# EXPERIMENTS WITH RADIOACTIVE BEAMS D. Bazin 

National Superconducting Cyclotron Laboratory Michigan State University

## Menu

## Production methods

Types of experiments
Reaction experiments Issues and solutions

Looking towards the future

## Production methods

- ISOL technique (Isotope Separation On-Line)
- Fragment stable target nuclei with high intensity light beam (usually protons)
- Radioactive nuclei (fragments) thermally diffuse out of target, are ionized, filtered and accelerated into a beam


## Production methods

- ISOL technique (Isotope Separation On-Line)
- Fragment stable target nuclei with high intensity light beam (usually protons)
- Radioactive nuclei (fragments) thermally diffuse out of target, are ionized, filtered and accelerated into a beam
- Projectile fragmentation technique
- Fragment high intensity stable beam nuclei on light target (usually Beryllium or Carbon)
- Radioactive nuclei (fragments) fly out of target, are filtered and shaped into a beam


## Production methods

- ISOL technique (Isotope Separation On-Line)
- Fragment stable target nuclei with high intensity light beam (usually protons)
- Radioactive nuclei (fragments) thermally diffuse out of target, are ionized, filtered and accelerated into a beam
- Projectile fragmentation technique
- Fragment high intensity stable beam nuclei on light target (usually Beryllium or Carbon)
- Radioactive nuclei (fragments) fly out of target, are filtered and shaped into a beam
- Other methods

Transfer reactions, fission source, etc...

## Main facilities in the world


D. Bazin, EBSS 2016, July 22, 2016

## Main facilities in the world



## Main facilities in the world


D. Bazin, EBSS 2016, July 22, 2016

## Main facilities in the world

Greenland
Arctic Ocean



## Main facilities in the world


D. Bazin, EBSS 2016, July 22, 2016

## Main facilities in the world




## Main facilities in the world


D. Bazin, EBSS 2016, July 22, 2016

## Main facilities in the world



## Main facilities in the world



## Main facilities in the world

## Main facilities in the world



## Main facilities in the world



## Main facilities in the world



## Main facilities in the world



## Main facilities in the world



## Projectile fragmentation

- Randomly cut stable nuclei into fragments
- High energy (50-1 GeV/u or more)
- "Spectator" nucleons form projectile fragment
- Projectile fragments carry most of momentum
- High efficiency of collecting them at forward angles
- Thick targets to increase probability of nuclear reaction


## Projectile fragmentation

- Randomly cut stable nuclei into fragments
- High energy (50-1 GeV/u or more)
- "Spectator" nucleons form projectile fragment
- Projectile fragments carry most of momentum
- High efficiency of collecting them at forward angles
- Thick targets to increase probability of nuclear reaction



## Projectile fragmentation

- Randomly cut stable nuclei into fragments
- High energy (50-1 GeV/u or more)
- "Spectator" nucleons form projectile fragment
- Projectile fragments carry most of momentum
- High efficiency of collecting them at forward angles
- Thick targets to increase probability of nuclear reaction


## Fragment separator



- Select forward focused fragments produced from projectile fragmentation reactions
- Use various selection criteria: magnetic rigidity (Bp), energy loss (wedge), velocity (Wien filter, RF Separator)


## Experimental Setup at the NSCL


fragment yield after target


## Experimental Setup at the NSCL


fragment yield after target

fragment yield after wedge


## Experimental Setup at the NSCL


fragment yield after target

fragment yield after wedge

fragment yield at focal plane


## Experimental Setup at the NSCL


fragment yield after target

fragment yield after wedge

fragment yield at focal plane


## Experimental Setup at the NSCL



## Types of experiments

-What do you do with a beam of radioactive nuclei?

## Types of experiments

-What do you do with a beam of radioactive nuclei?

- Stop it and watch the radioactive nuclei decay


## Types of experiments

- What do you do with a beam of radioactive nuclei?
- Stop it and watch the radioactive nuclei decay
- Aim it randomly at other nuclei to (sometimes) make a nuclear reaction


## Types of experiments

- What do you do with a beam of radioactive nuclei?
- Stop it and watch the radioactive nuclei decay
- Aim it randomly at other nuclei to (sometimes) make a nuclear reaction
-What can you learn?


## Types of experiments

- What do you do with a beam of radioactive nuclei?
- Stop it and watch the radioactive nuclei decay
- Aim it randomly at other nuclei to (sometimes) make a nuclear reaction
-What can you learn?
- Decay properties, static (structure) properties


## Types of experiments

- What do you do with a beam of radioactive nuclei?
- Stop it and watch the radioactive nuclei decay
- Aim it randomly at other nuclei to (sometimes) make a nuclear reaction
-What can you learn?
- Decay properties, static (structure) properties
- Dynamical and statistical properties, but also (and in fact mostly) static properties


## Nuclear reactions




## Nuclear reactions

## "Simple" or "Direct" reactions

- Usually peripheral collision (large impact parameter)
- Involves mostly the outer (valence) nucleons
- Probe single-particle properties of nuclei



## Nuclear reactions

## "Simple" or "Direct" reactions

- Usually peripheral collision (large impact parameter)
- Involves mostly the outer (valence) nucleons
- Probe single-particle properties of nuclei



