Nuclear reactions

Lecture 3

Modern concrete examples, and some techniques

How we can actually learn things

"Normal kinematics"


```
<sup>13</sup>B(d,p)<sup>14</sup>B
Kinematics
```

Normal Kinematics (²H beam+¹³B target)

Inverse Kinematics (¹³B beam+²H target)

"Inverse kinematics" II

Segmented proton detectors 500μm/1000μm silicon EΔE telescope

Can be far more complicated...

Many, many detectors and channels...

Q-value spectra from ^{7,8}Li(*d,p*)^{8,9}Li ⁶He(*d,p*)⁷He

p-Li or *p*-⁶He coincidences Efficiency from Monte Carlo simulations

> Resolution is 400-600 keV FWHM

PRL **94**, 082502 (2005), PRC **72**, 061301(R) (2005)

"Solenoid kinematics" for (d,p)

Stable beam, no recoil: ²⁸Si(d,p)²⁹Si

E_{proton} (MeV)

²⁸Si(d,p)²⁹Si Excitation-energy spectrum

Unstable beam ¹⁵C(*d*,*p*)¹⁶C

Proton energy-position correlation with recoil

¹⁶C Excitation-energy spectrum Resolution is ~150 keV FWHM I(¹⁵C)~10⁶ pps

PRL 105, 132501 (2010)

¹⁴B – as far as you can go with N=9 (and still be stable)

- We expect ¹⁴B to have a neutron structure similar to ¹⁵C with one neutron in 1s_{1/2} orbital
- But: Complications due to p_{3/2} proton hole lead to multiplets of states, configuration mixing.
- Identification of the L=0 and 2 strength can pin down the single-particle energies

States in ¹⁴B

From most recent TUNL A=14 compilation (1991)

$$2^{-}_{2}$$
 state is broad (Γ ~1 MeV)

Most information is from ${}^{14}C({}^{7}Li, {}^{7}Be){}^{14}B$ and analogies to the ${}^{12}B$ spectrum. More recent ${}^{14}Be \beta$ -decay work suggests positive-parity levels not shown here

Simple considerations for ${}^{13}B(d,p){}^{14}B$

(d,p) populates single-neutron states in ¹⁴B

Simple considerations for ${}^{15}C(d^{3}He){}^{14}B$

(d,³He) populates proton-hole states in ¹⁴B

v(sd) states in ¹⁴B with (*d*,*p*)

$$\psi(2_1^-) = \nu(1s_{1/2})\pi(0p_{3/2})^{-1}$$

$$\psi(2_2^-) = \nu(0d_{5/2})\pi(0p_{3/2})^{-1}$$

$$\psi(1_1^-) = \nu(1s_{1/2})\pi(0p_{3/2})^{-1}$$
$$\psi(1_2^-) = \nu(0d_{5/2})\pi(0p_{3/2})^{-1}$$

$$\psi(3_1^-) = \nu(0d_{5/2})\pi(0p_{3/2})^{-1}$$

$$\psi(4_1^-) = \nu(0d_{5/2})\pi(0p_{3/2})^{-1}$$
 4

Assuming that there is no mixing, states are pure

3-

v(sd) states in ¹⁴B with (*d*,*p*)

$$\psi(2_1^-) = \alpha_2 \nu(1s_{1/2}) \pi(0p_{3/2})^{-1} + \beta_2 \nu(0d_{5/2}) \pi(0p_{3/2})^{-1}$$
$$\psi(2_2^-) = -\beta_2 \nu(1s_{1/2}) \pi(0p_{3/2})^{-1} + \alpha_2 \nu(0d_{5/2}) \pi(0p_{3/2})^{-1}$$

$$\psi(1_1^-) = \alpha_1 \nu(1s_{1/2}) \pi(0p_{3/2})^{-1} + \beta_1 \nu(0d_{5/2}) \pi(0p_{3/2})^{-1}$$
$$\psi(1_2^-) = -\beta_1 \nu(1s_{1/2}) \pi(0p_{3/2})^{-1} + \alpha_1 \nu(0d_{5/2}) \pi(0p_{3/2})^{-2}$$

$$\psi(3_1^-) = \alpha_3 \nu(0d_{5/2}) \pi(0p_{3/2})^{-1} \qquad 3^-$$

$$\psi(4_1^-) = \alpha_4 \nu(0d_{5/2})\pi(0p_{3/2})^{-1}$$
 4

(*d*,*p*) spectroscopic factors give us the α 's and the β 's

¹⁴B Excitation-energy spectrum

Bedoor et al., PRC 88 011304 (2013)

¹³B(*d*,*p*)¹⁴B angular distributions

Blue: *L*=0 Red: *L*=2 Violet: *L*=0 + *L*=2

2⁻(0.00): $S_0=.71$ $S_2=.17$ 1⁻(0.65): $S_0=0.96$ $S_2=.06$ 3⁻(1.38): $S_2=1.00$ (fixed) 4⁻(2.08): $S_2=1.00$

OMPs fit 30 MeV d+¹²C, p+^{12,13}C elastic scattering

Bedoor et al., PRC 88 011304 (2013)

Sum rules with simple, pure states: All S = 1.0 and $(2J_{1}+1=4)$ #holes = $1 \times \frac{5}{4} + 1 \times \frac{3}{4} = 2(s_{1/2})$ $#holes = 1 \times \frac{5}{4} + 1 \times \frac{3}{4} + 1 \times \frac{7}{4} + 1 \times \frac{9}{4} = 6 (d_{5/2})$

 $J_F = 2 1 3 4$

We're missing two states!

