Lifetimes of the 6^+ states in 42Ti and 46Ca and E2 effective charges in $(1f_{7/2})^\pm{2}$ nuclei

W. Kutschera,* B. A. Brown,† H. Ikezoe, G. D. Sprouse,‡ Y. Yamazaki, and Y. Yoshida
Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo, Japan
and Cyclotron Laboratory, The Institute of Physical and Chemical Research, Wako-shi, Saitama-ken, Japan

T. Nomura

Cyclotron Laboratory, The Institute of Physical and Chemical Research, Wako-Shi, Saitama-ken, Japan

H. Ohnuna

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

(Received 20 May 1975)

The mean lifetimes of the 6^+ states in 42Ti at 3041 keV and 46Ca at 2974 keV have been measured with the pulsed beam method to be $\tau = 5.2 \pm 0.5$ ns and 15.2 ± 0.8 ns, respectively. The states were populated via the reactions 40Ca(3He, d)42Ti at $E_{\text{lab}} = 12$ MeV and 40Ca(3He, d)46Ca at $E_{\text{lab}} = 50$ MeV. The deduced $B(E2, 6^+ \rightarrow 4^+)$ values result in proton and neutron effective charges which are in good agreement with other $(1f_{7/2})^\pm{2}$ nuclei. However, the present lifetime result for 42Ti is in disagreement with another measurement for this nucleus. A comparison of E2 effective charges extracted from all presently available $B(E2)$ data on the $6^+ \rightarrow 4^+ \rightarrow 2^+ \rightarrow 0^+$ transitions in $(1f_{7/2})^\pm{2}$ nuclei is presented.

[NUCLEAR REACTIONS 40Ca(3He, d)42Ca, $E = 12$ MeV, 40Ca(3He, d)46Ca, $E = 50$ MeV; measured pulsed beam electronic timing; deduced $T_{1/2}$, $B(E2)$, effective charges. Natural and enriched targets, Ge(Li) detectors.]
<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Configuration</th>
<th>Transition</th>
<th>$E_γ$ (keV)</th>
<th>τ (ns)</th>
<th>Refs.</th>
<th>$B(E2)$ (e² fm⁴)</th>
<th>$\delta\varepsilon^b$ (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>42Ca₂₂</td>
<td>$(\gamma f_7/2)^2$</td>
<td>$2^+ \to 0^+$</td>
<td>1524</td>
<td>1.19±0.04</td>
<td>c</td>
<td>83.4±2.8</td>
<td>2.09±0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$4^+ \to 2^+$</td>
<td>1227</td>
<td>4.5±0.5</td>
<td>d, e</td>
<td>65±7</td>
<td>1.85±0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$6^+ \to 4^+$</td>
<td>459</td>
<td>7.79±0.13 ns</td>
<td>c</td>
<td>6.42±0.11</td>
<td>0.86±0.01</td>
</tr>
<tr>
<td>40Ca₂₆</td>
<td>$(\gamma f_7/2)^2$</td>
<td>$2^+ \to 0^+$</td>
<td>1346</td>
<td>5.2±0.54</td>
<td>f</td>
<td>≥ 3</td>
<td>3.5±3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$4^+ \to 2^+$</td>
<td>1229b</td>
<td>Not measured</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$6^+ \to 4^+$</td>
<td>399</td>
<td>15.1±0.8 ns</td>
<td>This exp., h</td>
<td>5.34±0.28</td>
<td>0.76±0.02</td>
</tr>
<tr>
<td>47Ti₂₀</td>
<td>$(\gamma f_7/2)^2$</td>
<td>$2^+ \to 0^+$</td>
<td>1555</td>
<td>0.60±0.10</td>
<td>i, j, k, l, m</td>
<td>150±25</td>
<td>1.8±0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(4^+) \to 2^+$</td>
<td>1120</td>
<td>≥ 1.8</td>
<td>l, m</td>
<td>< 20</td>
<td>< 2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(6^+) \to (4^)$</td>
<td>366</td>
<td>≥ 3</td>
<td>ns</td>
<td>This exp.</td>
<td>252±6</td>
</tr>
<tr>
<td>49Ti₂₆</td>
<td>$(\gamma f_7/2)^2$</td>
<td>$2^+ \to 0^+$</td>
<td>1554</td>
<td>1.4±0.2</td>
<td>n</td>
<td>66±8</td>
<td>0.76±0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$4^+ \to 2^+$</td>
<td>1121</td>
<td>7.7±1.5</td>
<td>d</td>
<td>60±12</td>
<td>0.68±0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$6^+ \to 4^+$</td>
<td>524</td>
<td>0.61±0.02 ns</td>
<td>o, p</td>
<td>33.8±1.2</td>
<td>0.87±0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$2^+ \to 0^+$</td>
<td>1408</td>
<td>1.38±0.10</td>
<td>q, r, s</td>
<td>107±8</td>
<td>1.18±0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$4^+ \to 2^+$</td>
<td>1131</td>
<td>5.7±1.2</td>
<td>t</td>
<td>77±16</td>
<td>0.85±0.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$6^+ \to 4^+$</td>
<td>409</td>
<td>1.75±0.03 ns</td>
<td>o, p, u</td>
<td>40.7±0.7</td>
<td>1.00±0.02</td>
</tr>
</tbody>
</table>