## Nuclear reactions

## "Simple" or "Direct" reactions

- Usually peripheral collision (large impact parameter)
- Involves mostly the outer (valence) nucleons
- Probe single-particle properties of nuclei
- "Complex" or "Central" reactions
- Usually central collision (small impact parameter)
- Involves all nucleons
- Probe statistical properties of nuclei


## Impact <br> Parameter

## Nuclear reactions

## "Simple" or "Direct" reactions

- Usually peripheral collision (large impact parameter)
- Involves mostly the outer (valence) nucleons
- Probe single-particle properties of nuclei
- "Complex" or "Central" reactions
- Usually central collision (small impact parameter)
- Involves all nucleons
- Probe statistical properties of nuclei

Impact<br>Parameter

## Direct reactions are tools

- ... to study Nuclear Structure and Astrophysics


## Direct <br> Reactions

## Direct reactions are tools

- ... to study Nuclear Structure and Astrophysics

```
Shell structure
    evolutionNone
```

> Direct
> Reactions

## Direct reactions are tools

- ... to study Nuclear Structure and Astrophysics



## Direct reactions are tools

- ... to study Nuclear Structure and Astrophysics



## Direct reactions are tools

- ... to study Nuclear Structure and Astrophysics



## Direct reactions are tools

- ... to study Nuclear Structure and Astrophysics



## Direct reactions are tools

- ... to study Nuclear Structure and Astrophysics


DREB 2016: 75\% Structure $25 \%$ Reactions


## Not so simple...

- Pictures and words are necessary, but they confine and restrict the imagination



## Not so simple...

- Pictures and words are necessary, but they confine and restrict the imagination



## Not so simple...

- Pictures and words are necessary, but they confine and restrict the imagination


## Angular momentum transfer

## Not so simple...

- Pictures and words are necessary, but they confine and restrict the imagination


## Angular momentum transfer



## Not so simple...

- Pictures and words are necessary, but they confine and restrict the imagination


## Angular momentum transfer

## Not so simple...

- Pictures and words are necessary, but they confine and restrict the imagination


## Angular momentum transfer

Elastic scattering below the
Coulomb barrier

## Not so simple...

- Pictures and words are necessary, but they confine and restrict the imagination


## Angular momentum transfer

Elastic scattering below the
Coulomb barrier

## Not so simple...

- Pictures and words are necessary, but they confine and restrict the imagination


## Angular momentum transfer

Elastic scattering below the
Coulomb barrier


## Not so simple...

- Pictures and words are necessary, but they confine and restrict the imagination


## Angular momentum transfer

Elastic scattering below the
Coulomb barrier

Quasi-free (p,pn) scattering

## A large palette of tools

Covering a very wide range of beam energies

- From $<1 \mathrm{MeV} / \mathrm{u}$ up to $>1 \mathrm{GeV} / \mathrm{u}$


## Impact Parameter

Beam energy

NSCL

## A large palette of tools

- Covering a very wide range of beam energies
- From $<1 \mathrm{MeV} / \mathrm{u}$ up to $>1 \mathrm{GeV} / \mathrm{u}$



## A large palette of tools

- Covering a very wide range of beam energies
- From $<1 \mathrm{MeV} / \mathrm{u}$ up to $>1 \mathrm{GeV} / \mathrm{u}$


Beam energy

NSCL

## A large palette of tools

- Covering a very wide range of beam energies
- From $<1 \mathrm{MeV} / \mathrm{u}$ up to $>1 \mathrm{GeV} / \mathrm{u}$


##  excitation <br> Radiative capture

## Resonant <br> scattering

Beam energy

NSCL

## A large palette of tools

- Covering a very wide range of beam energies
- From $<1 \mathrm{MeV} / \mathrm{u}$ up to $>1 \mathrm{GeV} / \mathrm{u}$


Beam energy

## A large palette of tools

- Covering a very wide range of beam energies
- From $<1 \mathrm{MeV} / \mathrm{u}$ up to $>1 \mathrm{GeV} / \mathrm{u}$


Beam energy

## A large palette of tools

- Covering a very wide range of beam energies
- From $<1 \mathrm{MeV} / \mathrm{u}$ up to $>1 \mathrm{GeV} / \mathrm{u}$



## A large palette of tools

- Covering a very wide range of beam energies
- From $<1 \mathrm{MeV} / \mathrm{u}$ up to $>1 \mathrm{GeV} / \mathrm{u}$



## A large palette of tools

- Covering a very wide range of beam energies
- From $<1 \mathrm{MeV} / \mathrm{u}$ up to $>1 \mathrm{GeV} / \mathrm{u}$



## Nuclear Physics Conundrum

- Using "simple" nuclear reaction to study nuclear structure
$\begin{array}{ll}\text { Observable: } & \text { Structure model: } \\ \text { cross section } & \text { spectroscopic factor }\end{array}$
Reaction model: single-particle cross section

$$
\left|J_{f}-J_{i}\right| \leq j \leq J_{f}+J_{i}
$$

## Nuclear Physics Conundrum

- Using "simple" nuclear reaction to study nuclear structure
$\begin{array}{ll}\text { Observable: } & \text { Structure model: } \\ \text { cross section } & \text { spectroscopic factor }\end{array}$
Reaction model: single-particle cross section
- One observable, two model inputs


## Nuclear Physics Conundrum

- Using "simple" nuclear reaction to study nuclear structure
$\begin{array}{ll}\text { Observable: } & \text { Structure model: } \\ \text { cross section } & \text { spectroscopic factor }\end{array}$
Reaction model: single-particle cross section
- One observable, two model inputs
- We want to extract valuable structure information


## Nuclear Physics Conundrum

- Using "simple" nuclear reaction to study nuclear structure
$\begin{array}{ll}\text { Observable: } & \text { Structure model: } \\ \text { cross section } & \text { spectroscopic factor }\end{array}$
Reaction model: single-particle cross section
- One observable, two model inputs
- We want to extract valuable structure information
- Challenge: need valid reaction model!


