From Isotopes to Images: Accelerator Production of Radionuclides for Nuclear Medicine

Suzanne Lapi, Associate Professor of Radiology Director, UAB Cyclotron facility

What are isotopes used for? The tracer principle

- In Nuclear Medicine and many areas of basic science, radioactive atoms are used tracers.
- Tracer behaves in a similar way to the components of the system to be probed.
- Tracer does not alter the system in any measurable fashion.
- Tracer concentration can be measured.

The first tracer experiment?

 George de Hevesy was a pioneer in radiochemistry

 While in Manchester in the early 1910's working with Rutherford, he suspected his landlady was serving recycled food

Radiopharmaceuticals

- A radiopharmaceutical is a drug labeled with a radionuclide to image a biological process or to deliver therapy to a specific disease site
 - the overall chemical structure determines biological properties
 - the radionuclide determines imaging or therapeutic properties.

Radiopharmaceuticals

- A radiopharmaceutical is a drug labeled with a radionuclide to image a biological process or to deliver therapy to a specific disease site
 - the overall chemical structure determines biological properties
 - the radionuclide determines imaging or therapeutic properties

Radiopharmaceuticals

- Radiolabel compound of interest
- Use the radioisotope as a beacon to determine distribution over time

INGHAM

Positron Emission Tomography

PET imaging is a very sensitive tool capable of providing quantitative information about biochemical and physiological processes in a non-invasive manner.

<section-header><section-header><section-header><figure>

59 year old woman with T-cell lymphoma

Initial study

4 months later, after chemotherapy

Why develop new imaging agents?

- Imaging more than detection of cancer.
- Imaging can provide more information: detection, prediction of treatment response, receptor status, oxygenation, microenvironment.....

Different information can be obtained using different tracers

[⁶⁸Ga]DOTATOC

Clinical Nuclear Medicine. 38(4):283-284, April 2013.

How to pick a radioisotope?

- Chemistry
- Half-life
- Decay Properties
- Availability
- Purity

"Standard" PET Isotopes

¹⁴N(p, α)¹¹C $t_{\frac{1}{2}} = 20.3 \text{ min.}$ ¹⁸O(p,n)¹⁸F $t_{\frac{1}{2}} = 109.7 \text{ min.}$ ¹⁶O(p, α)¹³N $t_{\frac{1}{2}} = 9.97 \text{ min}$ ¹⁴N(d,n)¹⁵O $t_{\frac{1}{2}} = 2.0 \text{ min}$

Radiometals

- Often have longer half-lives to probe longer biological processes.
- Variety of half-lives and decay characteristics available (can be used for imaging or therapy).
- Co-ordination chemistry varies, thus stable chelates are the key.

Toolbox: Chart of the Nuclides

IE UNIVERSITY OF ABAMA AT BIRMINGHAM

will change your world

Radiometals?

First row:

Radiometals?

Second row:

	86Nb 88 S	87Nb 3.75 M	88Nb 14.55 M	89Nb 2.03 H	90Nb 14.60 H	91Nb 6.8E+2 Y	92Nb 3.47E+7 Y
41	ε: 100.00%	€: 100.00%	€: 100.00%	e: 100.00%	e: 100.00%	e: 100.00%	€: 100.00% β− < 0.05%
	85Zr 7.86 M	86Zr 16.5 H	872r 1.68 H	88Zr 83.4 D	89Zr 78.41 H	90Zr STABLE	91Zr STABLE
40	e: 100.00%	e: 100.00%	e: 100.00%	€: 100.00%	€: 100.00%	51.45%	11.22%
	847	85Y	867	87¥	887	89Y	90Y
	4.6.5	2.68 H	14.74 H	79.8 H	106.626 D	STABLE 100%	64.053 H
39	e: 100.00%	€: 100.00%	€: 100.00%	€: 100.00%	e: 100.00%	100%	β-: 100.00%
	83Sr	84Sr	85Sr	86Sr	87Sr	88Sr	89Sr
	32.41 H	STABLE	64.84 D	STABLE	STABLE	STABLE 82.58%	50.53 D
38	e: 100.00%	0.00%	e: 100.00%	5.00%	7.00%	\$100.30	β-: 100.00%
	45	46	47	48	49	50	51

