

Elena Litvinova

Western Michigan University

Exotic Beam Summer School 2016 NSCL/MSU, July 17-24 2016

- Major problems and challenges in nuclear structure theory
- Basic approaches to nuclear many-body problem
- "First order" approach: Nuclear Shell Model and Density Functional Theory
- Fermionic propagators in the strongly-correlated medium: spectroscopic factors and response functions

Outline

- Exotic nuclear phenomena:
 - Changing/disappearance of magic numbers
 - Physics of neutron skin
 - Isospin-transfer excitations and beta decay
 - The onset of pion condensation
 - Continuum and finite temperature effects
- Literature

Major problems in nuclear structure theory

Building blocks for nuclear structure theories

Degrees of freedom

at ~1-50 MeV excitation energies: single-particle & collective (vibrational, rotational) NO complete separation of the scales! -Coupling between single-particle and collective: -Coupling to continuum as nuclei are open quantum systems

✤ Symmetries -> Eqs. of motion

Galilean inv. -> Schrödinger Equation Lorentz inv. -> Dirac, Klein-Gordon Equations

 Υ Interaction V_{NN} : 3 basic concepts

Ab initio: from vacuum $V_{NN} \rightarrow$ in-medium V_{NN} Configuration interaction: matrix elements for in-medium V_{NN} Density functional: an ansatz for in-medium VNN

(Relativistic) Nuclear Field Theory: connecting scales

Nuclear scales

Nuclear forces: meson exchange

Pion (Yukawa, 1935), heavy mesons 1950-s

Quantum Hadrodynamics

Chiral effective

Nucleon-nucleon interaction:

Nuclear "forces"

- The nucleons in the interior of the nuclear medium do not feel the same bare force V
- They feel an effective force G (calculated from V in "ab initio" methods).
- The Pauli principle prohibits the scattering into states, which are already occupied in the medium.
- Therefore this force $G(\rho)$ depends on the density •
- This force G is much weaker than bare force V.
- Nucleons move nearly free in the nuclear medium and feel only a strong attraction at the surface (shell model)

Theories based on the meson-exchange interaction

First approximation: Density Functional Theory (DFT for a many-body quantum system

The manybody problem is mapped onto a one-body problem:

Density functional theory starts from the

Hohenberg-Kohn theorem:

"The exact ground state energy $\mathsf{E}[\rho]$ is a universal functional for the local density $\rho(r)^{*}$

Kohn-Sham theory starts

with a density dependent self-energy:

and the single particle equation:

with the exact density:

 $egin{aligned} h(\mathbf{r}) &= rac{\delta E[
ho]}{\delta
ho(\mathbf{r})} \ h(\mathbf{r}) |arphi_i
angle &= arepsilon_i |arphi_i
angle \
ho(\mathbf{r}) &= \sum_i^A |arphi_i(\mathbf{r})|^2 \end{aligned}$

Many-body wave function: Slater determinant:

$$\Psi = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_1(\mathbf{r}_1) & \phi_1(\mathbf{r}_2) & \cdots & \phi_1(\mathbf{r}_N) \\ \phi_2(\mathbf{r}_1) & \phi_2(\mathbf{r}_2) & \cdots & \phi_2(\mathbf{r}_N) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_N(\mathbf{r}_1) & \phi_N(\mathbf{r}_2) & \cdots & \phi_N(\mathbf{r}_N) \end{vmatrix}$$

Problems:

For Coulombic systems the density functional is derived ab initio: for nuclei it is much more complicated!

