Nuclear reactions

Lecture 2

Non-elastic scattering

This is everything else.

Inelastic scattering

- $a+A \rightarrow a^{*}+A^{*}: a$ and A retain their identity but are excited
- Change in both internal and external wave functions
- Inelastic effects can alter elastic scattering through channel coupling.
- Coupling can be to collective (rotational or vibrational), single-particle, or continuum degrees of freedom

Coupled-channels:

Explicit treatment of inelastic excitations (Important for both elastic and inelastic scattering)

Discrete bound levels:

Instead of 1 equation, a system of coupled differential equations. More complicated but can reduce the uncertainty in the imaginary potential. "Coupled-channels" or "CC"

Continuum "levels":

Artificially cut up continuum into small pieces - discretize. "Continuum Discretized Coupled Channels" or "CDCC*"

Recall ${ }^{11} \mathrm{Be}+{ }^{64} \mathrm{Zn}$

Inelastic scattering: Special cases

Optical potential

$\left(E_{\alpha}-T_{\alpha l}-U_{\alpha}\right) u_{\alpha}^{0}=0$	
$\left(E_{\alpha^{\prime}}-T_{\alpha l}-U_{\alpha}\right) u_{\alpha^{\prime}}=V_{\alpha \alpha} u_{\alpha}^{0}$	Coupling potential\quad Coupled differential equations

$V_{\alpha \alpha^{\prime}} \sim<\phi_{\alpha^{\prime}}\left|V_{\text {INEL }}(r)\right| \phi_{\alpha}>$
$V_{V I B}(r) \sim R_{0} \frac{d U}{d r} \alpha_{\lambda \mu} Y_{\lambda \mu}^{*}(\vec{r})$ Vibrational model
$V_{R O T}(r) \sim R_{0} \frac{d U}{d r} \beta_{L} Y_{L M}(\vec{r}) \quad$ Rotational model

These correspond to distortions of the nuclear surface.

The α 's and β 's tell us about the collectivity of the nuclei
The $\beta_{\mathrm{L}} \mathrm{s}$ in particular tell you the magnitude of different multipole deformations

Channel coupling really matters!

Fig. 13.3. Distorted-wave calculation with optical parameters that fit the elastic section as shown (listed in Chapter 4). $\beta_{2}=0.3, \beta_{4}-0.15, \beta_{6}=0.075$. DWBA, ${ }^{154} \mathrm{Sm}$ (Glendenning, 1969a).

You can fit elastic scattering alone with an optical model...
$\alpha+{ }^{154}$ Sm

Fig. 13.4. Cross sections for $50-\mathrm{MeV}$ alpha-excitation ground-state rotational band ${ }^{154}$ Sm. Curves are coupled-channel calculation as described in text. The data were taken at t l Berkeley 88 -in. Cyclotron. $\beta_{2}-0.225, \beta_{4}-0.05, \beta_{8}=-0.015$ (from Harvey et al., 196 Hendrie et al. 1968; calculation by Glendenning 1969a).
...But you need channel-coupling to fit all the inelastic channels.
Everything is treated simultaneously.

Re-arrangement reactions

- $a+A \rightarrow b+B$ or $A(a, b) B$
- Nuclei are transformed, nucleons are exchanged ($b \neq a, B \neq A$)
- We'll focus on simple processes - "Direct" reactions
- We need to use some of what we learned about elastic scattering.

Direct transfer reactions

Adding nucleon (s) to A :
" x " is transferred from a to A , making $\mathrm{B}=\mathrm{A}+\mathrm{x}$ and $\mathrm{b}=\mathrm{a}-\mathrm{x}$

Known as "Stripping" x can be one or more nucleons

Direct transfer reactions

Removing nucleon(s) from A : " x " is transferred from A to b, making $B=A-x$ and $b=a+x$

Known as "Pickup"
x can be one or more nucleons

Why do we like direct transfer?

- It is Selective
- Single-nucleon transfer preferentially populates simple states with strong "single-particle" character
- Important for understanding the nature of singleparticle levels, especially interesting now in the era of "modified shell structure" in exotic nuclei
- Different reactions probe different amplitudes
- It is "Easy" to understand
- Reaction mechanism is relatively simple - a singlestep transition between two states
- The cross sections tend to be "large"
-1 to 10 s of $\mathrm{mb} / \mathrm{sr}$ for single particle stripping \& pickup
- In the old days it was "easy" to measure
- Not so much any more...

