Correlation between the quenching of total GT+ strength and the increase of E2 strength

a School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978, Israel
b Department of Physics, University of Arizona, Tucson, AZ 85721, USA
c Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855, USA
d Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

Received 27 January 1993

Relations between the total β_+ Gamow-Teller (GT+) strength and the E2 strength are further examined. It is found that in shell-model calculations for $N = Z$ nuclei, in which changes in deformation are induced by varying the single-particle energies, the total GT+ or GT- strength decreases monotonically with increasing values of the $B(E2)$ from the ground state to the first excited $J^\pi = 2^+$ state. Similar trends are also seen for the double GT transition amplitude (with some exceptions) and for the spin part of the total M1 strength as a function of $B(E2)$.

1. Introduction

In ref. [1] a relation between the $B(E2)$ value from the ground state to the first excited $J^\pi = 2^+$ state and the quenching of Gamow-Teller (GT) strength has been pointed out. The quenching we will discuss here is caused by those nuclear structure effects that do not affect the sum rule:

$$B_t(GT_-) - B_t(GT_+) = 3(N - Z),$$

where $B_t(GT_-)$ and $B_t(GT_+)$ are the $(p,n)\beta_-$ and $(n,p)\beta_+$ GT transition strengths. (We will refer to the quenching of the sum rule value as the quenching due to the renormalization of the GT operator.)

The reduction of the total GT strength, discussed here, is such that it affects the total GT+ and GT- strengths in the same additive way and, therefore, cancels out when the difference $B_t(GT_-) - B_t(GT_+)$ is taken. Because of the Pauli blocking, in nuclei with a neutron excess, the β_+ branch (αt_+) of a GT transition is usually much weaker than the β_- branch. Hence, when the above mentioned quenching occurs, it is more pronounced in the β_+ transition.

The quenching of the total GT+ strength, which concerns us, is due to the presence of multi-particle, multi-hole components in the wave function of the initial and final states, i.e. $np-nh$ with $n > 2$. In a deformed nucleus, the amount of $np-nh$ admixture is large, so that the $2p-2h$ space is not sufficient to describe the ground state or transitions from the ground state to the GT states. A full shell-model calculation in an extended space is expected to predict the amount of quenching of the GT strength [2]. However, the possibility of performing such extended shell-model calculations is limited to very few cases. Various approximation schemes, such as the RPA and, more widely used in this context, the QRPA, describe well only the $2p-2h$ part of the $np-nh$ space. Consequently, it is important to try and develop a procedure that would enable us to predict the quenching of the GT strength, by finding a relationship of the GT strength to some other observable that is more easily accessible experimentally or theoretically.

Deformed nuclei have large $B(E2)$ values. This consideration should provide a simple indication of possible correlations between the quenching of the GT strength and the $B(E2)$ values. In ref. [1], such a relationship was suggested and tested for the case of 26Mg, for which a full sd-space shell-model calculation is still possible. It was found that the total GT+ strength is a monotonically descending function of the $B(E2)$ value for the transition from the ground state...
to the first excited $J^* = 2^+$ state of the parent nucleus. This relation was then used in ref. [1] to estimate the total GT strength in the 54Fe region.

In the present paper, we extend these calculations to more cases where one is able to perform large-space shell-model calculations of the total GT strength. The purpose is to confirm the previous conjecture about the above relationship between the total GT $+$ or GT $-$ strength and the $B(E2)$ value, to provide more insight into the origin and to set some limits on the application of this relationship.

2. The calculation

Two of the few nuclei that are available for a complete space calculation are 20Ne and 44Ti. For these two nuclei, the GT $-$ and GT $+$ strengths are equal and, therefore, the quenching will affect the two branches to the same degree. In 20Ne, we allow the two valence protons and two valence neutrons to occupy the complete sd shell ($d_{5/2}, s_{1/2}$ and $d_{3/2}$), while in 44Ti the two valence protons and two valence neutrons are allowed to occupy the complete fp shell ($f_{7/2}, p_{3/2}, f_{5/2}$ and $p_{1/2}$). The calculations are performed with two-body interactions used in previous calculations to describe the structure of these nuclei. In 20Ne we use the Wildenthal interaction [3], while in 44Ti two sets of matrix elements are used, the modified renormalized Kuo–Brown (MKB) interaction [4] and the FPD6 interaction [5]. As for single-particle energies, we use, in 20Ne, the set (given in MeV)