## The good early days...

- Use light nuclei (p, d, 4He) on stable targets
- Large beam intensities ( $10^{8} \mathrm{pps}$ and more)
- Simple detector setups (few detectors around target, or simple spectrometer)
- Detect the scattered particle emerging from target


## The good early days...

- Use light nuclei (p, d, 4He) on stable targets
- Large beam intensities (108 pps and more)
- Simple detector setups (few detectors around target, or simple spectrometer)
- Detect the scattered particle emerging from target
- Use direct reactions to study static properties of nuclei
- Populate levels in heavy residue $\rightarrow$ level scheme
- Measure energy and angular distribution of scattered particle $\rightarrow$ spins and parities of states
- Measure cross sections and compare to reaction calculations $\rightarrow$ spectroscopic factors


## The ${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})^{91} \mathrm{Zr}$ reaction




${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})^{91} \mathrm{Zr}$ @ $6 \mathrm{MeV} / \mathrm{u}$ to $1 \mathrm{~g}, 2 \mathrm{~d}$, 3s orbitals H. Feshbach, Nuclear Reactions, Wiley \& Sons (1992)


## Issue $n^{\circ} 1$ : inverse kinematics!

- (d,p) reaction in direct kinematics



## Issue $n^{\circ} 1$ : inverse kinematics!

- $(\mathrm{d}, \mathrm{p})$ reaction in direct kinematics 0


## Issue $n^{\circ} 1$ : inverse kinematics!

- $(\mathrm{d}, \mathrm{p})$ reaction in direct kinematics

- (d,p) reaction in inverse kinematics: where does the proton go?



## Issue $n^{\circ} 1$ : inverse kinematics!

- $(\mathrm{d}, \mathrm{p})$ reaction in direct kinematics

- (d,p) reaction in inverse kinematics: where does the proton go?


## Backwards!

## $d\left({ }^{90} \mathrm{Zr},{ }^{91} \mathrm{Zr}\right) \mathrm{p}$ reaction

## - What happened!



## $d\left({ }^{90} \mathrm{Zr},{ }^{91} \mathrm{Zr}\right) \mathrm{p}$ reaction

- What happened!

Center-of-mass motion now with projectile, not target



## $d\left(90 \mathrm{Zr},{ }^{91} \mathrm{Zr}\right) \mathrm{p}$ reaction

- What happened!
- Center-of-mass motion now with projectile, not target
- Scattered protons now have very wide range of energies



## $d\left(90 \mathrm{Zr},{ }^{91} \mathrm{Zr}\right) \mathrm{p}$ reaction

- What happened!
- Center-of-mass motion now with projectile, not target
- Scattered protons now have very wide range of energies
- Worse: largest cross sections at the lowest end of energy range




## $d\left({ }^{90} \mathrm{Zr},{ }^{91} \mathrm{Zr}\right) p$ reaction

- What happened!
- Center-of-mass motion now with projectile, not target
- Scattered protons now have very wide range of energies
- Worse: largest cross sections at the lowest end of energy range
- More difficult for proton to emerge from target


## $d\left({ }^{90} \mathrm{Zr},{ }^{91} \mathrm{Zr}\right) p$ reaction

- What happened!
- Center-of-mass motion now with projectile, not target
- Scattered protons now have very wide range of energies
- Worse: largest cross sections at the lowest end of energy range
- More difficult for proton to emerge from target
- Proton energies much more dependent on scattering angle




## Solutions...

- Cover as much solid angle as possible



## Helios: solving inverse kinematics

 - Kinematic compression of energies- Solenoid spectrometer directly measures center-of-mass energies
- Large angular acceptance within solenoid boundaries




## Issue nº2: luminosity!

$\begin{aligned} & \text { Event rate } \\ & \text { in detector }\end{aligned} \frac{d R}{d t}=L \sigma_{R}$ Cross section



## Issue nº2: Iuminosity!

## $\begin{aligned} & \text { Event rate } \\ & \text { in detector }\end{aligned} \frac{d R}{d t}=L \sigma_{R}$ Cross section

- Target cannot be too thick

- Low energy particles scattered from reactions cannot escape
- Energy lost in target is not recorded: loss of energy resolution
- Difficult compromise between resolution and luminosity



## Issue nº2: Iuminosity!

## $\begin{aligned} & \text { Event rate } \\ & \text { in detector }\end{aligned} \frac{d R}{d t}=L \sigma_{R}$ Cross section

- Target cannot be too thick

- Low energy particles scattered from reactions cannot escape
- Energy lost in target is not recorded: loss of energy resolution
- Difficult compromise between resolution and luminosity
- Radioactive beams are weak
- Intensities several orders of magnitude smaller than stable beams
- New experimental techniques
 needed!