Some simple considerations: Momentum Matching

\boldsymbol{k}_{i}
$q^{2}=k_{i}^{2}+k_{f}^{2}-2 k_{i} k_{f} \cos \theta$
angular momentum of transferred particle $=q R=l$, or $q=l / R$
This roughly fixes the best angle for transfer:

$$
\theta_{\max }=\cos ^{-1}\left(\frac{k_{f}^{2}+k_{i}^{2}-(l / R)^{2}}{2 k_{f} k_{i}}\right)
$$

(d, p) momentum mismatch at $0^{\circ}\left(\mathrm{A}_{\mathrm{tgt}}=13\right)\left(\mathrm{Q}^{\sim} 0\right)$

(α, t) momentum mismatch at $0^{\circ}\left(\mathrm{A}_{\mathrm{tgt}}=132\right)$

Early (d, p) theory and data from Phys. Rev. 80 (1950)

On Angular Distributions from (d, p) and (d, n) Nuclear Reactions

S. T. Butler"

Department of Mathematical Physics, Uninersity of Birmingham, Birmingham, Enaland

October 30, 1950

$$
\frac{d \sigma}{d \Omega} \propto\left|\int_{R_{B}}^{\infty} j_{L}(q r) u_{n l}(r) r d r\right|^{2} \approx\left|j_{L}\left(q R_{B}\right)\right|^{2}
$$ R_{B} is the "Butler radius"

Fic. 1. Theoretical angular distributions for (d, p) and (d, v) reactions for different angular momentum transfers to the initial nucleus.

Angular Distributions of Protons from the Reaction $\mathrm{O}^{16}(d, p) \mathrm{O}^{17}$
Hannah B. Burrows
Unisersity of Liserpool, Liverpool, England
W. M. Gibson

Unisersity of Bristol, Bristol, England
AND
J. Rotblat

Medical College of St. Bartholomew's Hospital, London, Enaland October 30. 1950

F1G. 1. $\mathrm{O}^{16}(d, p) \mathrm{O}^{17}$ angular distributions in the center-of-mass (c.m.) system: $\phi=\mathrm{c} . \mathrm{m}$. angle, $\sigma(\phi)=\mathrm{c} . \mathrm{m}$. differential cross section in arbitrary units. Curve a is for formation of O^{17} in the ground state, and curve b is for the $0.88-\mathrm{Mev}$ excited state.

Early spin-parity assignments

Fic. 2. Comparison of experimental and theoretical distributions for the ground-state transition of the reaction $\mathrm{O}^{\prime \prime}(d, p) \mathrm{O}^{17}$ with $7.9-\mathrm{Mev}$ incident cutcrons. The theoretical curve is that for $l_{n}=2$.

Fig. 3. Comparison of experimental and theoretical distributions for the tranaition to the $0.88-\mathrm{Mev}$ excited atate of O^{17} in the reaction $\mathrm{O}^{11}(d, p) \mathrm{O}^{17}$ with 7.9 -Mev incident deuterons. The theoretical curve is that for $l_{n}=0$.

Table I. Spin and parity assignments.

Reaction	Ground state initial nucleus	Final nucleus	
		Ground atate	First excited state
Oild, p)Oils	$0+$	(5/2 or 3/2) +	1/2 \dagger
Nu(d, p) N^{16} :	$1+$	(1/2,3/2, or $5 / 2)-$	
$\mathrm{Cl}^{12}\left(d_{\text {a }} \mathrm{D}^{\text {c }} \mathrm{Cl}^{\prime \prime}\right.$	$0+$	(1/2 or 3/2) -	
$\mathrm{Al}^{17}(d, p) \mathrm{Al}^{184}$	5/2+	(2 or 3) +	$(0,1,4$, or 3$)+$

Butler, Phys. Rev. 50 (1950)

The shape tells you I - what about the rest?

I have calculated angular distribations resulting from such a stripping process by equating, at the nucicar surface, the exact wave function for a particle outside the nucleus to the interior wave function. After some simplification the resulting boundary equations can be solved in such a way that unknown propertics of the nuclear wave functions affect the important parts of the distributions merely as a constant multiplying factor. The re-
(Butler, 1950)
...Known today as the "spectroscopic factor"
This contains the nuclear structure information
What does it mean and How do we get it?