\[\epsilon_{d_{5/2}} = 0.0, \]
\[\epsilon_{s_{1/2}} = 0.78(1 + x), \]
\[\epsilon_{d_{3/2}} = 5.59(1 + x); \] (2)

and in 44Ti we use, with the MKB,

\[\epsilon_{f_{7/2}} = 0.0, \]
\[\epsilon_{p_{3/2}} = 2.1(1 + x), \]
\[\epsilon_{f_{5/2}} = 4.4(1 + x), \]
\[\epsilon_{p_{1/2}} = 8.2(1 + x), \] (3)

and, with the FPD6,

\[\epsilon_{f_{7/2}} = 0.0, \]
\[\epsilon_{p_{3/2}} = 1.89(1 + x), \]
\[\epsilon_{f_{5/2}} = 3.91(1 + x), \]
\[\epsilon_{p_{1/2}} = 6.49(1 + x). \] (4)

The variable x is a parameter that will enable us to vary the single-particle spacing and, in particular, the spin–orbit splitting. In this manner we are also able to change the nuclear deformation. The value $x = 0$ corresponds to the realistic case used with the above two-body interactions to reproduce the empirical properties of the nuclei under discussion.

It is also instructive to look at the SU(3) limit [6] for these nuclei, by constructing, in this limit, their wave functions and computing their $B(E2)$ values. In the SU(3) limit, the total GT $+$ and GT $-$ strengths from the ground state of an $N = Z$ nucleus vanish.

In the SU(3) model, the spin–orbit splitting is put to zero, so that the spin–orbit partners are degenerate. The spacing between the single-particle states that are not spin–orbit partners are non-zero but have definite values, as given by the diagonal matrix elements of the Elliott, say, quadrupole–quadrupole ($Q \cdot Q$) interaction.

3. Results

Our calculated results are given in table 1 for 20Ne and in table 2 for 44Ti. In addition to the total GT $+$ strength $B_t(GT +)$, which we will discuss first, the results for many other quantities for different values of the spin–orbit splitting parameter x are also given in the tables.

In the pure configuration limit ($x \to \infty$), in both 20Ne and 44Ti, the total GT $+$ strength $B_t(GT +)$ is equal to 6.0. As configuration mixing is introduced, $B_t(GT +)$ is reduced. In the realistic case (i.e. $x = 0$), it is reduced to about 0.55 in 20Ne and to 1.88 with the MKB (1.27 with the FPD6) in 44Ti.

As the parameter x is increased, the spacing between the lowest single-particle state ($d_{5/2}$ in 20Ne and $f_{7/2}$ in 44Ti) and other single-particle states is increased and the states approach the limit of the pure configurations. The $B(E2)$ values to the first excited $J^* = 2^+$ state $B_1(E2)$ decrease, and, at the same time,
Table 1
The GT+, M1 and E2 transition strengths from the ground state in 20Ne as a function of x, a parameter signifying the splitting between the single-particle energy of the $d_{5/2}$ orbit and those of the $s_{1/2}$ and $d_{3/2}$ orbits (see text for more details). The calculations were performed in the full sd space, using the two-body matrix elements of the Wildenthal interaction [3]. In the table, Q is the quadrupole moment of the $J^\pi = 2^+$, $T = 0$ state and A_1(DGT) is the ground state to ground state DGT amplitude. M1 strengths are in units of μ^2 and E2 strengths are in units of e^2 fm4.