## The rise of Active Targets

- Solving the "too thick target" problem
- Active Target: target no longer inert material, but used also to detect particles and/or determine vertex position

| Name | Lab | $\begin{array}{r} \text { gas } \\ \text { ampl. } \end{array}$ | Volume $\left[\mathrm{cm}^{3}\right.$ ] | pressure [atm] | $\begin{array}{r} \text { Energy } \\ {[\mathrm{MeV} / \mathrm{n}]} \end{array}$ | $\begin{array}{r} \text { elec } \\ \text { tronics } \end{array}$ | Number of chan. | $\begin{gathered} \text { sta } \\ \text { tus }^{\text {a }} \end{gathered}$ | ref |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ikar | GSI | NA | $60 \cdot 20^{2} \pi$ | 10 | 700 | FADC | $6^{*} 3$ | O | [5] |
| Maya | GANIL | wire | $30 \cdot 28.3^{2}$ | 0.02-2 | 2-60 | gassiplex | 1024 | O | [6] |
| ACTAR | GANIL | $\mu$ megas | $20^{3}$ | 0.01-3 | 2-60 | GET | 16000 | C,P | [7] |
| MSTPC | various | wires/ GEM | $70 \cdot 15 \cdot 20$ | <0.3 | 0.5-5 | FADC | 128 | O | $\begin{array}{r} {[8]} \\ {[9,10]} \end{array}$ |
| CAT | CNS | GEM | $10 \cdot 10 \cdot 25$ | 0.2-1 | 100-200 | FADC | 400 | T | [11] |
| MAIKo | RNCP | $\mu$-PIC | $14^{3}$ | 0.4-1 | 10-100 | FADC | $2 \times 256$ | T | [12] |
| pAT-TPC | MSU | $\mu$ megas | $50 \cdot 12.5^{2} \pi$ | 0.01-1 | 1-10 | GET | 256 | T, O | [13] |
| AT-TPC | FRIB | $\mu$ megas | $100 \cdot 25^{2} \pi$ | 0.01-1 | 1-100 | GET | 10240 | O | [14] |
| TACTIC | TRIUMF | GEM | $24 \cdot 10^{2} \pi$ | 0.25-1 | 1-10 | FADC | 48 | T | [15] |
| ANASEN | $\begin{gathered} \text { FSU/ } \\ \text { LSU } \end{gathered}$ | wires | $43 \cdot 10^{2} \pi$ | 0.1-1 | 1-10 | ASIC | 512 | O | [16] |
| MINOS | IRFU | $\mu$ megas | 6000 | 0.01-3 | >120 | feminos | 5000 | O | [17] |
| O-TPC | TUNL | grid | $21 \cdot 30^{2}$ | 0.1 | $\gamma 10$ | optical CCD | $\begin{array}{r} 2048 \cdot 2048 \\ \text { pixels } \end{array}$ | O | [18] |

S. Beceiro-Novo et al., PPNP 84, 124 (2015)

## The rise of Active Targets

- Solving the "too thick target" problem
- Active Target: target no longer inert material, but used also to detect particles and/or determine vertex position
- No "lost energy" of particles emerging from reaction

| Name | Lab | $\begin{array}{r} \text { gas } \\ \text { ampl. } \end{array}$ | $\begin{gathered} \text { Volume } \\ {\left[\mathrm{cm}^{3}\right]} \end{gathered}$ | pressure [atm] | $\begin{array}{r} \text { Energy } \\ {[\mathrm{MeV} / \mathrm{n}]} \end{array}$ | $\begin{array}{r} \text { elec } \\ \text { tronics } \end{array}$ | Number of chan. | $\begin{gathered} \text { sta } \\ \text { tus }^{\text {a }} \end{gathered}$ | ref |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ikar | GSI | NA | $60 \cdot 20^{2} \pi$ | 10 | 700 | FADC | $6^{*} 3$ | O | [5] |
| Maya | GANIL | wire | $30 \cdot 28.3^{2}$ | 0.02-2 | 2-60 | gassiplex | 1024 | O | [6] |
| ACTAR | GANIL | $\mu$ megas | $20^{3}$ | 0.01-3 | 2-60 | GET | 16000 | C,P | [7] |
| MSTPC | various | wires/ GEM | $70 \cdot 15 \cdot 20$ | <0.3 | 0.5-5 | FADC | 128 | O | $\begin{array}{r} {[8]} \\ {[9,10]} \end{array}$ |
| CAT | CNS | GEM | $10 \cdot 10 \cdot 25$ | 0.2-1 | 100-200 | FADC | 400 | T | [11] |
| MAIKo | RNCP | $\mu$-PIC | $14^{3}$ | 0.4-1 | 10-100 | FADC | $2 \times 256$ | T | [12] |
| pAT-TPC | MSU | $\mu$ megas | $50 \cdot 12.5^{2} \pi$ | 0.01-1 | 1-10 | GET | 256 | T, O | [13] |
| AT-TPC | FRIB | $\mu$ megas | $100 \cdot 25^{2} \pi$ | 0.01-1 | 1-100 | GET | 10240 | O | [14] |
| TACTIC | TRIUMF | GEM | $24 \cdot 10^{2} \pi$ | 0.25-1 | 1-10 | FADC | 48 | T | [15] |
| ANASEN | $\begin{gathered} \text { FSU/ } \\ \text { LSU } \end{gathered}$ | wires | $43 \cdot 10^{2} \pi$ | 0.1-1 | 1-10 | ASIC | 512 | O | [16] |
| MINOS | IRFU | $\mu$ megas | 6000 | 0.01-3 | >120 | feminos | 5000 | O | [17] |
| O-TPC | TUNL | grid | $21 \cdot 30^{2}$ | 0.1 | $\gamma 10$ | optical CCD | $\begin{array}{r} 2048 \cdot 2048 \\ \text { pixels } \end{array}$ | O | [18] |