Interpretation of S

- S reflects the overlap between the initial and final states; $d \sigma / d \Omega \propto S$
- S "measures" orbital vacancies (\# of holes) for stripping, or orbital occupancies (\# of particles) for pickup.
- McFarlane and French (RMP 32, 1960):
- \#Holes= $\Sigma C^{2} S_{i}\left(2 J_{F}+1\right) /\left(2 J_{l}+1\right)$ (adding or "stripping")
- \#Particles= $\Sigma C^{2} S_{i}$ (removing or "pickup")
- Sum is over all states that could have a particle in the orbital of interest
- Connection to resonances: $S_{i}=\gamma^{2} / \gamma^{2}{ }_{S P}$ ("Schiffer's anzatz")

How do we "measure" S ??

- S is not an experimental observable, so you cannot "measure" it.
- Does that mean S is meaningless, as some might claim?
- I think no - meaningful values of S can be deduced from comparisons between measured cross sections and the predictions of nuclear reaction models. (Typical is the Distorted Wave Born Approximation or DWBA).
- But then - S is model dependent, so caveat emptor.
- We can try to deduce absolute or relative values of S.

What more can spectroscopic factors tell us?

- They tell us about the occupancy of nuclear shells
- By knowing the energies, spins, parities, and spectroscopic factors of levels we can estimate the energies of the single-particle orbitals
- Knowing how the strength is distributed between different states can tell us about the residual interaction, and help to tune shell-model calculations.
- We can investigate effects that come about through terms in the NN interaction such as the tensor force

But - we need a theory to describe the reaction:
"Distorted-wave Born approximation" or DWBA

One-page summary of the DWBA

(or single-particle overlap for $B=A+x$)

Matrix element with nuclear structure

$$
T_{D W B A}=J \int d^{3} r_{b} \int d^{3} r_{a} \chi^{-}\left(\overrightarrow{k_{f}}, \overrightarrow{r_{b}}\right) \gtrless b B|V| a A>\chi^{+}\left(\overrightarrow{k_{i}}, \overrightarrow{r_{a}}\right)
$$

Compare data to DWBA:

$$
\frac{d \sigma_{E X P}}{d \Omega}=C^{2} S \times \frac{d \sigma_{D W B A}}{d \Omega}
$$

$$
\mathrm{C}^{2} \mathrm{~S}=\mathrm{C}^{2} \mathrm{~S}(b+x \rightarrow a) \mathrm{C}^{2} \mathrm{~S}(A+x \rightarrow B)
$$ (for stripping)

Can often calculate these: e.g. $d \rightarrow p+n$ or ${ }^{3} \mathrm{He} \rightarrow d+p$

$$
\begin{gathered}
\mathrm{C}^{2} \mathrm{~S}=\mathrm{C}^{2} \mathrm{~S}(a+x \rightarrow b) \mathrm{C}^{2} \mathrm{~S}(B+x \rightarrow A) \\
\text { (for pickup) }
\end{gathered}
$$

C's are Isospin Clebsch-Gordan coefficients:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{bx}}=\left(T_{b} m_{b} T_{x} m_{x} \mid T_{a} m_{a}\right) \\
& \mathrm{C}_{\mathrm{Ax}}=\left(T_{A} m_{A} T_{x} m_{x} \mid T_{B} m_{B}\right)
\end{aligned}
$$

Extracted S.F. for ${ }^{91} \mathrm{Zr}$

(2) 1.471

Neutron orbitals of interest:

$$
\begin{aligned}
& 1 \mathrm{~g} 7 / 2: \mathrm{l}=4 \\
& 2 \mathrm{~d} 5 / 2: \mathrm{l}=2 \\
& 2 \mathrm{~d} 3 / 2: \mathrm{l}=2 \\
& 3 \mathrm{~s} 1 / 2: \mathrm{l}=0 \\
& 1 \mathrm{~h} 11 / 2: \mathrm{l}=5
\end{aligned}
$$

We can use this to deduce the order of single-particle orbitals

Caveat Emptor

- Limitations:
- Arbitrary normalization to peak σ is unsatisfying
- Approach is model dependent (potential parameters)
- May miss important physics (d breakup, for instance)
- Limited predictive power
- (In) Consistency of optical potentials. For an excellent survey, see J. Lee et al., PRC 75, 064320 (2007).
- The energy must be high enough to be Direct: CN contributions can occur below 2-4 MeV/u (!)
- Improvements:
- Use global potentials, folding model or CC/CDCC to zero in on elastic scattering (χ 's) and inelastic contributions
- We can use other modern methods to try to predict the Form Factor (AKA the nuclear structure information) and S, for example:
- "Quantum Monte Carlo", "No-Core Shell Model" : socalled "ab-initio" methods can be done for light nuclei.