* Averages of the values taken from the quoted references. For the 4⁺ state in 42Ca only the two most recent recoil distance measurements have been used, since older measurements report very conflicting results (see Ref. 17).

b $\delta\varepsilon = \epsilon_{\mathrm{eff}} - 1$ for protons and $\delta\varepsilon = \epsilon_{\mathrm{eff}}$ for neutrons. Pure $(\gamma f_7/2)^2$ configurations and harmonic oscillator radial wave functions ($\hbar\omega = 4.1\hbar\omega_0$ MeV) have been assumed to extract the effective charges.

Reference 17.

Reference 7.

Reference 9.

Reference 10.

i Reference 1.

n Reference 11.

= 25–50 MeV. The target consisted of about 10 mg/cm² 40CaCO₃ enriched with 97.2% 40Ca and deposited on a 6 µm thick Mylar foil. The beam was stopped 5 m after the target in a heavily shielded Faraday cup. γ rays were measured with a true coaxial Ge(Li) detector of 32-cm³ active volume at 90° to the beam direction and 10 cm from the target. The typical resolution of the detector during the experiments was 2.5 keV full width at half-maximum (FWHM) at 1.33-MeV γ-ray energy.

Figure 2 shows the in-beam γ-ray spectrum during the bombardment of 40CaCO₃ with 50-MeV α particles. This beam energy was used for the lifetime measurement. The assignment of γ lines to the different nuclei was based on the excitation function measurements and information about high-spin states available from the literature. In particular, the results from the reactions 40Ca-$^7Li, p^2n$ (Ref. 2) and 25Mg($^4\alpha,p^2n$Ti (Ref. 3) have been used for comparison. The 6^+ state in 40Ca has recently been assigned by high resolution
studies \(^4\) of the reaction \(^{46}\text{Ca}(p,\alpha)^{46}\text{Ca}\) and was found to lie at 2975±2 and 2978±4 keV, respectively. In addition, this level was measured \(^5\) by the \(^{46}\text{Ca}(p,\alpha')\) reaction to be at 2976±1.5 keV.

Together with the known energies \(^6\) of the 2', and 4' \(^\text{Ca}\) levels one expects a deexcitation \(\gamma\) cascade of the 6' \(^\text{Ca}\) state with \(\gamma\)-ray energies around 400 keV (6' − 4'), 1230 keV (4' − 2'), and 1347 keV (2' − 0'). The 6' − 4' and 2' − 0' transitions are clearly observed in the present reaction with \(\gamma\)-ray energies of 399.0±0.5 and 1345.7±0.8 keV, respectively, with an absolute intensity ratio of 1:2. The close lying \(\gamma\) line at 404 keV can be excluded from belonging to \(^{46}\text{Ca}\) by the excitation function measurement. Unfortunately, the 4' − 2' transition \(^7\) (1229 keV) could not be resolved from the (6')−6' transition \(^8\) (1231 keV) in \(^{46}\text{Ti}\).

