
Nuclear reactions

Lecture 2



Non-elastic scattering

This is everything else.



Inelastic scattering

• a+A →a* + A* : a and A retain their identity 

but are excited

• Change in both internal and external wave 

functions

• Inelastic effects can alter elastic scattering 

through channel coupling.

• Coupling can be to collective (rotational or 

vibrational), single-particle, or continuum

degrees of freedom



Coupled-channels:

Explicit treatment of inelastic excitations

(Important for both elastic and inelastic scattering)

A

A’

A’’

Discrete bound levels:

Instead of 1 equation, a system of 

coupled differential equations.  More 

complicated but can reduce the 

uncertainty in the imaginary potential. 

“Coupled-channels” or “CC”

Continuum “levels”:

Artificially cut up continuum into small 

pieces – discretize. “Continuum 

Discretized Coupled Channels” or 

“CDCC*”

*M. Kamimura et al., Prog. Th. Phys. Suppl. 89, 1 (1986)



Recall 11Be+64Zn

Elastic scattering and 

Coupled Channels

Breakup events and 

Coupled Channels

DiPietro et al., PRC 85

054607 (2012).



Inelastic scattering: Special cases

)(~)( 0 rY
dr

dU
RrV LMLROT




)(~)( *

0 rY
dr

dU
RrVVIB




   |)(|~ '' rVV INEL
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Rotational model

The ’s and ’s tell us about the collectivity of the nuclei

The Ls in particular tell you the magnitude of different multipole deformations 

 are the intrinsic states in some 

collective model, and VINEL is a 

coupling potential

These correspond to 

distortions of the 

nuclear surface. 
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Channel coupling really matters!

You can fit elastic scattering alone with

an optical model...

...But you need channel-coupling to fit 

all the inelastic channels.  

Everything is treated simultaneously.
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Re-arrangement reactions

• a+A→b+B or A(a,b)B

• Nuclei are transformed, nucleons are 

exchanged (b≠a, B≠A)

• We’ll focus on simple processes – “Direct” 

reactions

• We need to use some of what we learned 

about elastic scattering.



Direct transfer reactions
a

b

x

b
x

{

A B

Adding nucleon(s) to A: 

“x” is transferred from a to A, making B=A+x

and b=a-x

Known as “Stripping”

x can be one or more nucleons



Direct transfer reactions

a
a

x

b

x

{

A B

Removing nucleon(s) from A: 

“x” is transferred from A to b, making B=A-x 

and b=a+x

Known as “Pickup”

x can be one or more nucleons



Why do we like direct transfer?

• It is Selective
– Single-nucleon transfer preferentially populates 

simple states with strong “single-particle” character

– Important for understanding the nature of single-
particle levels, especially interesting now in the era of 
“modified shell structure” in exotic nuclei

– Different reactions probe different amplitudes

• It is “Easy” to understand
– Reaction mechanism is relatively simple – a single-

step transition between two states

• The cross sections tend to be “large”
– 1 to 10s of mb/sr for single particle stripping & pickup

• In the old days it was “easy” to measure
– Not so much any more... 



Some simple considerations:

Momentum Matching
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(d,p) momentum mismatch at 0o (Atgt=13) (Q~0)

Dq(1ħ)~65 MeV/c

Above Dq=0, reaction is

mismatched at all angles.

Below Dq=0, reaction can

be matched for q>0o.
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(,t) momentum mismatch at 0o (Atgt=132) 
(Q<<0)

Large L transfers are favored

Here, the reaction is
mismatched at all angles
except for large values of L

E(alpha) (MeV) Dq(1ħ)~30 MeV/c
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Neutron stripping:
90Zr(d,p)91Zr

(Q=4.97 MeV)

l=2

l=4

l=0

l=5

Lines indicate

estimated  qmax

(d,p) is the prototypical

direct-transfer reaction.
2H is simple and loosely 

bound.