${ }^{7} \mathrm{He}->{ }^{6} \mathrm{He}+\mathrm{n}$ Overlap from VMC/GFMC

I. Brida et al, PRC 84 (2011)

(d, p) with ${ }^{8} \mathrm{Li},{ }^{6} \mathrm{He}$: No Fitting Allowed

And no channel coupling for ${ }^{6} \mathrm{He}$ or ${ }^{7} \mathrm{He}$ (also maybe not so good!) Results still seem to be ok to the 20-30\% level

Conclusions

- Scattering and transfer reactions can tell us a lot about nuclear structure.
- We have to combine information from many different places to gain understanding.
- We must not forget that much of what we "know" we actually don't - we surmise in the context of models, so we should be careful about our claims.
- Next time: some concrete examples

Continuum coupling important for diffuse, loosely bound nuclei

${ }^{6} \mathrm{He}+{ }^{12} \mathrm{C}$ scattering at $\mathbf{3 8 . 3} \mathbf{~ M e V} /$ nucleon

V. Lapoux et al., Phys. Rev. C 66, 034608 (2002).
T. Matsumoto, Joint JUSTIPEN-LAMC workshop, 2007

Where does that flux go?

${ }^{6} \mathrm{He}+{ }^{12} \mathrm{C}$ scattering at $\mathbf{3 8 . 3} \mathbf{~ M e V} / \mathbf{n u c l}$.

T. Matsumoto,
$\epsilon[\mathrm{MeV}]$
Joint JUSTIPEN-LAMC workshop, 2007
(d, p) momentum mismatch at $30^{\circ}\left(\mathrm{A}_{\mathrm{tgt}}=13\right)$
(Q~0)

$\Delta q(1 \hbar) \sim 65 \mathrm{MeV} / \mathrm{c}$

Formalism (start with stripping)

Probability of transition:

$$
T_{f i}=\left\langle\chi^{-}\left(\mathbf{k}_{b}, \mathbf{r}_{b}\right) \psi_{b} \psi_{B}\right| V\left|\chi^{+}\left(\mathbf{k}_{a}, \mathbf{r}_{a}\right) \psi_{a} \psi_{A}\right\rangle
$$

where

$$
V=V_{b x}+V_{b A}+U_{b B}(r)
$$

(recall x is the transferred particle)
The $\chi^{+-}(\mathbf{k}, \mathbf{r})$ are Optical Model solutions to elastic scattering in the $a+A$ and $b+B$ channels.
The $\psi_{b, B, a, A}$ are the internal wave functions of the particles in the exit and entrance channels.

We need: Optical model potentials for the entrance and exit channels (so we should measure elastic scattering for both $a+A$ and $b+B$ if possible, or use Global potentials) And - we need a calculation of the bound state of $A+x$.

Heavy-ion transfer reactions

Peripheral collision between heavy ions
"Asymptotic Normalization Coefficient" or ANC takes
the place of the spectroscopic factor.
Sample the tails of the nuclear wave functions.

Heavy-Ion transfer and ANC's

- Peripheral collisions - close or head-on collisions lead to more complex processes
- Samples the tail of the wave functions"Asymptotic Normalization Coefficients" or "ANCs"
- Why do it this way? Many astrophysical processes occur at very low energies and are extremely peripheral.
- Analyze in a very similar way.
- Are the approaches consistent?...

