 events of ⁴²Al 1 event ⁴³Al

Data taking: 7.6 days at 5 x10¹¹ particles/second 3 events of ⁴⁰Mg

23 events of ⁴²Al

1 event ⁴³Al

The existence of ^{42,43}Al indicates that the neutron dripline might be much further out than predicted by most of the present theoretical models, certainly out of reach at present generation facilities.

Proof of non-existence: ²⁶O and ²⁸O

Tarasov et al., PLB 409, 64 (1997)

Advancing Knowledge. Transforming Lives.

Guillemaud-Mueller et al., PRC 41, 937 (1990)

³⁶S on Ta at 78 MeV/u (GANIL)

¹⁹B ki-

A/Q

Report absence of ²⁸O in the systematics of produced N=20 isotones

Discovery of new isotopes around the world

Advancing Knowledge. Transforming Lives.

Fragmentation of ²³⁸U at GSI

In-flight fission of ²³⁸U at RIKEN

T. Ohnishi *et al.*, J. Phys. Soc. Jpn. 77, 083201 (2008).

Advancing Knowledge. Transforming Lives.

One-proton radioactivity – Direct proton emission from ground states or isomeric excited states (heaviest proton emitter ¹⁸⁵Bi (isomeric state), the heaviest gs emitter: ¹⁷⁷TI

β-delayed charged particle emission (βp, β2p, for heavier nuclei $\beta\alpha$, $\beta\alpha p$) – Half-lives are dominated by β-decay, proton emission proceeds at half-lives of femto seconds or shorter \rightarrow not considered as "proton radioactivity"

Two-proton radioactivity – Two-proton emission from even-Z nuclei, for which, due to the pairing force, one proton emission is energetically forbidden, while two-proton emission is allowed (so far, ⁴⁵Fe, ⁵⁴Zn, indications in ⁴⁸Ni)

Where is the proton dripline?

Advancing Knowledge. Transforming Lives.

Proton radioactivity/emission

Transforming Lives.

Light proton emitters:

- (Very) short lifetimes due to small Coulomb and no or very small angular momentum barrier (1=0,1,2)
- Produced in transfer reactions or fragmentation
- Identify by complete kinematic reconstruction in flight

Heavy proton emitters

Advancing Knowledge. Transforming Lives.

- Long lifetimes due to Coulomb and angular momentum barrier
- Typically produced in fusion evaporation reactions or fragmentation
- Separate and subsequently stop in a detector for identification
- Use segmented silicon strip detectors for a delayed decay (e.g., DSSD)

Adapted from C. N. Davids

First Proton Radioactivity 1970

Advancing Knowledge. Transforming Lives.

Two-proton radioactivity

Advancing Knowledge. Transforming Lives.

- Predicted by Goldanskii in 1960
- Discovered not too long a ago in ⁴⁵Fe, ⁵⁴Zn and possibly ⁴⁸Ni
- Implantation/Decay (Long lifetimes)
 - Beta-Delayed Emitters
 - Ground-State Emitters
- Light two-proton emitters: In-Flight decay (Short lifetimes)

Measure the correlations between emitted protons.

Adapted from R. Grzywacz

Two-proton radioactivity *Predictions*

Advancing Knowledge. Transforming Lives.

- ${}^{38}\text{Ti}$ (0.4-2.3)x10⁻¹² ms
- ³⁹Ti 0.4-2000 ms
- 45 Fe 10⁻⁵-10⁻¹ ms
- ⁴⁸Ni 0.01-3660 ms
- ⁶³Se 0.3-5000 ms

W. E. Ormand, PRC 55, 2407 (1997)W. E. Ormand, PRC 53, 2145 (1996)B. A. Brown, PRC 43, R1513 (1991)

⁴⁵Fe: 2-Proton Decay at GSI 2002

2000 3000 4000 5000 Energy [keV]

M. Pfützner et al., Eur. Phys. A 14, 279 (2002)

⁴⁵Fe: 2-proton decay in OTPC at NSCL 2007

Advancing Knowledge. Transforming Lives.