H. P. Block et al, NPA 273

142 (1976). 



Early (d,p) theory and data

from Phys. Rev. 80 (1950)
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RB is the “Butler radius”

l=0 Jp=1/2+l=2 Jp=3/2+ 

or 5/2+



Early spin-parity assignments

Butler, Phys. Rev. 50

(1950) .



The shape tells you l – what about the 

rest?

...Known today as the “spectroscopic factor”

This contains the nuclear structure information

What does it mean and How do we get it?

(Butler, 1950)



Interpretation of S
• S reflects the overlap between the initial and final 

states; d/d  S

• S “measures” orbital vacancies (# of holes) for 
stripping, or orbital occupancies (# of particles) for 
pickup.

• McFarlane and French (RMP 32, 1960):

– #Holes=SC2Si (2JF+1)/(2JI+1) (adding or “stripping”)

– #Particles=SC2Si (removing or “pickup”)

– Sum is over all states that could have a particle in the 
orbital of interest

• Connection to resonances: Si = g2
i/g

2
SP (“Schiffer’s

anzatz”)



How do we “measure” S ??

• S is not an experimental observable, so you 
cannot “measure” it.

• Does that mean S is meaningless, as some might 
claim?

• I think no – meaningful values of S can be 
deduced from comparisons between measured 
cross sections and the predictions of nuclear 
reaction models. (Typical is the Distorted Wave 
Born Approximation or DWBA).

• But then – S is model dependent, so caveat 
emptor.

• We can try to deduce absolute or relative values of 
S.



What more can spectroscopic factors 

tell us?
• They tell us about the occupancy of nuclear shells

• By knowing the energies, spins, parities, and 
spectroscopic factors of levels we can estimate 
the energies of the single-particle orbitals

• Knowing how the strength is distributed between 
different states can tell us about the residual 
interaction, and help to tune shell-model 
calculations.

• We can investigate effects that come about 
through terms in the NN interaction such as the 
tensor force

But – we need a theory to describe the reaction:

“Distorted-wave Born approximation” or DWBA



𝑇𝐷𝑊𝐵𝐴 = 𝐽 𝑑
3𝑟𝑏 𝑑

3𝑟𝑎𝜒
−(𝑘𝑓 , 𝑟𝑏) < 𝑏𝐵 𝑉 𝑎𝐴 >𝜒

+(𝑘𝑖 , 𝑟𝑎)

Matrix element with nuclear structure

One-page summary of the DWBA

Distorted waves from OM – many 

different incident and outgoing

angular momenta

𝑑𝜎𝐷𝑊𝐵𝐴
𝑑𝛺

= 𝑇𝐷𝑊𝐵𝐴
2

“Form Factor”

proton deuteron

(or single-particle

overlap for B=A+x)



Compare data to DWBA:


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 d

d
SC

d

d DWBAEXP  2

C2S = C2S(b+x→ a) C2S(A+x→ B)

(for stripping)

C2S = C2S(a+x→ b) C2S(B+x→ A)

(for pickup)

C’s are Isospin Clebsch-Gordan coefficients:

Cbx=(TbmbTxmx | Ta ma)

CAx=(TAmATxmx| TB mB)

Can often calculate these: 

e.g.    d → p+n

or    3He→d+p



Back to 91Zr

The heights of curves

are adjusted to fit the

data – the normalization 

is interpreted as the 

Spectroscopic Factor

H. P. Block et al, NPA 273

142 (1976). 



Extracted S.F. for 91Zr

Neutron orbitals of interest:

1g7/2  : l=4

2d5/2  : l=2

2d3/2  : l=2

3s1/2  : l=0

1h11/2: l=5

We can use this to deduce the

order of single-particle orbitals



Caveat Emptor
• Limitations:

– Arbitrary normalization to peak  is unsatisfying

– Approach is model dependent (potential parameters)

– May miss important physics (d breakup, for instance)

– Limited predictive power

– (In) Consistency of optical potentials. For an excellent 
survey, see J. Lee et al., PRC 75, 064320 (2007).