<table>
<thead>
<tr>
<th>x</th>
<th>B_t(GT+)</th>
<th>B_s(M1)</th>
<th>B_o(M1)</th>
<th>B_t(M1)</th>
<th>B_t(GT+)</th>
<th>B_t(M1)</th>
<th>B_t(E2)</th>
<th>Q</th>
<th>A_1(DGT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>0.116</td>
<td>0.305</td>
<td>1.487</td>
<td>1.781</td>
<td>0.000</td>
<td>0.566</td>
<td>298.4</td>
<td>-15.78</td>
<td>-0.051</td>
</tr>
<tr>
<td>-0.5</td>
<td>0.235</td>
<td>0.620</td>
<td>1.356</td>
<td>1.942</td>
<td>0.050</td>
<td>1.363</td>
<td>307.2</td>
<td>-16.07</td>
<td>-0.025</td>
</tr>
<tr>
<td>0.0</td>
<td>0.548</td>
<td>1.449</td>
<td>1.203</td>
<td>2.566</td>
<td>0.143</td>
<td>1.962</td>
<td>303.0</td>
<td>-15.81</td>
<td>0.246</td>
</tr>
<tr>
<td>0.5</td>
<td>0.949</td>
<td>2.508</td>
<td>1.075</td>
<td>3.439</td>
<td>0.241</td>
<td>2.412</td>
<td>291.2</td>
<td>-15.21</td>
<td>0.486</td>
</tr>
<tr>
<td>1.0</td>
<td>1.360</td>
<td>3.595</td>
<td>0.973</td>
<td>4.375</td>
<td>0.332</td>
<td>2.755</td>
<td>276.2</td>
<td>-14.36</td>
<td>0.702</td>
</tr>
<tr>
<td>1.5</td>
<td>1.739</td>
<td>4.596</td>
<td>0.889</td>
<td>5.255</td>
<td>0.409</td>
<td>3.007</td>
<td>260.7</td>
<td>-13.27</td>
<td>0.883</td>
</tr>
<tr>
<td>2.0</td>
<td>2.065</td>
<td>5.460</td>
<td>0.819</td>
<td>6.025</td>
<td>0.471</td>
<td>3.182</td>
<td>245.6</td>
<td>-11.97</td>
<td>1.028</td>
</tr>
<tr>
<td>4.0</td>
<td>2.880</td>
<td>7.612</td>
<td>0.643</td>
<td>7.967</td>
<td>0.589</td>
<td>3.427</td>
<td>197.7</td>
<td>-5.920</td>
<td>1.350</td>
</tr>
<tr>
<td>8.0</td>
<td>3.423</td>
<td>9.050</td>
<td>0.520</td>
<td>9.290</td>
<td>0.631</td>
<td>3.450</td>
<td>153.1</td>
<td>1.108</td>
<td>1.525</td>
</tr>
</tbody>
</table>

SU(3) 0.000 0.000 0.000 0.000 0.000 0.000 346.3 -17.07 0.000

\(a)\) B_t(GT+): Total GT+ strength to $J^\pi = 1^+$, $T = 1$ states.
\(b)\) B_s(M1): Total spin M1 strength to $J^\pi = 1^+$, $T = 1$ states.
\(c)\) B_o(M1): Total orbital M1 strength to $J^\pi = 1^+$, $T = 1$ states.
\(d)\) B_t(M1): Total M1 strength to $J^\pi = 1^+$, $T = 1$ states.
\(e)\) B_t(GT+): GT+ strength to the lowest $J^\pi = 1^+$, $T = 1$ state.
\(f)\) B_t(E2): E2 strength to the lowest $J^\pi = 1^+$, $T = 1$ state.
\(g)\) B_t(E2): E2 strength to the lowest $J^\pi = 2^+$, $T = 0$ state.
\(h)\) Q: Quadrupole moment of the lowest $J^\pi = 2^+$, $T = 0$ state.
\(i)\) A_1(DGT): DGT amplitude for the transition 20O($J^\pi = 0^+_1$, $T = 2$) \rightarrow 20Ne($J^\pi = 0^+_1$, $T = 0$).

Table 2
Same as table 1 but for the transitions from the ground state in 44Ti. The calculations were performed in the full fp space using the two-body matrix elements of the MKB [4] and of the FPD6 [5] interactions.