Current Research

- Isotope production and separation chemistry
- Radiochemistry for new imaging agents
- Characterization of new radiopharmaceuticals
- Translation into clinical trials

Cyclotron Production of Radionuclides

University of Alabama: Wallace Tumor Institute

Cyclotrons

Cyclotrons (University of Alabama at Birmingham)

TR 24

Advanced Cyclotron Systems, Inc. (ACSI)

15-24 MeV protons;

variable energy

300 µA (total)

2 extraction ports

Solid, liquid, and gas targets

4 beamlines

Cyclotrons (University of Alabama at Birmingham)

TR 24

Advanced Cyclotron Systems, Inc. (ACSI)

15-24 MeV protons; variable energy

300 µA (total)

2 extraction ports

Solid, liquid, and gas targets

4 beamlines

Targetry Systems (University of Alabama at Birmingham)

PET Radiometals

Isotope	Half-Life	Target Material
⁵² Mn	5.6 d	⁵² Cr
⁵⁵ Co	17.5 h	⁵⁸ Ni
⁶⁴ Cu	12.7 h	⁶⁴ Ni
⁸⁶ Y	14.7 h	⁸⁶ Sr
⁸⁹ Zr	3.27 d	⁸⁹ Y

Zirconium-89

- Half-life of 3.27 d well suited for study of pharmacokinetics of antibodies (achieve optimal biodistribution ~4-5 d)
- Scouting in preparation for immunotherapy, confirming tumor targeting, and estimating dosimetry
- Generally inert to biological systems
 - Decay properties
 - EC = 76.6%
 - β⁺ = 22.3%
 - R_{ave.}(β⁺)= 1.18 mm

Zr-89 production and purification

⁸⁹Y(*p*,*n*)⁸⁹Zr ٠

Zr-89 production

• ⁸⁹Y(*p*,*n*)⁸⁹Zr

872r	88Zr	892r	902r	91Zr	922r	932r
1.68 H	83.4 D	78.41 H	STABLE	STABLE	STABLE	1.53E+6 Υ
€: 100.00%	€: 100.00%	€: 100.00%	51.45%	11.22%	17.15%	β-: 100.00%
86¥	87¥	88¥	89Y	90Υ	91Υ	92Υ
14.74 H	79.8 H	106.626 D	STABLE	64.053 H	58.51 D	3.54 H
€: 100.00%	€: 100.00%	∉: 100.00%	100%	β-: 100.00%	β-: 100.00%	β-: 100.00%

⁸⁹Zr purification

- Purified by hydroxamate resin
 - Modified Accell Plus resin (Waters)
 - Weak cation exchange resin

Verel et al J Nuc Med 2003

Scale Up and Automated Separation

Wooten et al. App Sci 2013

Imaging with Antibodies:

Specificity

Sensitivity

Why Antibodies?

- Antibodies (and/or fragments) are very selective targeting agents.
- A wide variety of antibody based therapeutics have been developed in the last 2 decades.
- Antibody imaging offers the potential of:
 - Stratifying patients that may benefit from antibody therapy
 - Monitoring the course of therapy
 - Paving the way for next generation targeted radiotherapeutics

Human Epidermal Growth Factor Receptor 2 (HER2)

- Transmembrane receptor
- No known natural ligands
- Amplified in approximately 20 % of invasive breast cancers
- Associated with increased tumor aggressiveness, resistance to therapies, and increased mortality

Anti-HER2 Antibodies

Trastuzumab

- Binds to domain IV
- Suppresses HER2 signaling activity Pertuzumab
- Binds to domain II
- Inhibit HER2 dimerization by sterically preventing HER2 pairing with other growth factor receptors