ANCs - schematically

S is the overlap integral for all r
C^{2} is the overlap only in the asymptotic region See D. Y. Pang et al, PRC 75024601 (2007) for a nice review of the connection between SFs and ANCs
${ }^{14} \mathrm{~N}\left({ }^{13} \mathrm{~N},{ }^{14} \mathrm{O}\right){ }^{13} \mathrm{C}$: Application to ${ }^{13} \mathrm{~N}(\mathrm{p}, \gamma){ }^{14} \mathrm{O}$

- Want to learn about ${ }^{13} \mathrm{~N}+p \rightarrow{ }^{14} \mathrm{O}$
- Interesting for the CNO cycle
- Need to understand:
$-{ }^{13} \mathrm{C}+p \rightarrow{ }^{14} \mathrm{~N}$ (you can take both $p 1 / 2$ and $p 3 / 2$ protons from ${ }^{14} \mathrm{~N}$)
$-{ }^{14} \mathrm{~N}+{ }^{13} \mathrm{~N}$ and ${ }^{14} \mathrm{O}+{ }^{13} \mathrm{C}$ elastic scattering
- Introduce the "Asymptotic Normalization Coefficient" or "ANC"

(Many) Pieces you need:

Want to determine this Have previously measured these

Calculate these with a single-particle model

Calculate these with
a reaction code

Asymptotic Normalization Coefficients are the Cs (Not the same as the isospin Clebsch-Gordan coefficients)

The measurement...

${ }^{13} \mathrm{~N}+{ }^{14} \mathrm{~N}$ elastic scattering determines the optical potential. Using the same parameters reproduces ${ }^{13} \mathrm{~N}+{ }^{12} \mathrm{C}$ so it should be ok for ${ }^{14} \mathrm{O}+{ }^{13} \mathrm{C}$.

Knowing $\mathrm{C}\left(p+{ }^{13} \mathrm{~N} \rightarrow{ }^{14} \mathrm{O}\right)$, you can understand proton capture and it's influence on the CNO cycle in novae

Two other direct processes

Charge Exchange
and
Knock Out

Charge exchange

-Like β decay, changes a neutron into a proton or vice-versa (a good probe of Gamow-Teller strength: $\Delta L=0, \Delta \mathrm{~T}=1, \Delta \mathrm{~S}=1$)

- Some examples are (p, n), ($\left.{ }^{3} \mathrm{He}, t\right),\left(t,{ }^{3} \mathrm{He}\right),\left(d,{ }^{2} \mathrm{He}\right)$
-Strongly populates "Isobaric Analog States"

${ }^{6} \mathrm{Li}\left(t,{ }^{3} \mathrm{He}\right)^{6} \mathrm{He}$ charge exchange

High-resolution measurement
with the S800

Knock out

-Examples: (e, e'p), (p,2p), (p,pn)

- Need enough energy to overcome proton or neutron binding, and to be approximately single step
-Samples the structure of the target in a way similar to pickup reactions (you can measure a spectroscopic factor) -Good for studying single-hole (instead of single-particle) states

Spectroscopy with knock out: ${ }^{6} \mathrm{Li}(p, 2 p)$

"Quasi-free" scattering

Target nucleon is at rest
(s-wave)

$$
\theta_{\mathrm{a}}+\theta_{\mathrm{b}}=90^{\circ}
$$

p Knock-out from ${ }^{25} \mathrm{~F}$ o ${ }^{C^{2} S}$ g
$\sigma_{\text {calc }}=25.2 \mathrm{mb}$, $13.0 \pm 1.4 \mathrm{mb}$
${ }^{25} \mathrm{~F}+{ }^{12} \mathrm{C} \rightarrow{ }^{24} \mathrm{O}+\mathrm{X}$: probes the structure of the ${ }^{25} \mathrm{~F}$ ground state. $\sigma_{\text {MEAS }} \sim .5 \sigma_{\text {CALC }}$
M. Thoennessen et al, PRC 68, 044318 (2003)

A summary

- Direct reactions are essential tools for the understanding of the structure of nuclei, and they are also not new.
There are many well-understood tools at our disposal.
- They may not be new, but they are sure going to tell us a lot about exotic nuclei, as they have already!
- Care must be undertaken when doing detailed comparisons between theory and experiment.
- The trend is towards more predictability and less model dependence - this is important in the era where we are exploring new and uncharted territory.
- We've said nothing about how hard it is to study such reactions with exotic beams - it is! Very! Tomorrow Kate Jones will tell you.

Tomorrow - short discussion of two more kinds of reactions, and then some experimental techniques.