DFT in nuclei can not provide a precise description, but rather only the first approximation to the nuclear many-body problem

Relativistic Hartree (Fock): mean field approximation (=DFT)

Total energy

Relativistic

Hartree (Fock)-

Bogoliubov (HFB)

Hamiltonian

$$E_{RMF}[\hat{\rho},\phi] = Tr[(\boldsymbol{\alpha}\mathbf{p} + \beta m)\hat{\rho}] + \sum_{m} \left\{ Tr[(\beta\Gamma_{m}\phi_{m})\hat{\rho}] \mp \int \left[\frac{1}{2}(\boldsymbol{\nabla}\phi_{m})^{2} + U(\phi_{m})\right] d^{3}r \right\}$$

$$\hat{\mathcal{H}}_{RHB} = \frac{\delta E_{RHB}}{\delta \mathcal{R}} = \begin{pmatrix} h^{\mathcal{D}} - m - \lambda & \Delta \\ -\Delta^* & -h^{\mathcal{D}*} + m + \lambda \end{pmatrix}$$

Uncorrelated ground state as the zero-th approximation: (Relativistic) Mean FieldApproximation

Beyond Mean Field: coherent oscillations

Shell Model

"Naive" Shell-model (independent particle model) Configuration Interaction shell-model: J. Jensen, M. Goeppert-Mayer: core + valence space => interaction Nobel Prize 1963 => diagonalization (B.A. Brown, F. Nowacki, A. Poves et al.) Magic numbers (shell closures) Shells ${2d_{3/2}\over 3s_{1/2}}{4\over 2}\over 1g_{7/2}\,8$ 3s2d $1g_{7/2}^{-}$ $2d_{5/2}$ 6 0f 1p 1g $1g_{9/2} \ 10 \ 50$ $2p_{1/2} \ 2$ 0s 1d valence $1f_{5/2} = 6$ 2p $2p_{3/2}$ 4 1flp $1f_{7/2} | 8 | 28 |$ Shell gaps core 0s $\begin{array}{c|c}1d_{3/2}&4\\2s_{1/2}&2\end{array}$ 2s1d $1d_{5/2}$ 6 No-core shell-model: $1p_{1/2} \ 2 \ 8$ bare NN potential => effective interaction 1p $1p_{3/2}$ 4 (G-matrix theory, SRG etc.) => exact diagonalization (B. Barrett, E. Ormand, P. Navratil) $1s_{1/2} \ 2 \ 2$ 1s

Single-quasiparticle Green's function

One-body Green's function in (N+1)-body system

$$G(x, x') = -i\langle \Phi_0^N | \hat{T}\hat{a}(x)\hat{a}^{\dagger}(x') | \Phi_0^N \rangle$$
$$x = \{\xi, t\}$$

Lehmann expansion (Fourier transform):

$$G(\xi,\xi';\varepsilon) = \sum_{n} \frac{(\Psi(\xi))_{0n} (\Psi^{\dagger}(\xi'))_{n0}}{\varepsilon - (E_{n}^{(N+1)} - E_{0}^{(N)}) + i\delta} + \sum_{m} \frac{(\Psi^{\dagger}(\xi'))_{0m} (\Psi(\xi))_{m0}}{\varepsilon + (E_{m}^{(N-1)} - E_{0}^{(N)}) - i\delta},$$

Excited state (N+1)

$$(\Psi^{\dagger}(\xi))_{n0} = \langle \Phi_n^{(N+1)} | \Psi^{\dagger}(\xi) | \Phi_0^{(N)} \rangle,$$

$$(\Psi(\xi))_{n0} = \langle \Phi_n^{(N-1)} | \Psi(\xi) | \Phi_0^{(N)} \rangle,$$

Ground state (N)

"Free quasiparticle" propagator in the mean field:

$$\tilde{G}_k^{\eta}(\varepsilon) = \frac{1}{\varepsilon - \eta E_k + i\eta\delta}$$

Basis states (spherical):

$$k = |n_k, j_k, l_k, m_k\rangle$$

$$\eta = \pm 1$$
Spectroscopic
factors
(occupancies)
 $\tilde{S}_{k}^{\eta'(\nu)}$
 $(\sigma_{k}^{\eta}(\varepsilon) = \sum_{\nu,\eta'} \frac{\tilde{S}_{k}^{\eta'(\nu)}}{\varepsilon - \eta\eta' E_{k}^{(\nu)}}$
Quasiparticle
Energies

Systematic expansion in meson-exchange interaction: one-fermion self-energy

Fragmentation of states in odd and even systems (schematic)

Quasiparticle-vibration coupling:

Pairing correlations of the superfluid type + coupling to phonons

E.L., PRC 85, 021303(R) (2012)

