

Exotic Beam Summer School 2016

Particle Identification

Andreas Stolz

NSCL Michigan State University

Measure properties of particle

energy momentum energy loss velocity (time of flight)

Detector telescopes and correlations

- **∆E E**
- $\Delta \mathbf{E}$ TOF

Magnetic separation in spectrometer

Projectile Fragmentation

Abrasion/Ablation Model

fast Abrasion step nucleon removal in overlap region of target and projectile

slow Ablation step

equilibration of excited prefragment and evaporation of particles

A1900

- 4 dipole magnets to filter the fragments
- 24 quadrupole magnets to focus the beam

centered beam: $dp/p = \pm 0\%$

Ν

N

energy loss in degrader depends on

energy loss in degrader depends on

- nuclear charge (proton number) of fragment
 - \rightarrow different isotopes can be separated

energy loss in degrader depends on

- nuclear charge (proton number) of fragment
 - \rightarrow different isotopes can be separated
- velocity (momentum) of fragment
 - \rightarrow degrader needs a wedge shape

Detector Setup

Image-2

- active area 100 mm x 100 mm
- streched PP foils with AI strips
- 80 horizontal and vertical cathode strips
- strip pitch 1.27 mm
- isobutane, pressure 5 Torr
- mass thickness 2.2 mg/cm² AI equiv.

position calculation:
$$x = \frac{right - left}{right + left}$$

output signal proportional to collected charge = proportional to energy loss in detector

energy to generate electron-ion pair: 3.6 eV

Time-of-flight measurement (RF timing)

Time-of-flight measurement (RF timing)

Time-of-flight measurement (RF timing)

'wrap around' after 40 nsec

specific energy loss of heavy ions in aluminium

⁸⁶Kr (140 MeV/u) + ⁹Be (376 mg/cm²)

energy loss: Si PIN diode, 500 μm → proton number

time of flight: plastic scintillator, RF

 \rightarrow mass number

⁴⁰Ar, 140 MeV/u Be, 1166 mg/cm² ²⁶Al

wedge degrader: none $B\rho_{12}$ = 2.7479 Tm; $B\rho_{34}$ = 2.7479 Tm $\Delta p/p$ = 1%

⁴⁰Ar, 140 MeV/u Be, 1166 mg/cm² ²⁶Al

wedge degrader: none $B\rho_{12}$ = 2.7479 Tm; $B\rho_{34}$ = 2.7479 Tm $\Delta p/p$ = 1%

⁴⁰Ar, 140 MeV/u Be, 1166 mg/cm² ²⁶Al

wedge degrader: none $B\rho_{12}$ = 2.7479 Tm; $B\rho_{34}$ = 2.7479 Tm $\Delta p/p$ = 1%

⁴⁰Ar, 140 MeV/u Be, 1166 mg/cm² ²⁶Al wedge degrader: AI, 50 mg/cm² B ρ_{12} = 2.7479 Tm; B ρ_{34} = 2.7479 Tm Δ p/p = 1%

⁴⁰Ar, 140 MeV/u Be, 1166 mg/cm² ²⁶Al

wedge degrader: AI, 50 mg/cm² B ρ_{12} = 2.7479 Tm; B ρ_{34} = 2.7137 Tm Δ p/p = 1%

S800 Spectrograph

³⁶Ar (85 MeV/u) + Be (185 mg/cm²)

³⁶Ar (85 MeV/u) + Be (185 mg/cm²)

³⁶Ar (85 MeV/u) + Be (185 mg/cm²)

Particle Identification is not difficult !?

Identifying rare isotopes is like finding one person from among everyone on this planet.

total world population estimate (July 2016): 7,330,000,000 typical beam intensity: 1 pnA = $6.3 \cdot 10^9$ particles / sec