Special case: Coulomb Excitation

Distance is larger than range of nuclear force, so 1 and 2 are excited by the Coulomb force only

Typically Z_{2} is large. Au or Pb targets are common because we understand the Coulomb force: Direct measurements of nuclear matrix elements lead to "measurements" of deformation, very useful spectroscopic tool

Another modification to that optical model potential...

$$
\begin{aligned}
U_{\ell}(r)= & -i \frac{2 m}{k \hbar^{2}} \frac{\pi}{50}(Z \mathrm{e})^{2} B(E 2 \uparrow) \\
& \times\left[\left(\frac{\eta^{2} k^{2}\left(3 \bar{\ell}^{2}+\eta^{2}\right)}{\bar{\ell}^{2}\left(\bar{\ell}^{2}+\eta^{2}\right)^{2}}-\frac{\eta k^{2}}{\bar{\ell}^{3}} \arctan \frac{\bar{\ell}}{\eta}\right) \frac{1}{r^{3}}\right. \\
& \left.+\frac{4 \eta k \bar{\ell}^{2}}{\left(\bar{\ell}^{2}+\eta^{2}\right)^{2}} \frac{1}{r^{4}}+\frac{2 \bar{\ell}^{4}}{\left(\bar{\ell}^{2}+\eta^{2}\right)^{2}} \frac{1}{r^{5}}\right]
\end{aligned}
$$

$U_{/}(r)$ is imaginary (it takes flux away from the elastic channel) It depends on Z, B(E2), and /

It has a long range, and
You can see the effects in elastic scattering...

Effects of longrange absorption due to Coulomb Excitation

Fig. 14.1. The $\left(\right.$-dependent potential of ${ }^{18} \mathrm{O}+{ }^{154} \mathrm{~W}$, at 90 MeV plotted for several values of $\ell(-)$. The Love-Terasawa-Satchler ℓ-independent potential ($--\rightarrow$) tracks it near the classical turning points indicated by the arrows (From Baltz et al. 1979.)

Fig. 14.2. The elastic cross section for ${ }^{15} \mathrm{O}+{ }^{154} \mathrm{~W}$ at 90 MeV , where ℓ-dependent potential (--), LTS potential (---) and no long-range adsorption ($-*$), compared with the theory. It is the long-range absorption that causes the fall off prior to the Fresnel peak, which is usually a flectuation above 1. (Data is from Brookhaven, Calculations by Baltz et al., 1979).

Direct vs. Compound reactions

$$
\text { Fast }-\Delta \mathrm{T} \sim 10^{-22} \mathrm{~s}
$$ Occurs with a single collision Smooth energy dependence Examples: $(d, p),\left({ }^{3} \mathrm{He}, d\right),(p, d),\left(d,{ }^{3} \mathrm{He}\right)$

Slow(er) $-\Delta T \sim 10^{-20}$ s or more
Proceeds through many complex states in compound system Memory of beam, target is lost.
Particles are emitted isotropically in the CM

Examples: $(\alpha, \mathrm{p}), \mathrm{HI}(\mathrm{HI}, p, n, \alpha)$

Two other direct processes: Charge exchange and knockout

- Charge exchange - change a p to an n or viceversa:
- examples: $(p, n),\left({ }^{3} \mathrm{He}, t\right),\left(d,{ }^{2} \mathrm{He}\right)$
- Populates "Isobaric analog states"
- Samples Gamow-Teller strength at small angles/low momentum transfer - like β decay.
- Knock-out: The projectile "knocks out" a particle from the target nucleus
- examples: (e,e’p),(p,2p), (p,np) etc.
- can be used to complement other direct transfer reactions, sensitive to nuclear structure

Charge exchange - an example

FIG. 1. (a) Decay pathways for the $T=3 / 2$ resonance in ${ }^{7} \mathrm{Li}$, and (b) the successive kinematics stages of the studied reaction.
P. Boutachkov et al, PRL 95, 132502 (2005).