Marks tumor cells for immunological attack through antibody-dependent cell-mediated cytotoxicity

http://www.onclive.com/publications/contemporaryoncology/2014/February-2014/Antibody-Drug-Conjugates-and-T-DM1

Trastuzumab

Clinically approved antibody

INDICATIONS AND USAGE

HERCEPTIN as a single agent is indicated for the treatment of patients with metastatic breast cancer whose tumors overexpress the HER2 protein and who have received one or more chemotherapy regimens for their metastatic disease. HERCEPTIN in combination with paclitaxel is indicated for treatment of patients with metastatic breast cancer whose tumors overexpress the HER2 protein and who have not received chemotherapy for their metastatic disease. HERCEPTIN should be used in patients whose tumors have been evaluated with an assay validated to predict HER2 protein overexpression (see PRECAUTIONS: HER2 Testing and CLINICAL STUDIES: HER2 Detection).

 Trastuzumab imaging agent may be useful for determining dosing strategies and for predicting response to Trastuzumab therapy

⁸⁹Zr: Conjugation and Labeling

(a) mAb conjugation to DFO-Bz-NCS

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

⁸⁹Zr-DFO-Trastuzumab

Her2+ Her2-

96 h

Chang et al, Pharmaceuticals, 2012

⁸⁹Zr-DFO-Trastuzumab Imaging Metastasis

Bioluminescent Imaging

017=4.6255e+I

Axial

Chang et al, Pharmaceuticals, 2012

⁸⁹Zr-DFO-Trastuzumab Washington University Clinical Trial

Assessment of HER2 Receptors in Breast Carcinoma by Positron Emission Tomography (PET) Using ⁸⁹ Zr-Trastuzumab PI: Farrokh Dehdashti

Arms	Assigned Interventions
Experimental: Cohort 1 ⁸⁹ Zr-Trastuzumab Human Dosimetry and Safety	Drug: ⁸⁹ Zr-Trastuzumab Human Dosimetry and Safety PET Imaging following administration of ⁸⁹ Zr labeled Trastuzumab for calculation of human dosimetry and overall safety Drug: HER2 Positive Lesion Detection and Safety Detection of HER2 Positive Breast Cancer with ⁸⁹ Zr Labeled Trastuzumab and PET imaging
Experimental: Cohort 2: Lesion Detection and Safety HER2 Positive Lesion Detection and Safety	Drug: ⁸⁹ Zr-Trastuzumab Human Dosimetry and Safety PET Imaging following administration of ⁸⁹ Zr labeled Trastuzumab for calculation of human dosimetry and overall safety Drug: HER2 Positive Lesion Detection and Safety Detection of HER2 Positive Breast Cancer with ⁸⁹ Zr Labeled Trastuzumab and PET imaging

⁸⁹Zr-Trastuzumab Clinical Trial: Day 2

⁸⁹Zr-Trastuzumab Clinical Trial: Day 5

What's Next? Expanding the Toolbox.

OF MINGHAM

Development of Novel Radionuclides Examples: ⁵²Mn

- PET analogue for Mn MRI agents.
- Biological roles in plants and animals
- Mechanism of Manganese toxicity (manganism)