Since the lifetime of the 6' \(^\text{Ca}\) state in \(^{46}\text{Ca}\) was expected to lie in the ns region, the natural beam bursts of the 50-MeV \(\alpha\) beam from the IPCR cyclotron with a pulse width of ≈1 ns and a pulse period of 95 ns were well suited for an electronic lifetime measurement. Timing was performed with a time-to-amplitude converter (TAC), which was started with the \(\gamma\)-ray signals from the Ge(Li) detector and stopped with the rf signal from the cyclotron. Time spectra corresponding to several \(\gamma\)-ray energies were accumulated in different sections of computer memory by setting digital windows on the Ge(Li) pulse height distribution. In order to improve the time resolution of the Ge(Li) detector, the slow rise time pulses were rejected by pulse shape discrimination of the timing signal. In this procedure two timing signals from the Ge(Li) detector were generated by a leading-edge trigger (LET) and a constant-fraction trigger (CFT) and fed into a second TAC. Due to the different sensitivity to rise times, the output of this TAC allowed a selection of the fast rise time pulses, which were used to gate the time spectra generated in the other TAC by the CFT \(\gamma\)-ray signal and rf signal. The Ge(Li) detector and the
very good time resolution is mainly due to the rejection of slow rise time pulses as described above. The two transitions in 46Ca clearly show a delayed component. After the background subtraction no prompt peak is seen for the $6' - 4'$ transition. The shape of the prompt peak in the $2' - 0'$ transition is taken from the $4' - 2'$ transition in 48Ti. The solid curves in the delayed part are the results of a χ^2 fit with a constant plus exponential, where the constant takes care of insufficient background subtraction and small intrinsic timing tails of the Ge(Li) detector. From the four independent fits an average of

$$\tau(6', ^{46}Ca) = 15.2 \pm 0.8 \text{ ns}$$

has been deduced. The error includes both statistics and uncertainties in time calibration and background subtraction.

After completion of the present lifetime measurement6 we learned of another lifetime measurement1 of the same state with the reaction 40Ca-$n2\gamma$46Ca. The result $\tau = 14.8 \pm 1.4$ ns is in excellent agreement with the present measurement.

III. 42Ti $6'$ LIFETIME

The lifetime measurement for the $6'$ state in 42Ti utilized a technique similar to that described in the previous section for 46Ca. Two different reactions, 40Ca-$n2\gamma$42Ti and 40Ca(3He, $n\gamma$)42Ti, were studied for the population of excited levels in 42Ti. Excitation function with γ-ray singles spectra were measured during the bombardment of a natural Ca target (14-mg/cm2 rolled metal foil) with α and 3He particles in the energy range of $E_\alpha = 25-55$ MeV and $E_{^3He} = 6-16$ MeV, respectively. The reaction 40Ca-$n2\gamma$42Ti was unsuccessful since γ lines8, 10 from 42Ti were not observed in the γ-singles spectra with any significant intensity above the background. However, these γ lines were observed from the reaction 40Ca(3He, $n\gamma$)42Ti. From the excitation function measurement a beam energy of $E_{^3He} = 12$ MeV was chosen for the lifetime measurement.

Figure 4 shows the in-beam γ-ray spectrum measured during the bombardment of the Ca target with 12-MeV 3He particles. The strongest lines in the spectrum originate from the reactions 40Ca(3He, $p\gamma$)40Sc (with subsequent β decay to 40Ca) and 40Ca(3He, $2p\gamma$)40Ca. Recent information from the literature have been used to assign the transitions in 40Sc (Ref. 11) and 40Ca (Refs. 12 and 13). In addition to these nuclei there are several γ lines from the contaminant reaction 16O(3He, $p\gamma$)18F. Although they are relatively weak the 366-, 1120-, and 1555-keV γ rays, which have been previously assigned9 to the decay cascade of the 3041-keV
(6') state in 42Ti (see Fig. 1) are also clearly observed. The spin sequence 6'→4'→2'→0' is suggested by the comparison with other members of the T=1 triplet in 48Sc and 46Ca (Refs. 9 and 10). The Coulomb energy shift for these levels is in good agreement with the calculation of Bertesch.14 A recent distorted-wave Born-approximation (DWBA) analysis for the 40Ca(3He, n)42Ti reaction16 is consistent with an L = 6 two-proton transfer to a state in 42Ti at Eν = 3.06 ± 0.07 MeV. A 6' assignment for the 3041-keV level is also supported by the results of the 40Ca(32C, 16Be)42Ti two-proton transfer reaction experiment,16 in which a high-spin state was observed at 3.05 MeV. The observed absolute intensity of the 366-, 1120-, and 1555-keV γ rays in the present experiment was in the ratio 1:2:6.