Typical CN angular distributions

$\left.{ }^{12} \mathrm{C}\left({ }^{14} \mathrm{~N}, d\right)\right)^{24} \mathrm{Mg}$
Angular distributions are forwardbackward symmetric

$v(s d)^{2}$ states in ${ }^{16} \mathrm{C}$

$$
\begin{gathered}
\psi\left(0^{+}{ }_{1}\right)=\alpha_{0}\left(1 s_{1 / 2}\right)^{2}+\beta_{0}\left(0 d_{5 / 2}\right)^{2}+\delta\left(0 d_{3 / 2}\right)^{2} \\
\psi\left(0^{+}{ }_{2}\right)=-\beta_{0}\left(1 s_{1 / 2}\right)^{2}+\alpha_{0}\left(0 d_{5 / 2}\right)^{2}+\delta^{\prime}\left(0 d_{3 / 2}\right)^{2}
\end{gathered} 0^{+}
$$

$v(s d)^{2}$ states in ${ }^{16} \mathrm{C}-$ no $\left(0 d_{3 / 2}\right)$

$$
\begin{aligned}
& \psi\left(0^{+}{ }_{1}\right)=\alpha_{0}\left(1 s_{1 / 2}\right)^{2}+\beta_{0}\left(0 d_{5 / 2}\right)^{2}+\delta\left(0 d_{3 / 2}\right)^{2} \\
& \psi\left(0^{+}{ }_{2}\right)=-\beta_{0}\left(1 s_{1 / 2}\right)^{2}+\alpha_{0}\left(0 d_{5 / 2}\right)^{2}+\delta^{\prime}\left(0 d_{3 / 2}\right)^{2}
\end{aligned} 0^{+}
$$

$v(s d)^{2}$ states in ${ }^{16} \mathrm{C}$ with (d, p)

$$
\begin{aligned}
& \psi\left(0^{+}{ }_{1}\right)=\alpha_{0}\left(1 s_{1 / 2}\right)^{2}+\beta_{0}\left(0 d_{5 / 2}\right)^{2} \\
& \psi\left(0^{+}{ }_{2}\right)=-\beta_{0}\left(1 s_{1 / 2}\right)^{2}+\alpha_{0}\left(0 d_{5 / 2}\right)^{2} \\
& \psi\left(2^{+}{ }_{1}\right)=\alpha_{2}\left(1 s_{1 / 2}\right)\left(0 d_{5 / 2}\right)+\beta_{2}\left(0 d_{5 / 2}\right)^{2} \\
& \psi\left(2^{+}{ }_{1}\right)=-\beta_{2}\left(1 s_{1 / 2}\right)\left(0 d_{5 / 2}\right)+\alpha_{2}\left(0 d_{5 / 2}\right)^{2} \\
& \psi\left(3^{+}{ }_{1}\right)=\alpha_{3}\left(1 s_{1 / 2}\right)\left(0 d_{5 / 2}\right) 3^{+} \\
& \psi\left(4^{+}{ }_{1}\right)=\alpha_{4}\left(0 d_{5 / 2}\right)^{2} 4^{+}
\end{aligned}
$$

(d, p) spectroscopic factors tell us the values of the α 's and the β

${ }^{16} \mathrm{C}$ - Previous work

PRL 40, 1236 (1978)

$(s d)^{2}$ States in ${ }^{14,16} \mathrm{C}$

H. T. Fortune, ${ }^{(a)}$ M. E. Cobern, ${ }^{(b)}$ S. Mordechai, ${ }^{(\mathrm{c})}$ G. E. Moore, ${ }^{\text {(d) }}$ S. Lafrance, and R. Middleton Physics Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104
(Received 20 December 1977)
Wave functions from empirical interactions derived from ${ }^{18} \mathrm{O}-$ test with ${ }^{15} \mathrm{C}(d, p)^{16} \mathrm{C}$
TABLE I. Wave functions for predominantly $(s d)^{2}$ states in ${ }^{14,16} \mathrm{C}$.

${ }^{15} \mathrm{C}(d, p)^{16} \mathrm{C}$ with HELIOS

Proton energy-position correlation

(d, p) samples the

 $v\left(1 s_{1 / 2}\right)$ content ofthe wave functions for positive-parity states

${ }^{16} \mathrm{C}$ Excitation-energy spectrum

PRL 105, 132501 (2010)

$\left.{ }^{15} \mathrm{C}(d, p)\right)^{16} \mathrm{C}$ angular distributions

Curves are DWBA calculations with various optical-model potentials.

Spectroscopic factors obtained from the average over four sets of OMP.