⁵²Mn Characteristics

		Proc	luction	Positron Err	Gamma Radiation		
	Half- Life	Most Target Common Natural Target Abundance		Weighted Average Energy	Total Intensity	Gamma Factor	
				(keV)		(R∙cm²∙ mCi⁻¹∙h⁻¹)	
^{52g} Mn	5.6 d	⁵² Cr(<i>p</i> , <i>n</i>) (S)	83.8%	242	29.6%	18.4	
¹²⁴	4.2 d	¹²⁴ Te(<i>p</i> , <i>n</i>) (S)	4.7%	820	22.7%	6.6	
⁸⁹ Zr	3.3 d	$^{nat}Y(p,n)$ (S)	100.0%	396	22.7%	6.6	
⁸⁶ Y	14.7 h	⁸⁶ Sr(<i>p</i> , <i>n</i>) (S)	9.9%	660	31.9%	18.9	
⁶⁴ Cu	12.7 h	⁶⁴ Ni(<i>p</i> , <i>n</i>) (S)	0.9%	278	17.6%	1.1	
¹⁸ F	110 m	¹⁸ O(<i>p</i> , <i>n</i>) (L)	0.2%	250	96.7%	5.7	
66Ga	9.5 h	⁶⁶ Zn(<i>p</i> , <i>n</i>) (S)	69.2%	1750	57%	11.6	
⁶⁸ Ga	68 m	⁶⁸ Ge (Gen)	-	830	88.9%	5.4	
¹¹ C	20 m	¹⁴ N(<i>p</i> , <i>α</i>) (G)	99.6%	386	99.8%	5.9	
⁶⁶ Ga ⁶⁸ Ga ¹¹ C	9.5 h 68 m 20 m	G(p,n) (L) $^{66}Zn(p,n)$ (S) ^{68}Ge (Gen) $^{14}N(p,a)$ (G) G(p,n) (G)		1750 830 386	57% 57% 88.9% 99.8%	5.7 11.6 5.4 5.9	

Data in table take from or accessed via: BNL/NNDC; IAEA; Smith, D.S.; Stabin, M.G. Health Phys. 2012.

Image courtesy: Richard Laforest (WUSM/MIR). (Cross-reference: Laforest, R.; Liu, X. Q. J. Nucl. Med. Mol. Imaging 2008.)

⁵²Mn Production

- Produced via ⁵²Cr(p,n)⁵²Mn reaction
- Targetry using natural composition Cr foils

rsity of At Birmingham

Wooten et al. Appl Rad Isot 2015

⁵²Mn Targets, Bombardment and Purification

- Cross section and yield measurements using thin foils
- Separation via ion chromatography

Wooten et al. Appl Rad Isot 2015

⁵²Mn Characterization

• Imaging characteristics and preliminary animal studies

Cyclotron Production of Isotopes:

- Similar machines in many hospitals and academic centers.
- Small number of accessible nuclear reactions:
 - (p,n), (p2n), (p,α)
 - Produce high purity isotopes in high yield
 - Some desirable isotopes are inaccessible other routes?

Other Isotopes?

ange your world

Production of Radionuclides by Heavy Ion Fragmentation

Beryllium Target

Incoming Beam

Assortment of isotopes formed from the break up of atoms in the incoming beam

Potential Isotopes of Interest

Isotope	Decay Mode	Half-life	Application
³² Si	β-, 221keV no γ	162y	Tracer; geology, botany
⁴⁴ Ti	ε, γ-78.3, 67.8keV	59.2y	Medicine, astrophysics, Nuclear Structure
⁴⁸ V	β+, 694keV γ-983.5, 1312.1keV	15.98d	Stockpile Stewardship, Medicine
⁶⁷ Cu	β-, 390, 480, 580keV γ-184.6keV	2.6d	Medicine
⁸⁵ Kr	β-, 687keV γ-514.0keV	10.76у	Astrophysics, Stockpile Stewardship
Eu*		24d-37y	Stockpile Stewardship
²¹¹ Rn	γ-674.1, 1363.0, 678.4keV α-5.784,5.851MeV	14.6h	Medicine
²²⁵ Ra	β-, 320keV γ-40.3keV	14.9d	Medicine, Electric Dipole Moment
²²⁵ Ac	α-5.829, 5.793, 5.731MeV	10.0d	Medicine

nowledge that will change your world

*A range of Eu isotopes are of interest, A~147 – 154.