– The energy must be high enough to be Direct: CN 
contributions can occur below 2-4 MeV/u (!)

• Improvements:
– Use global potentials, folding model or CC/CDCC to 

zero in on elastic scattering (c’s) and inelastic 
contributions 

– We can use other modern methods to try to predict
the Form Factor (AKA the nuclear structure 
information) and S, for example:

– “Quantum Monte Carlo”, “No-Core Shell Model” : so-
called “ab-initio” methods can be done for light nuclei.



7He->6He+n Overlap from VMC/GFMC

<6He(0+)+n(p3/2)|7He(3/2-)>

3/2-

I. Brida et al, PRC 84 (2011)



(d,p) with 8Li, 6He: No Fitting Allowed

n+8Li, n+6He:                             from QMC (good)

d+8Li, d+6He: OMP from old p-shell work (ok for 8Li, not so good for 6He)

p+9Li, p+7He:                                    ditto!

And no channel coupling for 6He or 7He (also maybe not so good!)

Results still seem to be ok to the 20-30% level



Conclusions

• Scattering and transfer reactions can tell 

us a lot about nuclear structure.

• We have to combine information from 

many different places to gain 

understanding.

• We must not forget that much of what we 

“know” we actually don’t – we surmise in 

the context of models, so we should be 

careful about our claims.

• Next time: some concrete examples



Continuum coupling important for diffuse, 

loosely bound nuclei

T. Matsumoto,

Joint JUSTIPEN-LAMC workshop, 2007



Where does that flux go?

Narrow 2+ state at 1.787 MeV

T. Matsumoto,

Joint JUSTIPEN-LAMC workshop, 2007



(d,p) momentum mismatch at 30o (Atgt=13) 

(Q~0)

E(deuteron) (MeV)
Dq(1ħ)~65 MeV/c
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Formalism (start with stripping)

The c(k,r) are Optical Model solutions to elastic scattering

in the a+A and b+B channels.

The yb,B,a,A are the internal wave functions of the particles 

in the exit and entrance channels.

We need: Optical model potentials for the entrance and exit 

channels (so we should measure elastic scattering for both

a+A and b+B if possible, or use Global potentials)

And – we need a calculation of the bound state of A+x.

Probability of transition: 

Tfi=<c -(kb,rb)ybyB | V | c +(ka,ra)yayA>

where

V=Vbx+VbA+UbB(r)

(recall x is the transferred particle)



Heavy-ion transfer reactions

Peripheral collision between heavy ions

“Asymptotic Normalization Coefficient” or ANC takes

the place of the spectroscopic factor.

Sample the tails of the nuclear wave functions.

13N

14N

14O

13C



Heavy-Ion transfer and ANC’s

• Peripheral collisions – close or head-on 
collisions lead to more complex processes

• Samples the tail of the wave functions-
“Asymptotic Normalization Coefficients” or 
“ANCs”

• Why do it this way? Many astrophysical 
processes occur at very low energies and are 
extremely peripheral.

• Analyze in a very similar way.

• Are the approaches consistent?...



ANCs - schematically

I(r)

Tail for r>>RN

Out here, y ~ bnljhl(r)

C 2lj=Snljb 2nlj

S is the overlap integral for all r
C 2 is the overlap only in the asymptotic region

See D. Y. Pang et al, PRC 75 024601 (2007) for a nice

review of the connection between SFs and ANCs

r=RN

Calculate b from a single-particle

model as we did for S.F. from (d,p)



14N(13N,14O)13C: Application to 13N(p,g)14O

• Want to learn about 13N+p →14O

– Interesting for the CNO cycle

• Need to understand:

– 13C+p →14N (you can take both p1/2 and 

p3/2 protons from 14N)

– 14N+13N and 14O+13C elastic scattering

• Introduce the “Asymptotic Normalization

Coefficient” or “ANC”



(Many) Pieces you need:

Want to determine this Have previously measured these

Calculate these with 

a reaction code

Calculate these with 

a single-particle model

Asymptotic Normalization Coefficients are the Cs

(Not the same as the isospin Clebsch-Gordan coefficients)



The measurement...