<table>
<thead>
<tr>
<th>Interaction</th>
<th>x</th>
<th>B_t(GT+)</th>
<th>B_t(M1)</th>
<th>B_o(M1)</th>
<th>B_t(M1)</th>
<th>B_t(GT+)</th>
<th>B_t(M1)</th>
<th>B_t(E2)</th>
<th>Q</th>
<th>A_1(DGT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MKB</td>
<td>-1.0</td>
<td>0.095</td>
<td>0.252</td>
<td>2.713</td>
<td>2.985</td>
<td>0.006</td>
<td>0.551</td>
<td>829.3</td>
<td>-25.99</td>
<td>0.220</td>
</tr>
<tr>
<td></td>
<td>-0.5</td>
<td>0.723</td>
<td>1.911</td>
<td>2.266</td>
<td>4.134</td>
<td>0.289</td>
<td>3.097</td>
<td>782.7</td>
<td>-24.61</td>
<td>0.679</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>1.884</td>
<td>4.981</td>
<td>1.661</td>
<td>6.487</td>
<td>0.509</td>
<td>3.902</td>
<td>624.8</td>
<td>-14.97</td>
<td>1.103</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>2.667</td>
<td>7.051</td>
<td>1.240</td>
<td>8.087</td>
<td>0.529</td>
<td>3.706</td>
<td>484.4</td>
<td>-0.923</td>
<td>1.257</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>3.068</td>
<td>8.111</td>
<td>1.030</td>
<td>8.928</td>
<td>0.521</td>
<td>3.583</td>
<td>414.2</td>
<td>6.043</td>
<td>1.287</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>3.289</td>
<td>8.696</td>
<td>0.921</td>
<td>9.409</td>
<td>0.514</td>
<td>3.522</td>
<td>382.4</td>
<td>9.038</td>
<td>1.282</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>3.416</td>
<td>9.058</td>
<td>0.859</td>
<td>9.717</td>
<td>0.509</td>
<td>3.488</td>
<td>365.9</td>
<td>10.56</td>
<td>1.269</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>3.672</td>
<td>9.706</td>
<td>0.762</td>
<td>10.30</td>
<td>0.496</td>
<td>3.437</td>
<td>341.9</td>
<td>12.71</td>
<td>1.222</td>
</tr>
<tr>
<td>FPD6</td>
<td>-1.0</td>
<td>0.040</td>
<td>0.107</td>
<td>2.881</td>
<td>2.988</td>
<td>0.000</td>
<td>0.401</td>
<td>835.6</td>
<td>-26.40</td>
<td>0.085</td>
</tr>
<tr>
<td></td>
<td>-0.5</td>
<td>0.376</td>
<td>0.995</td>
<td>2.631</td>
<td>3.596</td>
<td>0.154</td>
<td>2.603</td>
<td>804.4</td>
<td>-25.64</td>
<td>0.283</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>1.269</td>
<td>3.354</td>
<td>2.126</td>
<td>5.416</td>
<td>0.403</td>
<td>3.841</td>
<td>697.8</td>
<td>-21.61</td>
<td>0.809</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>2.125</td>
<td>5.617</td>
<td>1.657</td>
<td>7.219</td>
<td>0.495</td>
<td>3.816</td>
<td>580.5</td>
<td>-13.12</td>
<td>1.176</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>2.677</td>
<td>7.076</td>
<td>1.359</td>
<td>8.407</td>
<td>0.484</td>
<td>3.462</td>
<td>490.6</td>
<td>-4.184</td>
<td>1.367</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>3.010</td>
<td>7.957</td>
<td>1.185</td>
<td>9.143</td>
<td>0.461</td>
<td>3.204</td>
<td>434.3</td>
<td>1.629</td>
<td>1.462</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>3.222</td>
<td>8.516</td>
<td>1.081</td>
<td>9.621</td>
<td>0.442</td>
<td>3.039</td>
<td>401.1</td>
<td>4.984</td>
<td>1.512</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>3.603</td>
<td>9.523</td>
<td>0.911</td>
<td>10.52</td>
<td>0.402</td>
<td>2.758</td>
<td>351.1</td>
<td>9.846</td>
<td>1.571</td>
</tr>
</tbody>
</table>

SU(3) 0.000 0.000 1.563 1.563 0.000 1.563 1067 -29.78 0.000
the total GT\(^+\) strength \(B_t(GT^+)\) increases monotonically. This monotonic behavior of the \(B_t(GT^+)\) values as a function of \(B_1(E2)\) is also shown in fig. 1. The only slight deviation from a monotonic behavior occurs in \(^{20}\)Ne for the value of \(x = -1\) which corresponds to complete degeneracy in the single-particle spectrum. For comparison, in both tables and in fig. 1, the \(B_t(E2)\) values for in the SU(3) model are also shown. As remarked earlier, in this limit, the total GT\(^+\) strength is zero.