Relative uncertainties in SF dominated by OMP variations Absolute uncertainty ($\sim 30 \%$) from beam-integration uncertainty

Sum Rules and ${ }^{15} \mathrm{C}(d, p){ }^{16} \mathrm{C}$

- ${ }^{15} \mathrm{C}(d, p)^{16} \mathrm{C}: \mathrm{J}^{\pi}=1 / 2^{+}, J^{\pi}=0^{+} \quad\left(1 s_{1 / 2}\right)$, or $(2,3)+\left(0 d_{5 / 2}\right)$
- \#holes = 6 ($d_{5 / 2}$) or $1\left(s_{1 / 2}\right)$
- McF \& F say: $6=\Sigma S \times\left[J_{f}\right] / 2\left(d_{5 / 2}\right)$ or

$$
1=\Sigma S \times\left[J_{f}\right] / 2\left(s_{1 / 2}\right)
$$

- This implies $\Sigma S\left[J_{f}\right] / 6=6.0$ or 1.0 (maximum) for $0 d_{5 / 2}$ or $1 s_{1 / 2}$ single-particle strength
- Experimentally, $\Sigma S\left[J_{f}\right] / 2=5.0(\mathrm{~L}=2)$ and $1.0(\mathrm{~L}=0)$
- We miss $L=2$ strength at high excitation energies (the shell model also tells us this).

Empirical $v(s d)^{2}$ residual interaction for 0^{+}

$$
\begin{gathered}
\left|0_{1}^{+}>=\alpha\right|\left(1 s_{1 / 2}\right)^{2}>+\beta \mid\left(0 d_{5 / 2}\right)^{2}> \\
\left|0_{2}^{+}>=-\beta\right|\left(1 s_{1 / 2}\right)^{2}>+\alpha \mid\left(0 d_{5 / 2}\right)^{2}> \\
\alpha=\sqrt{S\left(0_{1}^{+}\right) \times\left[J_{f}\right] /\left[J_{i}\right]}=0.55 \\
\beta=\sqrt{S\left(0_{2}^{+}\right) \times\left[J_{f}\right] /\left[J_{i}\right]}=0.84 \\
\left(\begin{array}{cc}
E_{1 / 2}^{0}+ & \delta_{1 / 2 ; 1 / 2} \\
\delta_{1 / 2 ; 5 / 2} & \delta_{1 / 2 ; 5 / 2}^{0} \\
5 / 2+\delta_{5 / 2 ; 5 / 2}
\end{array}\right)\binom{\alpha}{\beta}=E_{X}\binom{\alpha}{\beta}
\end{gathered}
$$

Single-particle energies E^{0} from ${ }^{15} \mathrm{C}$.

	$\left(j_{1} j_{2}, j_{1}^{\prime} j_{2}^{\prime}\right)$		
$<j_{1} j_{2}\|v\| j_{1}^{\prime} j_{2}^{\prime}>$	$\left(1 / 2^{1 / 2,} 1 / 2^{1} / 2\right)$	$\left(5 / 2^{5} / 2,5 / 2^{5} / 2\right)$	$(1 / 2 \quad 1 / 2,5 / 25 / 2)$
Exp	$-0.92(28)$	$-3.60(28)$	$-1.39(12)$
LSF	-1.54	-2.78	-1.72
WBP	-2.12	-2.82	-1.32

${ }^{16} \mathrm{O}(\mathrm{d}, \mathrm{p})^{17} \mathrm{O}\left(1 / 2^{+}\right) 26 \mathrm{MeV}$

${ }^{16} \mathrm{O}(\mathrm{d}, \mathrm{p})^{17} \mathrm{O}\left(1 / 2^{+}\right) 36 \mathrm{MeV}$

Channel coupling and inelastic scattering

$\left(E_{\alpha}-T_{\alpha l}-\stackrel{U}{U}_{\alpha}^{\text {Optical Potential } U(r)} u_{\alpha}^{0}=0\right.$
Elastic channel
$\left(E_{\alpha^{\prime}}-T_{\alpha l}-U_{\alpha}\right) u_{\alpha^{\prime}}=V_{\alpha \alpha^{\prime}} u_{\alpha}^{0} \quad$ Inelastic channels
Coupling matrix elements explicitly treat flux going to inelastic channels

Coupled differential equations for $u(r)$