Spectroscopic factors in ¹²⁰Sn:

(nlj) v	S th	S ^{exp}
2d _{5/2}	0.32	0.43
1g _{7/2}	0.40	0.60
2d _{3/2}	0.53	0.45
3s _{1/2}	0.43	0.32
1h _{11/2}	0.58	0.49
2f _{7/2}	0.31	0.35
3p _{3/2}	0.58	0.54

Spectroscopic factors in ¹³²Sn:

(nlj) v	S th *	S ^{exp} **
2f _{7/2}	0.89	0.86±0.16
3p _{3/2}	0.91	0.92 <u>+</u> 0.18
1h _{9/2}	0.88	
3p _{1/2}	0.91	1.1±0.3
2f _{5/2}	0.89	1.1±0.2

*E. L., A.V. Afanasjev, PRC 84, 014305 (2011) **K.L. Jones et al., Nature 465, 454 (2010)

Magic numbers in superheavy mass region

Ν

http://asrc.jaea.go.jp/soshiki/gr/HENS-gr/index e.html

Dominant neutron states in superheavy Z = 120 isotopes

Shell evolution in superheavy Z = 120 isotopes: Quasiparticle-vibration coupling (QVC) in a relativistic framework

- 1. Relativistic Mean Field: spherical minima
- 2. π : collapse of pairing, clear shell gap
- 3. v: survival of pairing coexisting with the shell gap
- 4. Very soft nuclei: large amount of low-lying collective vibrational modes (~100 phonons below 15 MeV)

Vibration corrections to binding energy (RQRPA)

$$E_{VC} = -\sum_{\mu} \Omega_{\mu} \sum_{k_1 k_2} |Y_{k_1 k_2}^{\mu}|^2$$

Shell stabilization & vibration stabilization/destabilization (?) E.L., PRC 85, 021303(R) (2012)

From 3D harmonic oscillator to a realistic phenomenological potential

3D Harmonic Oscillator:

$$V_{\rm HO}(r) = \frac{1}{2}m\omega^2 r^2$$

$$arepsilon_{lpha}=\hbar\omega\left(2n_{lpha}+l_{lpha}+rac{3}{2}
ight)$$
 Degeneracy Na

Woods-Saxon (WS) potential:

$$V_{\rm WS}(r) = -\frac{V_0}{1 + \exp{(r - R)/a}}$$

WS + spin-orbit interaction:

$$V_{\rm WS+ls}(r) = -\frac{V_0}{1 + \exp(r - R)/a} + V_{ls}(r)ls$$

http://nucleartalent.github.io/Course2ManyBodyMethods/doc/pub/intro/html/intro.html

Elena Litvinova

Western Michigan University

Exotic Beam Summer School 2016 NSCL/MSU, July 17-24 2016

- Major problems and challenges in nuclear structure theory
- Basic approaches to nuclear many-body problem
- "First order" approach: Nuclear Shell Model and Density Functional Theory
- Fermionic propagators in the strongly-correlated medium: spectroscopic factors and response functions

Outline

- Exotic nuclear phenomena:
 - Changing/disappearance of magic numbers
 - Physics of neutron skin
 - Isospin-transfer excitations and beta decay
 - The onset of pion condensation
 - Continuum and finite temperature effects
- Literature

on 2p2h-level

Problem:

Time blocking approximation

Solution:

Timeprojection operator:

Partially fixed

V.I. Tselyaev, Yad. Fiz. 50,1252 (1989)

Separation of the integrations in the BSE kernel

- R has a simple-pole structure (spectral representation)
- »» Strength function is positive definite!

Blocked terms: 3p3h, 4p4h,...