Note that the GT\(^+\) strength from the ground state in \(^{44}\)Ti to the lowest \(J^\pi = 1^+\) state in \(^{44}\)V, \(B_t(GT^+)\), does not show the same monotonic behavior as the total strength does. We can see from table 2 that the change in the behavior of \(B_t(GT^+)\) occurs around the point where the quadrupole moment \(Q\) changes sign and the nuclear shape changes from prolate to oblate.

Now we discuss the results for the ground state to ground state \((J^\pi = 0^+, T = 2 \rightarrow J^\pi = 0^+, T = 0)\) double Gamow–Teller (DGT) transition amplitude, \(A_t(DGT)\). This is of interest to double-beta-decay calculations and possibly to double-charge-exchange reactions with pions. The \(A_t(DGT)\) values for different choices of \(x\) are given in the rightmost column in tables 1 and 2. In fig. 2, we show the results for \(A_t(DGT)\) as a function of \(B_1(E2)\). We see that when the Wildenthal [3] and the FPD6 [5] interactions are used for \(^{20}\)Ne and \(^{44}\)Ti, respectively, the DGT amplitude \(A_t(DGT)\) decreases monotonically with increasing \(B_1(E2)\). This has been noted previously in ref. [7]. There, we also found that when the MKB interaction is used, \(A_t(DGT)\) as a function of the single particle splittings deviates slightly from the monotonic behavior for large values of \(x\) or small values of \(B_1(E2)\). One can also see this non-monotonic behavior from table 2 and fig. 2. The complicated behavior of \(A_t(DGT)\) is not totally unexpected because it involves not only the lowest \(1^+\) state (in the intermediate nucleus) but all the \(1^+\) states.

Note that the DGT amplitude \(A_t(DGT)\) vanishes in both the SU(3) limit and the SU(4) limit, due to the vanishing of the total GT\(^+\) and GT\(^-\) strengths from the final \(N = Z\) nucleus.

Finally we discuss the results for the total M1
Fig. 2. The DGT transition amplitude from the $J^x = 0^+, T = 2$ state to the $J^x = 0^+, T = 0$ state as a function of the $B(E2)$ from the $J^x = 0^+, T = 0$ state to the $J^x = 2^+, T = 0$ state. The Wildenthal interaction was used for 20Ne and the MKB and the FPD6 interactions were used for 44Ti. The symbols “+”, “x”, “△”, etc. signify the points for which actual calculations were performed.

strength. In tables 1 and 2, we give the total spin, orbital and full M1 strengths $[B_s(M1), B_o(M1)$ and $B_t(M1)]$ for different values of α. The M1 strength to the lowest $J^x = 1^+, T = 1$ state, $B_1(M1)$, is also shown. From fig. 3, in which we plot the total spin and orbital M1 strengths as a function of $B_1(E2)$, it is evident that the total spin M1 strength decreases monotonically with increasing $B_1(E2)$, while the total orbital M1 strength increases monotonically with increasing $B_1(E2)$. The strong correlation between the total orbital M1 strength and the $B_1(E2)$ values has recently been well established experimentally [8,9]. There have been several theoretical works that associate orbital M1 strength with nuclear deformation [10–14]. That the total spin M1 strength decreases with increasing nuclear deformation has also been noted previously in refs. [14,15]. It was pointed out in ref. [15] that in the large deformation limit, the spin M1 strength vanishes. Note that the $B_1(M1)$ values in 44Ti, which are for the transition to the lowest $J^x = 1^+$ state alone, are not monotonic with increasing $B_1(E2)$ (see table 2).