Time spectra were taken for the three cascade transitions in 42Ti as well as for several γ rays which were known to be prompt (τ < 1 ps). The arrows in the spectrum shown in Fig. 4 indicate these γ rays as well as the regions near the peaks of interest which were used for background subtraction in the time spectra. In this experiment the subtraction of the background contribution in the time spectra is important since the peak to background ratio is small and several high energy γ rays (3201 and 3369 keV) from the competing reaction 40Ca(3He, 2pγ)40Ca are known to have delayed components with a mean lifetime of about 5 ns12 and have Compton tails which extend down to the regions of interest. The normalization for the background subtraction was obtained from the ratio of the summed counts in a flat delayed region of the time spectra (starting about 40 ns after the prompt peak) for the γ ray of interest and the respective γ-ray background region. The time spectra for the 42Ti 1120- and 1555-keV γ rays and for the prompt 40Sc 976-keV 2'→1', 42Sc 1587-keV 2'→0', and 18F 1587-keV 2'→3' rays17,18 are shown in Fig. 5. The natural beam burst width for the low energy 3He beam was considerably worse compared to the 50-MeV α beam used in the 40Ca measurement. This was probably due to instabilities of the rf, which was close to the lower limit available at the IPAC cyclotron. The total prompt time resolution which contains both contributions from the beam resolution and Ge(Li) detector resolution (pulse shape discrimination was not used) was about 6.3 ns. This prompt peak, see Fig. 5(c), is not pure Gaussian in shape due to the beam resolution.

A lifetime could not be extracted for the 42Ti 366-keV transition due to the very small peak to background ratio and the lack of a prompt γ ray with a similar energy for comparison. The other two γ rays of 42Ti show an exponential tail beyond that observed for the prompt γ rays. The solid curves in the delayed part are the results of a χ² fit with a constant plus exponential. The extracted lifetimes are due to delayed feeding of the 2675-keV level, since the 1120-keV γ ray has some prompt component. Thus, these lifetimes are attributed to the 3041-keV (6') level. Due to the
small peak to background ratios the extracted lifetimes are rather sensitive to the background subtraction, which resulted in an additional 1-ns uncertainty of the fitted lifetimes. Therefore, the final value of the mean lifetime of the 3041-keV level is given by

\[\tau(6^+ {^{40}\text{Ti}}) = 5 \pm 2 \text{ ns} \]

The present result is in disagreement with a previous measurement by Cox et al.,10 who report a lifetime of \(\tau = 26 \pm 5 \text{ ns} \). The result of Cox et al. was obtained with the \(^{40}\text{Ca}(^3\text{He}, np)^{42}\text{Ti} \) reaction with an 8-MeV \(^3\text{He} \) beam using time spectra obtained in an \(n-\gamma \) coincidence. The time spectrum of the 386-keV \(\gamma \) ray was analyzed assuming a prompt resolution estimated by the 1555-keV \(\gamma \) ray. If their prompt resolution was much more energy dependent, an erroneous lifetime could have been obtained, which may explain the above disagreement. Another reported lifetime measurement which was attributed to the \(^{42}\text{Ti} \) 6\(^+ \) level was later found to originate from a transition (460 keV) in \(^{41}\text{Ca} \) (Ref. 19).

IV. DISCUSSION

Table I summarizes the present experimental information on \(E2 \)-decay properties of the \(2^+_1, 4^+_1 \), and \(6^+_1 \) states in \((1f_{7/2})^2 \) nuclei. In order to compare the experimental data on the basis of the effective charge concept the additional charge \(\delta e = e_{\text{eff}} - 1 \) for protons and \(\delta e = e_{\text{eff}} \) for neutrons are given in the last column of Table I. The effective charge \(e_{\text{eff}} \) has been extracted from the experimental \(B(E2) \) values with the assumption of pure \((1f_{7/2})^2 \) configurations through the relation

\[
B(E2, |J - J'|)_{\exp} = S(J(J_f/2)^2 - J'(f_{1/2})^2) \times \frac{e_{\text{eff}}^2}{4\pi} |\langle f_{1/2} | r^2 | f_{1/2} \rangle|^2.
\]