National Superconducting Cyclotron Laboratory (NSCL)

Located at Michigan State University

Upgrade of NSCL to FRIB

(Facility for Rare Isotope Beams)

VERSITY OF IA AT BIRMINGHAM

ange your world

Schematic of Proposed Secondary Beam Separator and Beam Dump at FRIB

Why is Isotope Harvesting Important?

Preliminary experiments performed at the national superconducting cyclotron laboratory (NSCL)

- End station that serves as a mock beam dump
- Effectively collect isotopes to show that we can collect beam in our end station
- Chemistry!

Pen, A., Mastren, T., et al, NIM A, 2014

End Station Design (Hope College)

Multiple containers of water purged with He

Water Cell w/ 8µm kapton window

> Gas exit manifold

Collection Bottles on rotating carousel

Pen, A., et al, NIM A, 2014

⁷⁶Ge Beam Fragmentation Products without Wedge

1 IA 11A		2.6	5%	67	Сі	aria	adia T	abla	of the	Elan	t	_					18 VIIIA 8A
Hydrogen 1.008	2 11A 2A	_				T ent		able	or the		ient	5 13 111A 3A	14 IVA 4A	15 VA 5A	16 VIA 6A	17 VIIA 7A	Helium 4.003
3 Li Lithium 6.941	4 Be Beryllium 9.012											5 B 10,811	6 Carbon 12.011	7 N Nitrogen 14.007	8 Oxygen 15.999	9 Fluorine 18.998	10 Ne 20,180
11 Na	12 Mg Magnesium	3 111B	4 IVB	5 VB	6 VIB	7 VIIB	8	9 — VIII —	10	11 IB	12 IIB	13 Aluminum	14 Si	15 Phosphorus 30.974	16 S Sulfur 32.066	17 Cl Chlorine 35.453	18 Argon 39.948
19 K Potassium 39.098	20 Ca calcium 40.078	21 Sc Scandium 44.956	22 Ti Titanium 47.88	23 V Vanadium 50.942	Chromium 51.996	25 Mn Manganese 54.938	26 Fe Iron 55.933	27 Co Cobalt 58.933	28 Ni Nickel 58.693	29 Cu ^{Copper} 63.546	30 Zn 2inc 65.39	31 Ga Galliur 69.732	32 Ge Germanium 72.61	3 As senic 4.922	34 Se selenium 78.09	35 Br Bromine 79.904	36 Kr Krypton 84.80
Rubidium 84.468	Strontium 87.62	Yttrium 88.906	Zirconium 91.224	Niobium 92.906	Mo Molybdenum 95.94	Tc Tc Technetium 98.907	Ruthenium	Rhodium 102.906	Palladium 106.42	Ag silver 107.868	Cadmiur 112.41	10 In Indium 114.818	Tin 118.71	Sb Antimony 121.760	52 Te Tellurium 127.6	53 I 126.904	54 Xe Xenon 131.29
55 Cs Cesium 132,905	56 Ba Barium 137.327	57-71	72 Hf Hafnium 178.49	73 Ta Tantalum 180.948	Tungsten 183.85	75 Re Rhenium 186.207	76 Os osmium 190.23	77 Ir Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold 196,967	80 Hg Mercury 200.59	81 TI Thallium 204.383	82 Pb Lead 207.2	83 Bi Bismuth 208.980	Polonium 1208.9821	85 At Astatine 209.987	86 Rn Radon 222.018
87 Francium 223.020	88 Ra Radium 226.025	89-103	104 Rf Rutherfordium [261]	105 Db Dubnium [262]	106 Sg Seaborgium [266]	107 Bh Bohrium [264]	108 Hs Hassium [269]	109 Mt Meitnerium [268]	110 Ds Darmstadtium [269]	111 Rg Roentgenium [272]	112 Copernicia [277]	In Ununtrium unknown	114 Fl Flerovium [289]	115 Ununpentium unknown	116 LV Livermorium [298]	117 Ununseptium unknown	118 Uuo Ununoctium unknown
	Lantha Seri	anide ies	a C	e P	r N	d Prom	m Sam	m E		ad T	b	Dy Ho		Er T		'b Lut	-U etium
	Actir Ser	nide lies Act 22	8.906 140 90 T Tho 7.028 232	115 140.9 91 Protacti 231.0	08 144 92 144 92 Uran 238	24 144 93 144 93 Nept 029 237	1.913 150 94 P 1.048 P Pluto 244	0.36 15 U 95 Ame 0.64 24	1.966 15 96 C aricium 3.061 24	7.25 158 97 Em Berk 7.070 247	3.925 Sk kelium 7.070	162.50 16 Cf aliformium 251.080 [2	4.930 16 ES [Fer 254] 25	167.26 168 mium 7.095 Mend 25	8.934 17 102 102 102 Not 259	3.04 174 103 103 Lawr 9.101 [2	4.967 Г encium 262]

