Physics opportunities with the AT-TPC at ReA

D. Bazin NSCL/MSU

Reaction studies at ReA

- Radioactive beams are used in inverse kinematics
 - * Target is now the (usually light) probe nucleus
 - Scattered particles have low energies
 - * Beam intensities are small (from 1 to 10⁸ pps)
 - High luminosity needed: large acceptances, thick targets
- New types of instruments needed
 - * Active Target Time Projection Chamber (AT-TPC)
 - * Gas is both target and detector medium: thick target without loss of resolution
 - * Vertex determination, virtually 4π angular coverage, very low energy threshold
 - Excitation functions from beam slow down and vertex determination

AT-TPC physics program at ReA

- Resonant scattering for nuclear cluster structure studies
- Inverse kinematics proton scattering for single-particle structure studies via IAS population
- * Fusion cross sections with neutron-rich isotopes below the Coulomb barrier
- Inverse kinematics transfer reactions for single-particle structure such as (d,p), (p,d), (p,t), (³He,d), ...
- * Excitation functions of reactions of astrophysical interest such as (α,p) for instance
- * Exotic radioactive decays (3 α decay from ¹²C Hoyle state, 2p radioactivity, ...)
- * ReA3 upgrade is crucial to access the full potential of these reaction tools

Principle of operation

Insulator gas volume (N_2) Field shaping rings Cathode: - 100 kVDC (1kV/cm) Pad plane and electron amplification device (Micromegas) Beam Electric field Active gas volume Drift time -> z He, H₂, D₂ ...

D. Bazin, ReA3 upgrade workshop, August 20, 2015

Position

->(x, y)

AT-TPC setup

- Straight and tilted (7°) configurations
- Tilt relative to beam axis to increase accuracy for small angles
- Placed inside 2 Tesla
 solenoid (increase range and measure Brho)
- 250 liters (1 m by 55 cm) active volume
- * Financed by NSF-MRI

Pad plane and electronics

- * 10,240 triangular pads
 - Central region density x4 for small angle scattering
- GET (General Electronics for TPC)
 - Digital readout instrumentation of each pad
 - Internal trigger generation using multiplicity signals
 - Data filtering (partial readout, zero suppression, ...)

Visualization of nuclear reactions in 3D

- Last commissioning in December
 2014
 - * Beam: ⁴He at 3 MeV/u
 - Target: He(90%) + CO₂(10%) @ 100
 Torr
 - * Magnetic field: 2 Tesla
- Event displays
 - Right: hit pattern on pad plane, orange region is trigger exclusion zone
 - * Top left: integrated time projection
 - * Bottom left: 3D reconstruction of event

Prototype AT-TPC

Prototype AT-TPC

Scattering ⁶He + α at Twinsol

- 2000 pps ⁶He
- Confirm strong α -cluster state in ¹⁰Be.

Prototype AT-TPC

Scattering ⁶He + α at Twinsol

- 2000 pps ⁶He
- Confirm strong α -cluster state in ¹⁰Be.

Cluster states in ¹⁴C

- Resonant scattering of 4 MeV/u
 ¹⁰Be beam (TWINSOL) on ⁴He
- Observed 2⁺ and 4⁺ resonances match linear chain calculations (AMD)

Proton scattering to IAS resonances

- * Evolution of neutron orbitals in ^AZ can be studied via the ^AZ(d,p)^{A+1}Z transfer reaction or by populating T_> analog states of ^{A+1}Z in ^{A+1}Z+1 via the ^AZ(p,p') reaction
- Spectroscopic factors for excited states in ^{A+1}Z can be deduced reliably from cross sections of resonances observed in ^{A+1}Z+1

Ep(MeV)

FIG. 1. The 1.88-MeV analog resonance. On this and all subsequent figures the lower set of points are data taken with <3-keV incident energy spread and are referred to the left ordinate. The upper points are the data after averaging over 25 keV, referred to the right ordinate. The smooth curve through the upper data is the resonance fit and the curve through the lower data gives the

FIG. 2. The 2.46-MeV analog resonance and fit. The caption of Fig. 1 applies to this and all subsequent figures. The abscissa scales are laboratory energies and all indicated angles are laboratory angles.

Inverse kinematics in AT-TPC

- * ⁴⁰Ar beam from ReA3 at 4.5 MeV/u
- Gas target: 20 Torr of C₄H₁₀
- Excitation function from incident energy to 0 (beam stopped)
- Next experiment: ⁴⁶Ar at 4.2 MeV/u from ReA3 + CCF (9/2015)
- Higher beam energies would allow reaching higher energy states

Inverse kinematics in AT-TPC

- ⁴⁰Ar beam from ReA3 at
 4.5 MeV/u
- Gas target: 20 Torr of C₄H₁₀
- Excitation function from incident energy to 0 (beam stopped)
- Next experiment: ⁴⁶Ar at 4.2 MeV/u from ReA3 + CCF (9/2015)
- * Higher beam energies would allow reaching higher energy states

Transfer reactions

- ReA3 energies too low for most cases (Q-value, momentum matching)
- * AT-TPC can provide highest luminosity, can detect both light and heavy particles with close to 4π coverage and good resolution
- * Elastic cross section of entrance channel measured simultaneously
- * H₂ and D₂ gas targets can be made significantly thicker than CH₂ and CD₂ foils
- Reaction energy known for each event (vertex), allows to sum angular distributions measured at different energies

Example: ³⁸S(d,p)

- Study shell quenching between N=20 and N=28 below the Z=20 closure
- Simulations show 200 keV resolution achievable

Example: ³⁸S(d,p)

- Study shell quenching between N=20 and N=28 below the Z=20 closure
- Simulations show 200 keV resolution achievable
- Angular distributions from different energies can be cumulated

Example: ³⁸S(d,p)

- Study shell quenching between N=20 and N=28 below the Z=20 closure
- Simulations show 200 keV resolution achievable
- Angular distributions from different energies can be cumulated
- * Meaningful experiments can be achieved with only 1,000 pps!

Example: ³⁸S(d,p)

- Study shell quenching between N=20 and N=28 below the Z=20 closure
- Simulations show 200 keV resolution achievable
- Angular distributions from different energies can be cumulated
- * Meaningful experiments can be achieved with only 1,000 pps!
- Energy should be 10-12 MeV/u! Needs ReA12!

Outlook

- * ReA3 upgrade to energy range 10-15 MeV/u would open great opportunities for experiments with the AT-TPC
- The AT-TPC can provide high luminosity without compromising resolution
- This is paramount because of the low intensities of reaccelerated radioactive beams
- Simple transfer reactions such as (d,p), (p,d), (d,³He) are of particular interest

AT-TPC collaboration

NSCL team

- D. Bazin, W. Mittig, W. Lynch, S. Beceiro-Novo, Y. Ayyad, J. Bradt, L. Carpenter, J. Manfredi, S. Rost, M. Cortesi, J. Yurkon
- Other institutions
 - * T. Ahn, J. Kolata, Z. Chajecki, D. Suzuki, U. Garg, R. Kanungo