Here, the statistical factor \(S \) is given by 0.952, 0.950, and 0.433 for the \(2^+ - 0^+ \), \(4^+ - 2^+ \), and \(6^+ - 4^+ \) transitions, respectively. The radial matrix element has been calculated from harmonic oscillator radial wave functions with the relation

\[
\langle f_{1/2} | r^2 | f_{1/2} \rangle = \frac{9}{2} \frac{\hbar}{m_w} = 4.55A^{1/3} \text{ fm}^3
\]

assuming \(\hbar \omega = 41A^{-1/3} \text{ MeV} \).

Due to the truncation of the shell model space to \((1f_{7/2})^2 \) configurations, the additional charges in Table I exhibit the effect of three main contributions11 to the effective \(E2 \) operator: (i) \(\Delta N = 0 \) particle excitations from the \(1f_{7/2} \) orbital to other \(1f-2p \) orbitals. (ii) \(\Delta N = 1 \) two-particle excitations from \(2s-1d \) to \(1f-2p \) orbitals. (iii) \(\Delta N = 2 \) single-particle excitations from \(2s-1d \) to \(3s-2d-1g \) and from \(1p \) to \(1f-2p \) orbitals. Here, \(N = 2(n-1) + l \) labels the major oscillator shells. There is considerable interest to extract the last \(\Delta N = 2 \) contribution, usually referred to as the polarization charge, from the measured \(B(E2) \) values, since a reliable value can give information about the isoscalar and isovector part of the effective \(E2 \) operator and its connection to the giant quadrupole resonance. To isolate the \(\Delta N = 2 \) core polarization one has to take into account explicitly the configuration admixtures of type (i) and (ii) in the calculation of the theoretical \(B(E2) \) values. A detailed discussion of this procedure for several nuclei in the \(1f_{7/2} \) shell can be found in the work of Brown et al.11 In the following the consistency of the \(^{40}\text{Ti} \) and \(^{46}\text{Ca} \) effective charges will be discussed and compared with effective charges for other \(1f_{7/2} \) nuclei.

A recent shell model calculation by Ogawa,20 who used \(\langle f_{1/2} p_{3/2} \rangle \) and \(\langle f_{1/2} p_{3/2} \rangle \) neutron configurations for \(^{40}\text{Ca} \) and \(^{46}\text{Ca} \) and the effective
interactions from Feder mann and Pittel results in a remarkably constant neutron effective charge for the $6^+ - 4^+$ transitions. Using the same $\hbar\omega = 41 A^{-1/3} \text{ MeV}$ as in Table I for the radial matrix elements, one obtains $e_{\text{eff}} (6^+ - 4^+) = (0.69 \pm 0.01) e$ and $(0.68 \pm 0.02) e$ for ^{42}Ca and ^{46}Ca, respectively. On the other hand, the effective charges for the $2^+ - 0^+$ transitions using the $(f_{7/2}p_{3/2})^p$ wave functions are $e_{\text{eff}} (2^+ - 0^+) = (1.21 \pm 0.02) e$ and $(1.10 \pm 0.07) e$ for ^{42}Ca and ^{46}Ca, respectively, which indicates that other configurations of type (ii) involving core deformed components are more important in ^{42}Ca than in ^{46}Ca. Unfortunately, for a complete comparison between ^{42}Ca and ^{46}Ca, the experimental results on the 2^+ lifetime in ^{46}Ca are somewhat inconsistent and no measurement has been reported for the 4^+ lifetime. The inclusion of detailed wave functions involving $(fp)^p + (sd)^2/(fp)^p$ configurations in ^{46}Ca by the procedure used by Flowers and Skouras reduces the extracted effective charges for the $2^+ - 0^+$ transition. However, these extended wave functions also reduce the $^{42}\text{Ca} 6^+ - 4^+$ effective charge, which makes the comparison with ^{46}Ca worse and thus suggests that the procedure of Flowers and Skouras overestimates the deformed admixtures in the high-spin 4^+ or 6^+ states of ^{46}Ca. The effective charges for the ^{42}Ca and $^{46}\text{Ca} 6^+ - 4^+$ transitions using the $(f_{7/2}p_{3/2})^p$ wave functions are also in good agreement with the analysis of Towsley, Cline, and Horoshko for the $4^+ - 2^+$ and $2^+ - 0^+$ transitions in ^{46}Ca. By analyzing the $E2$ transitions for both the ground state band and the excited deformed band, we estimate $e_{\text{eff}} = 0.65 \pm 0.04 e$. Both the present and previous result for the $^{42}\text{Ti} (6^+ - 4^+)$ transition, which are inconsistent with each other are given in Table I. Compared with other proton effective charges in Table I the negative additional charge needed to explain the previous ^{42}Ti lifetime measurement of $\tau = 26 \pm 5$ ns is anomalous. Also it would be very difficult to explain this anomaly using more refined wave functions. The effective charge needed for the present measurement ($\tau = 5 \pm 2$ ns) is more reasonable and will be discussed further.