13N+14N
13N+12C

13N+14N elastic scattering

determines the optical potential.

Using the same parameters

reproduces 13N+12C so it should

be ok for 14O+13C.

13N(14N,14O)13C

Knowing C(p +13N→14O), you can understand

proton capture and it’s influence on the CNO cycle in novae

X. D. Tang et al, PRC 69, 055807 (2004)



Two other direct processes

Charge Exchange

and

Knock Out



Charge exchange

A,Z

p

A,Z+1

n

•Like  decay, changes a neutron into a proton or vice-versa 

(a good probe of Gamow-Teller strength: DL=0,DT=1,DS=1)

•Some examples are (p,n), (3He,t ), (t,3He), (d,2He)

•Strongly populates “Isobaric Analog States”



6Li(t,3He)6He charge exchange

6Li

t

3He
S800

High-resolution measurement

with the S800

T. Nakamura et al, PLB 493, 209 (2000) 

L=0: GT transition



Knock out

A,Z

p

A-1,Z-1

p

p

•Examples: (e,e’p), (p,2p), (p,pn)

•Need enough energy to overcome proton or neutron binding, 

and to be approximately single step

•Samples the structure of the target in a way similar to pickup   

reactions (you can measure a spectroscopic factor)

•Good for studying single-hole (instead of single-particle) 

states

Proton in a single-particle orbital

qa

qb

Proton hole



Spectroscopy with knock 

out: 6Li(p,2p)

“Quasi-free” scattering

qa

qb

q’a

q’b

qa+qb=90o

qa+qb=90o

Target nucleon is at rest 

(s-wave)

Target nucleon is in motion 

(e.g. p-wave)

s1/2

p3/2

Angular correlation 

in the lab



p Knock-out from 25F

M. Thoennessen et al, PRC 68, 044318 (2003)

25F+12C → 24O+X: probes the structure of the 
25F ground state.  MEAS~.5CALC



A summary
• Direct reactions are essential tools for the understanding 

of the structure of nuclei, and they are also not new. 
There are many well-understood tools at our disposal.

• They may not be new, but they are sure going to tell us a 
lot about exotic nuclei, as they have already!

• Care must be undertaken when doing detailed 
comparisons between theory and experiment.

• The trend is towards more predictability and less model 
dependence – this is important in the era where we are 
exploring new and uncharted territory. 

• We’ve said nothing about how hard it is to study such 
reactions with exotic beams – it is! Very! Tomorrow Kate 
Jones will tell you.

Tomorrow – short discussion of two more kinds of 
reactions, and then some experimental techniques.



Special case: Coulomb Excitation

Z1

Z2

Distance is larger than range of nuclear force, so

1 and 2 are excited by the Coulomb force only

Large cross sections (VC has infinite range)

Straightforward interpretation of data

because we understand the Coulomb force:

Direct measurements of nuclear matrix elements

lead to “measurements” of deformation, very useful spectroscopic tool

VC(r)
Typically Z2 is

large.  Au or Pb

targets are common



Another modification to that optical 

model potential...

Ul(r) is imaginary (it takes flux away from the elastic channel)

It depends on Z, B(E2), and l

It has a long range, and

You can see the effects in elastic scattering...

Glendenning, pp 123



Effects of long-

range absorption 

due to Coulomb 

Excitation

Radial dependence of Ul(r)

for various values of l

Influence on elastic 16O+184W 

scattering

A. J. Baltz et al, NPA 327, 221 (1979)



Direct vs. Compound reactions

qCM

(q)

qCM

(q)

Forward

peaked

1/sin(qCM)

Fast – DT ~10-22 s

Occurs with a single collision

Smooth energy dependence

Examples: (d,p), (3He,d ),(p,d ), (d,3He)

Slow(er) – DT ~10-20 s or more

Proceeds through many complex states in compound system

Memory of beam, target is lost.  