Included on the next step

Response to an external field: strength function

Nuclear Polarizability:

Transition density:

$$\rho_{k_1k_2}^{\nu} = \langle 0 | \psi_{k_2}^{\dagger} \psi_{k_1} | \nu \rangle$$

Response function:

$$R_{k_1k_4,k_2k_3}^{\nu}(\omega) \approx \frac{\rho_{k_1k_2}^{\nu}\rho_{k_3k_4}^{\nu*}}{\omega - \Omega^{\nu}}$$
$$\omega \longrightarrow \Omega^{\nu}$$

Nuclear excitation modes

Gamow-Teller

* M. N. Harakeh and A. van der Woude: Giant Resonances

Dipole response in medium-mass and heavy nuclei within Relativistic Quasiparticle Time Blocking Approximation (RQTBA)

Exotic modes of excitation: pygmy dipole resonance in neutron-rich nuclei

exotic nuclei (nuclei with unusual N/Z ratios: neutron-rich or protonrich) are characterized by weak binding of outermost nucleons, diffuse neutron densities, formation of the neutron skin and halo

effect on multipole response \rightarrow new exotic modes of excitation

Pygmy dipole resonance (PDR): N. Paar et al.

Nucleonic density:

$$\rho(\mathbf{r},\mathbf{t}) = \rho_0(\mathbf{r}) + \delta\rho(\mathbf{r},\mathbf{t})$$

Neutron skin oscillations

RQTBA dipole transition densities in ⁶⁸Ni at 10.3 MeV

RQTBA dipole transition densities in 68Ni at 10.3 MeV

Experimental vs theoretical systematics of the pygmy dipole resonance.

Experimental systematics: various measurements Theoretical systematics:
Consistent calculations within the same framework
Accurate separation of PDR from GDR by transition

density analysis:

Isospin transfer response function: proton-neutron RQTBA (pn-RQTBA)

 $R(\omega) = \tilde{R}^{0}(\omega) + \tilde{R}^{0}(\omega)W(\omega)R(\omega)$ Response $W(\omega) = \underbrace{V_{\rho} + V_{\pi} + V_{\delta\pi}}_{\gamma} + \underbrace{\Phi(\omega)}_{\gamma} - \underbrace{\Phi(0)}_{\gamma}$ Interaction

 \mathcal{C}

Subtraction to avoid double counting

Static:
RRPA
$$\begin{cases}
V_{\rho}(1,2) = g_{\rho}^{2} \vec{\tau}_{1} \vec{\tau}_{2} (\beta \gamma^{\mu})_{1} (\beta \gamma_{\mu})_{2} D_{\rho}(\mathbf{r}_{1},\mathbf{r}_{2}) \\
V_{\pi}(1,2) = -\left(\frac{f_{\pi}}{m_{\pi}}\right)^{2} \vec{\tau}_{1} \vec{\tau}_{2} (\boldsymbol{\Sigma}_{1} \nabla_{1}) (\boldsymbol{\Sigma}_{2} \nabla_{2}) D_{\pi}(\mathbf{r}_{1},\mathbf{r}_{2}), \quad \text{free-space coupling:} \end{cases}$$

Gamow-Teller resonance from closed-shell to open-shell: superfluid pairing and phonon coupling

Beta decay half-lives in Ni isotopic chain

Low-energy GT strength

Beta decay half-lives:

- For the 1st time a quantitative self-consistent description of $T_{1/2}$ without artificial quenching or other parameters is achieved
- Both phases of r-process can be computed within the same framework of high predictive power
- Description of the rp-process (on the proton-rich side) is available

C. Robin, E.L., arXiv:1605.00683, to appear in Eur. Phys. J. A (2016)

Spin-dipole resonance: beta-decay, electron capture

T. Marketin, E.L., D. Vretenar, P. Ring, PLB 706, 477 (2012).

Earlier studies:

W.H. Dickhoff et al., PRC 23, 1154 (1981) J. Meyer-Ter-Vehn, Phys. Rep. 74, 323 (1981) A.B. Migdal et al., Phys. Rep. 192, 179 (1990)

p↓

n1

p↑

n↓

Existence of low-lying unnatural parity states indicates that nuclei are close to the pion condensation point. However, it is not clear which observables are sensitive to this phenomenon.