A game with sum rules...

2

1-

 $\psi(2_1^-) = \alpha_2 \nu(1s_{1/2}) \pi(0p_{3/2})^{-1} + \beta_2 \nu(0d_{5/2}) \pi(0p_{3/2})^{-1}$

 $\psi(2_2^-) = -\beta_2 \nu(1s_{1/2}) \pi(0p_{3/2})^{-1} + \alpha_2 \nu(0d_{5/2}) \pi(0p_{3/2})^{-1}$

 $\psi(1_1^-) = \alpha_1 \nu(1s_{1/2}) \pi(0p_{3/2})^{-1} + \beta_1 \nu(0d_{5/2}) \pi(0p_{3/2})^{-1}$

 $\psi(1_2^-) = -\beta_1 \nu(1s_{1/2}) \pi(0p_{3/2})^{-1} + \alpha_1 \nu(0d_{5/2}) \pi(0p_{3/2})^{-1}$

Assume $\psi(2^{-}_{2})$ and $\psi(1^{-}_{2})$ are the orthogonal partners of $\psi(2^{-}_{1})$ and $\psi(1^{-}_{1})$. We already know α_{2} , β_{2} and α_{1} , β_{1} , so we can then guess the spectroscopic factors for $\psi(2^{-}_{2})$ and $\psi(1^{-}_{2})$.

Then:

Experimentally, $\Sigma S[J_f]/4=5.9$ (*L*=2) and 1.9 (*L*=0) compared to the sum-rule values of 6.0 and 2.0.

¹³B(*d*,*p*)¹⁴B Spectroscopic factors

Excitation energies and relative spectroscopic factors from the shell model

Blue: L=0, 1s_{1/2} Red: L=2, 0d_{5/2}

2⁻ mixed L=0+2, 1⁻ mostly L=0 Reasonable agreement But *caveat emptor*!

Another game...

Can we estimate the $1s_{1/2}$ and $0d_{5/2}$ single-particle energies in ¹⁴B?

No narrow states left. We <u>assume</u> ${}^{14}B(2^{-}_{2})$ is the broad state at 1.86 MeV, and we <u>assume</u> ${}^{14}B(1^{-}_{2})$ is a broad state at 3.6 MeV (there seems to be something there in (*d*,*p*) with *L*=2).

$$\langle E_0 \rangle_j = \frac{\sum_i (2J_i + 1) S_i E_{xi}}{\sum_i (2J_i + 1) S_i}$$

Then:

$$< E_0 > (1s_{1/2}) = 0.55 \text{ MeV}$$

 $< E_0 > (0d_{5/2}) = 1.94 \text{ MeV}$
 $< E_0 > (0d_{5/2}) - < E_0 > (1s_{1/2}) = 1.39 \text{ MeV}$

2_2^{-2} confirmation from ${}^{15}C(d, {}^{3}He){}^{14}B$

Bedoor et al., PRC**93** 044323 (2016).

Preaching and Conclusion

- Remember history basic understanding embedded in early work, often obscured by nuance and details accumulated over the years
- Put results in context nuclear physics progresses by assembly of a puzzle with many parts, individual measurements are pieces but don't lose sight of the Big Picture
- Technical advances can help provide better data, but equally important are imagination and insight in the design of experiments and the interpretation of data.
- There is a <u>lot</u> that I did not cover. Take this and run with it!

$^{14}C(d,^{3}He)^{13}B$ in HELIOS

Bedoor et al., PRC93 044323 (2016).

Heavy-Ion transfer and ANC's

- Peripheral collisions close or head-on collisions lead to more complex processes
- Samples the tail of the wave functions-"Asymptotic Normalization Coefficients" or "ANCs"
- Why do it this way? Many astrophysical processes occur at very low energies and are extremely peripheral.
- Analyze in a very similar way.
- Are the approaches consistent?...

Two other direct processes: Charge exchange and knockout

- Charge exchange change a p to an n or viceversa:
 - examples: (*p*,*n*), (³He,*t*),(*d*,²He)
 - Populates "Isobaric analog states"
 - Samples Gamow-Teller strength at small angles/low momentum transfer like β decay.
- Knock-out: The projectile "knocks out" a particle from the target nucleus
 - examples: (*e*,*e*'*p*),(*p*,2*p*), (*p*,*np*) etc.
 - can be used to complement other direct transfer reactions, sensitive to nuclear structure

Charge exchange – an example

P. Boutachkov et al, PRL 95, 132502 (2005).

Typical CN angular distributions

 $^{12}C(^{14}N, d')^{24}Mg$

Angular distributions are forwardbackward symmetric