Particles are emitted isotropically in the CM

Examples: (,p), HI(HI,p,n,)



Two other direct processes:

Charge exchange and knockout

• Charge exchange – change a p to an n or vice-
versa:
– examples: (p,n), (3He,t),(d,2He) 

– Populates “Isobaric analog states”

– Samples Gamow-Teller strength at small angles/low 
momentum transfer – like  decay.

• Knock-out: The projectile “knocks out” a particle 
from the target nucleus
– examples: (e,e’p),(p,2p), (p,np) etc.

– can be used to complement other direct transfer 
reactions, sensitive to nuclear structure



Charge exchange – an example

CH26He

6He+p → 7Li*(T=3/2) → 6Li+n

P. Boutachkov et al, PRL 95, 132502 (2005).

Analog of 7He g.s.

Tail of analog of 7He 1/2-?

Ge 





Typical CN angular 

distributions

12C(14N,d )24Mg

Angular distributions 

are forward-

backward symmetric



n(sd)2 states in 16C
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n(sd)2 states in 16C – no (0d3/2)
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n(sd)2 states in 16C with (d,p)
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(d,p) spectroscopic factors tell us the values of the ’s and the ’s



16C – Previous work

Wave functions from empirical interactions derived from 18O –

test with 15C(d,p)16C

PRL 40, 1236 (1978)

Strongly configuration-mixed wave functions

lowest 0+,2+ states mostly 1s1/2 and 0d5/2

B(E2) calculated with these wave functions using 

“standard” effective charges matches LBNL result exactly!



15C(d,p)16C 

with HELIOS

PRL 105, 132501 (2010)

Proton energy-position

correlation 

16C Excitation-energy 

spectrum

(d,p) samples the 

n(1s1/2) content of 

the wave functions 

for positive-parity states



15C(d,p)16C angular 

distributions
L=0

L=2

L=0

L=2

Curves are DWBA calculations with

various optical-model potentials.

Spectroscopic factors obtained from 

the average over four sets of OMP.

Relative uncertainties in SF

dominated by OMP variations

Absolute uncertainty (~30%) from

beam-integration uncertainty

PRL 105, 132501 (2010)



15C(d,p)16C

Spectroscopic 

factors

Shell model with

WBP interaction

Blue: L=0

Red: L=2

Excitation energies 

and relative 

spectroscopic 

factors from the 

shell model

Agreement for SF is

excellent!

No need for exotica

PRL 105, 132501 (2010)

Experiment



Sum Rules and 15C(d,p)16C

• 15C(d,p)16C: Jp
i=1/2+, Jp

f=   0+      (1s1/2),                                               

or (2,3)+ (0d5/2)

– #holes = 6(d5/2) or 1(s1/2)

– McF & F say: 6=SS x [Jf]/2 (d5/2) or

1=SS x [Jf]/2 (s1/2)

– This implies SS[Jf]/6=6.0 or 1.0 (maximum) for 

0d5/2 or 1s1/2 single-particle strength

– Experimentally, SS[Jf]/2=5.0 (L=2) and 1.0 (L=0)

– We miss L=2 strength at high excitation energies 

(the shell model also tells us this).



Empirical n(sd )2 residual interaction for 0+

[J]=2J+1

Single-particle energies E0 from 15C.

PRL 105, 132501 (2010)



16O(d,p)17O(1/2+) 26 MeV 16O(d,p)17O(1/2+) 36 MeV



Channel coupling and inelastic 

scattering
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 Elastic channel

Inelastic channels

Optical Potential U(r)

Coupling matrix elements explicitly treat flux 

going to inelastic channels

Coupled differential equations for u(r)