S. Beceiro-Novo et al., PPNP 84, 124 (2015)

## The rise of Active Targets

- Solving the "too thick target" problem
- Active Target: target no longer inert material, but used also to detect particles and/or determine vertex position
- No "lost energy" of particles emerging from reaction
- Virtually "infinite thickness" (beam slows down until stopped)

| Name | Lab | $\begin{array}{r} \text { gas } \\ \text { ampl. } \end{array}$ | $\begin{gathered} \text { Volume } \\ {\left[\mathrm{cm}^{3}\right]} \end{gathered}$ | pressure [atm] | $\begin{array}{r} \text { Energy } \\ {[\mathrm{MeV} / \mathrm{n}]} \end{array}$ | $\begin{array}{r} \text { elec } \\ \text { tronics } \end{array}$ | Number of chan. | $\begin{gathered} \text { sta } \\ \text { tus }^{\text {a }} \end{gathered}$ | ref |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ikar | GSI | NA | $60 \cdot 20^{2} \pi$ | 10 | 700 | FADC | $6^{*} 3$ | O | [5] |
| Maya | GANIL | wire | $30 \cdot 28.3^{2}$ | 0.02-2 | 2-60 | gassiplex | 1024 | O | [6] |
| ACTAR | GANIL | $\mu$ megas | $20^{3}$ | 0.01-3 | 2-60 | GET | 16000 | C,P | [7] |
| MSTPC | various | wires/ GEM | $70 \cdot 15 \cdot 20$ | <0.3 | 0.5-5 | FADC | 128 | O | $\begin{array}{r} {[8]} \\ {[9,10]} \end{array}$ |
| CAT | CNS | GEM | $10 \cdot 10 \cdot 25$ | 0.2-1 | 100-200 | FADC | 400 | T | [11] |
| MAIKo | RNCP | $\mu$-PIC | $14^{3}$ | 0.4-1 | 10-100 | FADC | $2 \times 256$ | T | [12] |
| pAT-TPC | MSU | $\mu$ megas | $50 \cdot 12.5^{2} \pi$ | 0.01-1 | 1-10 | GET | 256 | T, O | [13] |
| AT-TPC | FRIB | $\mu$ megas | $100 \cdot 25^{2} \pi$ | 0.01-1 | 1-100 | GET | 10240 | O | [14] |
| TACTIC | TRIUMF | GEM | $24 \cdot 10^{2} \pi$ | 0.25-1 | 1-10 | FADC | 48 | T | [15] |
| ANASEN | $\begin{gathered} \text { FSU/ } \\ \text { LSU } \end{gathered}$ | wires | $43 \cdot 10^{2} \pi$ | 0.1-1 | 1-10 | ASIC | 512 | O | [16] |
| MINOS | IRFU | $\mu$ megas | 6000 | 0.01-3 | >120 | feminos | 5000 | O | [17] |
| O-TPC | TUNL | grid | $21 \cdot 30^{2}$ | 0.1 | $\gamma 10$ | optical CCD | $\begin{array}{r} 2048 \cdot 2048 \\ \text { pixels } \end{array}$ | O | [18] |

S. Beceiro-Novo et al., PPNP 84, 124 (2015)

## The rise of Active Targets

- Solving the "too thick target" problem
- Active Target: target no longer inert material, but used also to detect particles and/or determine vertex position
- No "lost energy" of particles emerging from reaction
- Virtually "infinite thickness" (beam slows down until stopped)
- All energies can be measured simultaneously as beam slows down