Isovector part of the interaction: diagrammatic expansion

Low-lying states in AT=1 channel and nucleonic self-energy

In spectra of neighboring odd-odd nuclei we see low-lying (collective) states with natural and unnatural parities: 0+, 0-, 1+, 1-, 2+, 2-, 3+, 3-,... Their contribution to the nucleonic self-energy is expected to affect single-particle states:

Single-particle states in 100-Sn: effects of pion dynamics

Truncation scheme: phonons below 20 MeV Phonon basis: T=0 phonons: 2+, 3-, 4+, 5-, T=1 phonons: 0, ±1±, 2±, 3±, 4±, 5±, 6± Converged

E.L., Phys. Lett. B 755, 138 (2016)

Next step: pionic ground state correlations (backward going diagrams), in progress

Nuclear dipole response at finite temperature

$$\tilde{n}_i(E_i, T) = (1 - v_i^2(T))n_i(E_i, T)$$

 $\tilde{n}_i(E_i, T) = v_i^2(T)(1 - n_i(E_i, T))$

- 1. Saturation of the strength with Δ at Δ = 10 keV for T>0
- 2. The low-energy strength is not a tail of the GDR and not a part of PDR
- 3. The nature of the strength at E_{γ} -> 0 is continuum transitions from the thermally unblocked states
- 4. Spurious translation mode should be eliminated exactly

Low-energy limit of the RSF in even-even Mo isotopes

a

$$T = \sqrt{(E^* - \delta)/a}$$

$$a = a_{EGSF} => T_{min} \quad (\text{RIPL-3})$$

$$= \pi^2 (g_{\nu} + g_{\pi})/6 \quad \text{RT}_{max}$$
(microscopic)
Exp-1: NLD norm-1,
M. Guttormsen et al., PRC 71, 044307 (2005)
Exp-2: NLD norm-2,

S. Goriely et al., PRC 78, 064307 (2008)

Data: A.C. Larsen, S. Goriely, PRC 014318 (2010)

Books and Topical Reviews:

- A. De Shalit and I. Talmi, Nuclear shell theory (Academic Press, New York, 1963).
- G. E. Brown and A. D. Jackson, The nucleon-nucleon interaction (Amsterdam; New York, 1976).
- R. D. Lawson, Theory of the nuclear shell model (Clarendon Press, Oxford, 1980).
- L. D. Landau and E. M. Lifshitz, Quantum mechanics. Non-relativistic theory. 3-rd edition (Pergamon Press, New York, 1981).

Literature

- G. Bertsch, P. Bortignon, and R. Broglia, Rev. Mod. Phys. 55, 287 (1983).
- C. Mahaux, P. Bortignon, R. Broglia, and C. Dasso, Phys. Rep. 120, 1 (1985).
- B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16 (1986).
- I. Talmi, Simple Models of Complex Nuclei: The Shell Model and Interacting Boson Model (Harwood Academic Pub, 1993).
- S. P. Kamerdzhiev, G. Y. Tertychny, and V. I. Tselyaev, Phys. Part. Nucl. 28, 134 (1997).
- Bohr A. and B. R. Motttelson, Nuclear Structure (World Scientific Publishing, 1998).
- P. Ring and P. Schuck, The nuclear many-body problem (Springer-Verlag, 2000).
- D. Vretenar, A. Afanasjev, G. Lalazissis, and P. Ring, Phys. Rep. 409, 101 (2005).
- Rowe, Nuclear Collective Motion Models and Theory, (World Scientific, 2010).
- V. Zelevinsky, Quantum physics (Wiley-VCH, Weinheim, 2011).
- Broglia, Zelevinsky (eds), Fifty years of nuclear BCS, Pairing in Finite Systems. (World Scientific, 2013).

Lecture notes and slides:

- TALENT Courses 2013-2016: <u>http://www.nucleartalent.org</u>
- A. Volya, Exotic Beam Summer School 2015: http://aruna.physics.fsu.edu/ebss_lectures/EBSS2015_Schedule.html
- J.D. Holt, A. Poves, R. Roth, 2015 TRIUMF Summer Institute: <u>http://tsi.triumf.ca/2015/program.html</u>
- P. Ring:

http://indico2.riken.jp/indico/getFile.py/access?contribId=8&sessionId=4&resId=0&materialId=slides&confId= 1450