4. Further discussions

Let us return to the total GT+ strength. The decrease of the total GT+ strength $B_t(GT⁺)$ as a function of the increasing $B_1(E2)$ values, is quite independent on the kind of interaction used as can be seen from table 2, where the results for 44Ti are given for two effective interactions, the MKB [4] and the FPD6 [5]. We can also see this from fig. 1, in which the two curves for 44Ti and the curve for 20Ne have very similar shapes. These curves are also very similar to the curve obtained for the total GT+ strength in 26Mg, as described in ref. [1].

We should remark that the dependence of the total GT+ strength on the $B_1(E2)$ values is not a single-valued function. This applies, in particular, to the small values of the GT+ strength, i.e., when the quenching is very large. There are many models in which the $B_1(E2)$ values are different and which will give zero or nearly zero GT+ values. For example, in the cartesian harmonic oscillator model for 20Ne, the ground state wave function is given by the state in which the excess four nucleons occupy the orbit with
Fig. 3. The spin and orbital total M1 transition strengths from the ground states in ^{20}Ne and in ^{44}Ti as a function of the $B(E2)$ values from the ground state to the first excited $J^\pi = 2^+$ state. The Wildenthal interaction was used for ^{20}Ne and the FPD6 interaction was used for ^{44}Ti. The symbols "+", "×", "Δ", etc. signify the points for which actual calculations were performed.

$(n_x = 0, n_y = 0, n_z = 2)$. To form a final $J^\pi = 1^+$ state, one has to excite one of the nucleons in the intrinsic state to, say, $(n_x = 0, n_y = 1, n_z = 1)$. The spin operator cannot change the spatial wave function. Thus the GT or spin M1 transition matrix elements are zero. However, the $B_1(E2)$ value obtained in this model is smaller than, for example, the $B_1(E2)$ value obtained from the SU(3) wave functions. Nevertheless, we believe that for larger values of the GT$_+$ strength, the correspondence between a given $B_1(E2)$ value and the total GT$_+$ strength is better defined and should provide us with a practical way to estimate the quenching of the GT$_+$ strength from the measured $B_1(E2)$ values. We base this conclusion on the fact that the curves shown in fig. 1 for ^{20}Ne and ^{44}Ti, as well as the results given in ref. [1], show a very similar, quite “universal” behavior.

We emphasize again that the quenching of the total GT$_+$ strength that we are addressing here applies also to the total GT$_-$ strength in the same additive way. However, since most nuclei have a neutron excess and the total GT$_-$ strength is usually much larger than the total GT$_+$ strength, our results are more useful in estimating the quenching of the GT$_+$ strength in β_+ transitions.

Recently the total GT$_+$ strength was measured in the (n,p) reaction on ^{54}Fe and ^{56}Fe [16]. The total GT$_+$ strength found for ^{54}Fe is $B_t(GT_+) = 3.5$, while for ^{56}Fe, $B_t(GT_+) = 2.3$. The authors point out that these results are in agreement with the findings of ref. [1]. The $B_1(E2)$ value for ^{56}Fe is 620 $e^2\text{fm}^4$, larger than the $B_1(E2)$ value of 980 $e^2\text{fm}^4$ for ^{54}Fe [17] and, therefore, according to ref. [1] and the present work, the quenching of the total GT$_+$ strength should be larger in ^{56}Fe than in ^{54}Fe. This recent experimental work provides a nice example of the kind of use one can make of the relationship we have established in this work and in ref. [1].

Acknowledgement

We thank G.F. Bertsch for useful discussions and B.R. Barrett for a careful reading of the manuscript and discussions. One of us (D.C.Z.) thanks the Institute for Nuclear Theory at the University of Wash-
ington for its hospitality and support during his visit. This work was supported in part by the National Science Foundation under Grant No. PHY-90-17077 and Grant No. PHY-9103011 and by the Department of Energy under contract number DE-FG05-86ER40299.

References

[16] T. Ronnqvist et al., The 54,56Fe(n, p)54,56Mn reactions at $E_n = 97$ MeV, to be published.