| Name | Lab | $\begin{array}{r} \text { gas } \\ \text { ampl. } \end{array}$ | Volume $\left[\mathrm{cm}^{3}\right]$ | $\begin{aligned} & \text { pressure } \\ & {[\text { [atm] }} \end{aligned}$ | $\begin{array}{r} \text { Energy } \\ {[\mathrm{MeV} / \mathrm{n}]} \end{array}$ | $\begin{array}{r} \text { elec } \\ \text { tronics } \end{array}$ | Number of chan. | $\begin{gathered} \text { sta } \\ \text { tus }^{\text {a }} \end{gathered}$ | ref |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ikar | GSI | NA | $60 \cdot 20^{2} \pi$ | 10 | 700 | FADC | $6^{*} 3$ | O | [5] |
| Maya | GANIL | wire | $30 \cdot 28.3^{2}$ | 0.02-2 | 2-60 | gassiplex | 1024 | O | [6] |
| ACTAR | GANIL | $\mu$ megas | $20^{3}$ | 0.01-3 | 2-60 | GET | 16000 | C,P | [7] |
| MSTPC | various | wires/ GEM | $70 \cdot 15 \cdot 20$ | <0.3 | 0.5-5 | FADC | 128 | O | $\begin{array}{r} {[8]} \\ {[9,10]} \end{array}$ |
| CAT | CNS | GEM | $10 \cdot 10 \cdot 25$ | 0.2-1 | 100-200 | FADC | 400 | T | [11] |
| MAIKo | RNCP | $\mu$-PIC | $14^{3}$ | 0.4-1 | 10-100 | FADC | $2 \times 256$ | T | [12] |
| pAT-TPC | MSU | $\mu$ megas | $50 \cdot 12.5^{2} \pi$ | 0.01-1 | 1-10 | GET | 256 | T, O | [13] |
| AT-TPC | FRIB | $\mu$ megas | $100 \cdot 25^{2} \pi$ | 0.01-1 | 1-100 | GET | 10240 | O | [14] |
| TACTIC | TRIUMF | GEM | $24 \cdot 10^{2} \pi$ | 0.25-1 | 1-10 | FADC | 48 | T | [15] |
| ANASEN | $\begin{gathered} \text { FSU/ } \\ \text { LSU } \end{gathered}$ | wires | $43 \cdot 10^{2} \pi$ | 0.1-1 | 1-10 | ASIC | 512 | O | [16] |
| MINOS | IRFU | $\mu$ megas | 6000 | 0.01-3 | >120 | feminos | 5000 | O | [17] |
| O-TPC | TUNL | grid | $21 \cdot 30^{2}$ | 0.1 | $\gamma 10$ | optical CCD | $\begin{array}{r} 2048 \cdot 2048 \\ \text { pixels } \end{array}$ | O | [18] |

S. Beceiro-Novo et al., PPNP 84, 124 (2015)

## Example: AT-TPC @ NSCL

Insulator gas volume
$\square \mathrm{N}_{2}$ gas $30 \mathrm{kV} / \mathrm{cm} \times 6 \mathrm{~cm}=180 \mathrm{kV}$


NSCL


## Tracking reactions inside target

- ${ }^{6} \mathrm{He}+{ }^{4} \mathrm{He}$ elastic scattering
- Image of charged particle trajectories
- Beam slows down in gas
- Vertex location tells reaction energy
- Energy loss tells which particle is which
- Length and angle between scattered tracks follow kinematics
- ${ }^{10} \mathrm{Be}+{ }^{4} \mathrm{He}$ elastic and inelastic scattering
- Dual gain trick to detect both scattered ${ }^{4} \mathrm{He}$ and ${ }^{10} \mathrm{Be}$
- Clear separation between gs $\left(0^{+}\right)$and $1^{\text {st }}$ excited state $\left(2^{+}\right)$at 3.37 MeV



## Re-accelerated radioactive beam experiment

```
Purity: - 90%
Duty factor ~ 20%
```

14 ACTIVE TIME PROJECTION CHAMBER

LASER SPECTROSCOPY 10 - $4.6 \mathrm{MeV} / \mathrm{u}$ 12 REACCELERATOR
(11) LEBIT

$$
\begin{aligned}
& { }^{46} \text { Ar } \\
& \text { GAS STOPPING } 60
\end{aligned}
$$


8. S800

MODULAR 5 NEUTRON ARRAY
(1) ION SOURCES 7 DECAVSTATION


2 K500 \& K1200
COUPLED
CYCLOTRONS $\mathrm{Ca}^{2 \mathrm{O}+@}$ I4O MeV/u

## 3D camera for nuclear reactions

- Event from ${ }^{46} \mathrm{Ar}(\mathrm{p}, \mathrm{p})$ elastic scattering at $4.6 \mathrm{MeV} / \mathrm{u} @ \mathrm{NSCL}$
- AT-TPC placed inside solenoidal magnetic field to curve trajectories
- 10,240 pads $\times 512$ time samples $=5.2$ Mpixels per event
- Expected energy resolution $50-100 \mathrm{keV}$



## Stored beams at EXL

- Recirculate radioactive beam onto gas target
- Luminosity boost by $10^{5}-10^{6}$ on thin (gas) target

J. C. Zamora, Ph. D. thesis, 2016


## Stored beams at EXL

- Recirculate radioactive beam onto gas target
- Luminosity boost by $10^{5}-10^{6}$ on thin (gas) target



## First results with stable beams

- Elastic and inelastic scattering of ${ }^{20} \mathrm{Ne}+\mathrm{p}$ and ${ }^{58 \mathrm{Ni}+\alpha}$
- Luminosities from $6.10^{25}$ to $6.10^{27} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ achieved
- High vacuum environment
- Emittance growth


IOO \& $150 \mathrm{MeV} / \mathrm{u}$
J. C. Zamora, Ph. D. thesis, 2016
D. Bazin, EBSS 2016, July 22, 2016

## Luminosity from fast beams

- In-beam $\gamma$-ray spectroscopy and invariant-mass spectroscopy


## Luminosity from fast beams

- In-beam $\gamma$-ray spectroscopy and invariant-mass spectroscopy
- Combine fast radioactive beams produced via projectile fragmentation with knockout reactions on thick targets: high luminosity