With the $(f_{7/2}p_{3/2})^p$ shell model calculation of Ogawa the additional charge needed for the ^{42}Ti $6^+ - 4^+$ transition (with the present lifetime result) is $5e = 0.36 \pm 0.26 e$. This can be compared to a previous analysis of the $5^+ - 7^+$ ^{40}Sc transition probability with $(fp)^p$ wave functions in which an additional proton charge of $5e = -0.04 \pm 0.16 e$ was needed. Although the errors are large, the additional proton charge seems to be larger in ^{42}Ti than in ^{40}Sc. A possible explanation for this is that the radial wave functions are larger in ^{42}Ti than in ^{40}Sc due to the smaller relative binding energies of the ^{42}Ti states; the 6^+ state in ^{42}Ti is bound by only 0.5 MeV relative to ^{40}Sc. This indicates that in order to extract a reliable proton polarization charge for nuclei near ^{40}Ca it would be necessary to use more realistic single particle wave functions in cases with small binding energies.

It would be interesting to compare the present result for ^{42}Ti with the proton effective charges for ^{42}Ti and ^{44}Fe using $(fp)^p$ wave functions. However, the results of an exact $(fp)^p$ calculation for these nuclei is not available. This is not as simple as for the Ca isotopes, since one has to consider the excitation of both protons and neutrons in order to obtain wave functions of good isospin.

From the present data on $(f_{7/2}p_{3/2})^p$ nuclei as discussed above we conclude that the independence of the effective charges on the number of valence particles (additivity) is well established from the $6^+ - 4^+$ transitions in both $(6f_{7/2})^{12}$ and $(6f_{7/2})^{12}$ nuclei with the exception of ^{42}Ti. The extracted value $e_{\text{eff}} = 0.68 e$ using $(f_{7/2}p_{3/2})^p$ wave functions for the $6^+ - 4^+$ transition in ^{46}Ca should be very near to the neutron polarization charge in this mass region. It is interesting to note that this value is close to the macroscopic estimate of Bohr and Mottelson, $e_{\text{pol}} = \left(Z/A - 0.32 \left([N-Z]/A \right) \right) \times 0.67 e$, for which ^{40}Ca leads to the value $e_{\text{pol}}(\text{neutron}) = 0.67 e$. Any further conclusion concerning the proton polarization charge depends on a more precise measurement of the ^{42}Ti 6^+ lifetime and on theoretical calculations using more detailed wave functions for the $N = 28$ isotones.

We should like to thank Dr. K. Ogawa for valuable theoretical discussions. B.A.B. and W.K. acknowledge a fellowship from the Japan Society for the Promotion of Science. Three of us (B.A.B., W.K., and G.D.S.) wish to express their gratitude to Professor A. Arima, Professor K. Nakai, Professor T. Yamazaki, and Dr. H. Kamitsubo for their great hospitality during the authors' stay in Japan.

2. Present address: Physics Department, Technische Universität München, D-8046 Garching, Germany.

3. Present address: State University of New York, Stony Brook, New York 11794.
C.E.N. Saclay, 911-0 Gif-sur-Yvette, France.

20K. Ogawa, Institute for Nuclear Study, Tokyo (private communication).