⁴⁵Fe 2p-decay caught in the act

Recorded by CCD camera (25 ms exposure). 45 Fe enters from the left, short tracks are protons (~ 600 keV) emitted 535 µs after implantation

Time profile of the total light intensity measured by photomultiplier tube

2p radioactivity but no simple ²He (di-proton) picture

K. Miernik et al., PRL 99, 192501 (2007)

⁴⁵Fe: Correlation of the protons?

Advancing Knowledge. Transforming Lives.

Pfutzner, Grigorenko et al.

What about 2n: ²⁶O – maybe a case of two-neutron radioactivity

Advancing Knowledge. Transforming Lives.

- Lifetime limit for radioactivity is $\sim 10^{-12}$ s
- New technique developed to measure the lifetime of neutron emitting nuclei: Decay in Target (DiT)

Lifetime of two-neutron decay of ²⁶O measured to be $T_{1/2} = 4.5 \pm 1.5$ (*stat.*) ± 3 (*sys.*) ps

Z. Kohley et al. PRL 110, 152501 (2013)

Advancing Knowledge. Transforming Lives.

Half-lives

Bulk activity measurements

Advancing Knowledge. Transforming Lives.

Implant activity in active stopper material for time t_i . Cease implantation and observe decay for time t_d .

Adapted from P. F. Mantica

Event-by-event correlation technique

Advancing Knowledge. Transforming Lives.

Reduced background from in-flight tracking and identification of individual isotopes in the beam on a particle-by-particle basis

Adapted from P. F. Mantica

Janssens, Broda, Mantica *et al.*, PLB546, 55 (2002)

Beta counting systems Example: BCS at NSCL

Advancing Knowledge. Transforming Lives.

Permits the correlation of fragment implants and subsequent beta decays on an event-byevent basis

Implant detector: 1 each MSL type BB1-1000 4 cm x 4 cm active area 1 mm thick 40 1-mm strips in x and y Calorimeter: 6 each MSL type W 5 cm active area 1 mm thick 16 strips in one dimension

Adapted from P. F. Mantica

¹⁰¹Sn β-decay

Advancing Knowledge. Transforming Lives.

Doubly magic nucleus accelerates synthesis of heavy elements

Particle identification in rare-isotope beam from NSCL at Michigan State University

Measured half-life of ⁷⁸Ni with 11 events This is the most neutron rich of the 10 possible classical doubly-magic nuclei in nature.

Result: 110 +100 -60 ms

P. Hosmer et al. PRL 94, 112501 (2005)

Model calculation for synthesis of heavy elements during the r-process in supernova explosions

Models produce excess of heavy elements with new shorter ⁷⁸Ni half-life

- → the synthesis of heavy elements in nature proceeds faster than previously assumed
- ... a step in the quest to find the origin of the heavy elements in the cosmos

Adapted from H. Schatz

10 years and a new facility later ... at RIBF in RIKEN

Advancing Knowledge. Transforming Lives.

Particle identification in rare-isotope beam from RIBF at RIKEN

Very similar experimental scheme

- Produced by in-flight fission of ²³⁸U
- Implantation into Si stack

Significantly reduced uncertainty in the halflife of ⁷⁸Ni and new results for more neutronrich N=50 isotones

Astrophysical conclusions unchanged

Z. Y. Xu et al. PRL 113, 032505 (2014)

Take away

Advancing Knowledge. Transforming Lives.

- Implementation of experiments can influence the discovery potential
- Experimenters need to be explicit about assumptions and model dependencies
- Examples of techniques to explore ground-state properties of exotic nuclei
 - Existence of a rare isotope one of the most basic benchmarks for theory, very challenging experiments
 - Interesting exotica occur at the driplines
 - Nuclear masses (G. Savard's lecture) important for many thing, including nuclear structure, astrophysics and fundamental symmetries
 - Ground-state halflives have a challengingly large range that requires experiments to adapt, important for nuclear structure, astrophysics and fundamental symmetries