## Luminosity from fast beams

- In-beam $\gamma$-ray spectroscopy and invariant-mass spectroscopy
- Combine fast radioactive beams produced via projectile fragmentation with knockout reactions on thick targets: high luminosity
- Use $\gamma$-ray tracking arrays with Doppler correction to measure deexcitation of fast moving residue: high resolution


## Luminosity from fast beams

- In-beam $\gamma$-ray spectroscopy and invariant-mass spectroscopy
- Combine fast radioactive beams produced via projectile fragmentation with knockout reactions on thick targets: high luminosity
- Use $\gamma$-ray tracking arrays with Doppler correction to measure deexcitation of fast moving residue: high resolution
- For unbound states: long time-of-flight neutron arrays placed around $0^{\circ}$ to reconstruct invariant mass


## Luminosity from fast beams

- In-beam $\gamma$-ray spectroscopy and invariant-mass spectroscopy
- Combine fast radioactive beams produced via projectile fragmentation with knockout reactions on thick targets: high luminosity
- Use $\gamma$-ray tracking arrays with Doppler correction to measure deexcitation of fast moving residue: high resolution
- For unbound states: long time-of-flight neutron arrays placed around $0^{\circ}$ to reconstruct invariant mass
- Large number of devices are available and developing around the world


## in-beam $\gamma$-ray spectroscopy

- Reactions with fast radioactive beam
- Reaction residue loses one or a few nucleons
- Only residue is collected and detected at forward angles
- Thick targets can be used (luminosity!)
- High efficiency array detects Doppler-shifted $\gamma$-ray from residue



## Knockout reactions

- Pillar of today's radioactive nuclei spectroscopy
- Angular momentum of removed nucleon from parallel momentum of residue



## S800 spectrograph + Gretina array



## S800 spectrograph + Gretina array



## S800: "software" spectrograph

- Magnetic elements have fringe fields and imperfections
- Optics are not perfect and deviate from $1^{\text {st }}$ order (linear)
- Deviations are called "high order aberrations"

$$
\mathrm{x}_{\mathrm{f}}=\mathrm{x}_{\mathrm{i}} \mathrm{~T}_{11}+\mathrm{a}_{\mathrm{i}} \mathrm{~T}_{12}+\mathrm{d}_{\mathrm{i}} \mathrm{~T}_{16}
$$

| Transfer |  | Sigma | Inverse | Emittances$l(\mathrm{~m})$ | d(1) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| x (m) | $a(\mathrm{rad})$ | $y(m)$ | $b$ ( rad ) |  |  |
| xf -0.893 | -9.12e-06 | 0 | 0 | 0 | -9.54 |
| af -0.727 | -1.12 | 0 | 0 | 0 | -0.172 |
| yf 0 | 0 | -0.59 | -0.704 | 0 | 0 |
| bf 0 | 0 | 1.33 | -0.102 | 0 | 0 |
| lf 6.78 | 10.7 | 0 | 0 | 1 | -10.3 |
| df 0 | 0 | 0 | 0 | 0 | 1 |
|  |  |  | miss |  |  |

## S800: "software" spectrograph

- Magnetic elements have fringe fields and imperfections
- Optics are not perfect and deviate from $1^{\text {st }}$ order (linear)
- Deviations are called "high order aberrations"

$$
\mathrm{x}_{\mathrm{f}}=\mathrm{x}_{\mathrm{i}} \mathrm{~T}_{11}+\mathrm{a}_{\mathrm{i}} \mathrm{~T}_{12}+\mathrm{d}_{\mathrm{i}} \mathrm{~T}_{16}+\mathrm{x}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}} \mathrm{~T}_{112}+\mathrm{a}_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}} \mathrm{~T}_{126}+\ldots
$$

| Transfer |  | Sigma | Inverse | Emittances |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| x (m) | $a(\mathrm{rad})$ | $y(m)$ | $b(\mathrm{rad})$ | l(m) | d(1) |
| xf -0.893 | -9.12e-06 | 6 | 0 | 0 | -9.54 |
| af -0.727 | -1.12 | 0 | 0 | 0 | -0.172 |
| yf 0 | 0 | -0.59 | -0.704 | 0 | 0 |
| bf 0 | 0 | 1.33 | -0.102 | 0 | 0 |
| lf 6.78 | 10.7 | 0 | 0 | 1 | -10.3 |
| df 0 | 0 | 0 | 0 | 0 | 1 |
|  |  |  | miss |  |  |

## Trajectory reconstruction

- Deduce parameters of particle at the target location from measurements at the focal plane
- Calculate $4 \times 4$ forward matrix up to order N (COSY infinity)
- Inverse forward matrix assuming $x_{i}=0$ to get $d_{i}$
- Apply inverse matrix (map) to data to extract energy and scattering angle at the target location

$$
\begin{aligned}
& \left(\begin{array}{c}
x_{f} \\
\theta_{f} \\
y_{f} \\
\phi_{f}
\end{array}\right)=S\left(\begin{array}{c}
\delta_{i} \\
\theta_{i} \\
y_{i} \\
\phi_{i}
\end{array}\right) \longrightarrow\left(\begin{array}{c}
\delta_{i} \\
\theta_{i} \\
y_{i} \\
\phi_{i}
\end{array}\right)=S^{-1}\left(\begin{array}{c}
x_{f} \\
\theta_{f} \\
y_{f} \\
\phi_{f}
\end{array}\right) \\
& \left(x_{i}=0\right)
\end{aligned}
$$