© 2013 Todd Helmenstine sciencenotes.org

Separation Schematic

Mastren et al, Scientific Reports, 2014

HPGe Spectra of Different Points Throughout the Separation

Mastren et al, Scientific Reports, 2014

Separation Results

Contaminating Element	Identifying Isotopes	Initial Contaminant to ⁶⁷ Cu Ratio	Final Contaminant to ⁶⁷ Cu Ratio
Ge	⁶⁹ Ge	30	0
As	⁷⁴ As	24	0
Ga	⁷² Ga	5.48	0.1096
Zn	^{69m} Zn	5.48	0
Ni	⁵⁷ Ni	3.55	0
Fe	⁵⁹ Fe	2.58	0
Cu	⁶⁷ Cu	1.87	1.87
Cr	⁵¹ Cr	1.13	0
К	⁴³ K	0.81	0
Ca	⁴⁷ Ca	0.81	0
V	⁴⁸ V	0.42	0
Sc	⁴⁶ Sc, ⁴⁷ Sc, ⁴⁸ Sc	0.39	0.0078
Mn	⁵² Mn	0.32	0
Se	⁷⁵ Se	0.13	0
Со	⁵⁸ Co	0.06	0.018

74 ± 4% of the ⁶⁷Cu was obtained in the 2.5M fractions with a radiochemical purity of >99%. The other contaminants present in the ⁶⁷Cu fractions measured by HPGe for 12 hours and decay corrected to end of bombardment were ⁵⁸Co (0.07%), ⁴⁸Sc (0.06%), ⁴⁷Sc (0.06%), and ⁷²Ga (0.30%).

Biodistribution of ⁶⁷Cu-NOTA-Bz-Panitumumab

Mastren et al, Scientific Reports, 2014

Summary

- Radioisotopes continue to play an important role in medicine.
 A wide variety of half-lives, imaging characteristics and chemistries leads to a unique toolbox for the development of new nuclear medicine imaging and therapeutic agents.
- Development and increased use of these agents will require collaborations between chemists, physicists, biologists and physicians.

Acknowledgments and Funding

- UAB and WUSM Lapi Lab members Brian Wright, Jennifer Burkemper, Tolu Aweda, Stacy Queern, Shaun Loveless, Adriana Massicano, Ian Super, Bernadette Marquez, Alex Zheleznyak, Xingyu Nie, Andrew (Lake) Wooten, Tara Mastren, Tayo Ikotun, Albert Chang
- Cyclotron Facility Group, UAB Harvey Doane, Jason Rider, Brian Brooks, Denise Jeffers
- Isotope Production Team, WUSM
 Tom Voller, Evelyn Madrid, Efrem Mebrahtu , Paul Eisenbeis, Bill Margenau, Pat Margenau, Luke Lawrence
- Farrokh Dehdashti, Adel Tabchy, Ron Bose and Reiko Oyama, WUSM
- Graham Peaslee, Aranh Pen and Boone Marois, Hope College
- David Morrissey, NSCL/MSU
- Financial Support from Department of Energy and the NIH