## Aberration corrections

Initial grid: $\Delta \mathrm{d}= \pm 5 \%, \Delta \mathrm{a}= \pm 60 \mathrm{mrad}, \Delta \mathrm{b}= \pm 90 \mathrm{mrad}$



Fifth Order



Fifth Order Corrected



Expected energy resolution for a Imm beam spot size: I part in 5,000 (0.02\%)

## Dispersion matching

- Analysis line disperses the radioactive beam at target location
- Without target: all particles refocussed in focal plane
- Position at focal plane only depends on energy lost in target



## Example

- Reaction: $\left.{ }^{12} \mathrm{C}\left({ }^{7} \mathrm{Li},{ }^{3} \mathrm{H}\right)\right)^{16} \mathrm{O}$ at $19 \mathrm{MeV} / \mathrm{u}$
- Spectrograph rotated at $8^{\circ}$
- Energy resolution of $1 / 1800$ over full acceptance ( 20 msr )



## Particle identification in 5800

- How to identify the heavy residues collected in the S800
- Use time-of-flight and energy loss measurements
- Time-of-flight depends on velocity and trajectory length
- Energy loss depends on velocity
- Corrections are needed to recover resolution and achieve identification

|  | Transfer | Sigma | Inverse | Emittances |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Example

- Angle at Focal Plane directly proportional to length of trajectory inside S800
- Without correction ${ }^{26,25,24} \mathrm{Ne}$ are not resolved



## Doppler correction

$$
E=E_{0} \frac{\sqrt{1-\beta_{0}{ }^{2}}}{1-\boldsymbol{\beta}_{0} \cdot \mathbf{e}}
$$

$$
\boldsymbol{\beta}_{\mathbf{0}} \cdot \mathbf{e}=\left|\boldsymbol{\beta}_{\mathbf{0}}\right| \cos \theta_{0}
$$

$E_{0} \quad \gamma$-ray energy in the source frame
$E \quad \gamma$-ray energy in the lab frame
$\boldsymbol{\beta}_{\mathbf{0}}$ velocity of the source
$\theta_{0} \quad \gamma$-ray angle of emission


- $\gamma$-ray energy directly related to velocity at the time of emission
(a) Resolution directly related to target thickness


## Vertex tracker: MINOS design

- In-beam $\gamma$-ray spectroscopy relies on Doppler correction
- Both $\gamma$-ray angle and energy of reaction needed
- Vertex tracker measures reaction location inside $\mathrm{LH}_{2}$ volume
- ( $p, 2 p$ ) or ( $p, p n$ ) reactions at 200-300 MeV/u
- Protons can escape target

A. Obertelli et al., EPJA 50, 8 (2014)


## MINOS performance

- Gains in luminosity and resolution
- Luminosity increase by a factor 5 to 50
- Resolution gain depends greatly on $\gamma$-ray array performance
- $\gamma$-ray tracking Ge array resolution will result in sensitivity gains 100-200
- Present use @ RIBF/RIKEN
- DALI2 Nal array (6-7\%)
- Example shows clear improvement with vertex determination


Courtesy of A. Obertelli

## Take aways...

- Experiments with radioactive beams are challenging
- Inverse kinematics makes life difficult at low energies, but can be exploited for high luminosity at high energies
- Low beam intensities requires to design experiments with high efficiency to recover good luminosity


## Take aways...

- Experiments with radioactive beams are challenging
- Inverse kinematics makes life difficult at low energies, but can be exploited for high luminosity at high energies
- Low beam intensities requires to design experiments with high efficiency to recover good luminosity
- Radioactive beams are developing worldwide and need new experimental ideas and innovations to tackle its challenges


## Take aways...

- Experiments with radioactive beams are challenging
- Inverse kinematics makes life difficult at low energies, but can be exploited for high luminosity at high energies
- Low beam intensities requires to design experiments with high efficiency to recover good luminosity
- Radioactive beams are developing worldwide and need new experimental ideas and innovations to tackle its challenges
- Experimental developments foster new discoveries (and vice versa)


## The fun begins tonight!

- You will perform a real in-beam $\gamma$-ray spectroscopy experiment!


## The fun begins tonight!

- You will perform a real in-beam $\gamma$-ray spectroscopy experiment!


## - Challenges:

- How do I set the S800 spectrograph to the right rigidity to see the reaction residue I want to study?
- How do I make sure I am not sending the incoming beam into the focal plane detectors and fry them?
- How do I identify the nuclei selected by the S 800 ?
- How do I verify that I am indeed seeing the correct nuclei?


## The fun begins tonight!

- You will perform a real in-beam $\gamma$-ray spectroscopy experiment!
- Challenges:
- How do I set the S800 spectrograph to the right rigidity to see the reaction residue I want to study?
- How do I make sure I am not sending the incoming beam into the focal plane detectors and fry them?
- How do I identify the nuclei selected by the S 800 ?
- How do I verify that I am indeed seeing the correct nuclei?
- Don't worry, we will help you (a little...)
D. Bazin, EBSS 2016, July 22, 2016

