Gamow-Teller strength in the region of 106Sn

B. Alex Brown
National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824

K. Rytaczewski
Institute of Experimental Physics, Warsaw University, Pl-00681 Warsaw, Hoza 69, Poland
(Received 30 March 1994)

New calculations are presented for Gamow-Teller beta decay of nuclei near 106Sn. Essentially all of the 106Sn Gamow-Teller decay strength is predicted to go to a single state at an excitation energy of 1.8 MeV in 106In. The first calculations are presented for the decays of neighboring odd-even and odd-odd nuclei which show, in contrast to 106Sn, surprisingly complex and broad Gamow-Teller strength distributions. The results are compared to existing experimental data and the resulting hindrance factors are discussed.

PACS number(s): 21.10.Pc, 21.60.Cs, 23.40.Hc, 27.60.+j

One of the primary new directions in nuclear spectroscopy is in the experimental study and theoretical understanding of nuclei near the limits of particle stability. The heaviest nucleus with an equal number of protons and neutrons predicted to be stable is 100Sn, and experiments are being planned and carried out at several laboratories to produce and study the decay of this nucleus [1] and others [2,3] in this mass region. One of the most interesting aspects of these proton-rich nuclei is that most of the giant Gamow-Teller resonance lies within the beta-decay Q-value window. We report here on new calculations which show some of the unusual features which one may expect to see in these decays, the special problems associated with their experimental detection and the important nuclear structure information that will be obtained.

Our model space, which is similar to that of a number of other calculations [4–7], is designed for nuclei with $Z\leq 50$ and $N \leq 50$ and starts from a closed-shell configuration for 100Sn. We will later discuss the effects of going beyond the closed shell configuration. In the model space we designate by SNA, proton holes are allowed to occupy the $0f_{7/2}$, $1p_{3/2}$, $1p_{1/2}$, and $0g_{9/2}$ orbitals, and the neutron particles occupy the $0g_{7/2}$, $1d_{5/2}$, and $2s_{1/2}$, and $0h_{11/2}$ orbitals. The single-particle energies (SPE) and two-body matrix elements (TBME) for the protons in model space SNA are those of Ji and Wildenthal [8] which were obtained from a least-squares fit to energy levels of the $N=50$ isotones. For the neutron residual interaction, we started with a set of TBME obtained from a similar least-squares fit to the $N=82$ isotones with a 132Sn [9] core in which the protons fill the same set of orbitals as do the neutrons outside of the 100Sn core. We then subtracted a calculated Coulomb interaction and scaled the resulting TBME by a factor of (132/100)$^{3/2}$. The scaling approximately takes into account the change in size of the valence wave functions between 132Sn and 100Sn. The proton-neutron interaction was calculated from the bare G matrix of Hosaka [10], which is based on the Paris potential. Finally, the neutron single-particle energies were determined from a consideration of the “single-particle” states observed for the odd-even $N=51$ nuclei and will be discussed below.

We are interested in calculating the level structure and decay properties for as many nuclei as possible away from 100Sn. We are also constrained by computational limitations to the consideration of $J-T$ Hamiltonian matrix dimensions below about 10 000. In model space SNA this constraint limits the β^+ decay calculations to those initial nuclei with $N_p+N_n \leq 4$, where N_p are the number of valence proton holes and N_n are the number of valence neutron particles. To go to larger N_p values, we investigated model space SNB in which only the $1p_{1/2}$ and $0g_{9/2}$ proton orbitals are active. The interaction is, of course, model-space dependent, and we replace the Ji-Wildenthal SPE and TBME with the seniority conserving interaction of Glocenkner and Serduke [11]. With these changes (and keeping the neutron and proton-neutron parameters the same), we recalculated the Gamow-Teller decay spectrum of 98Cd and found it to be essentially the same as that obtained in the larger SNA model space. (This result disagrees with similar comparisons made in Refs. [4,5]. This is related to the fact that the previous work did not take into account the renormalization of the proton-proton interaction going from SNA to SNB.)

Finally, we come back to a discussion of the neutron single-particle energies and the related proton-neutron interaction which are particularly important for the Gamow-Teller decay properties. The ground states of all known odd-even isotones with $N=51$ from 86Sr to 97Pd have $J^=\frac{5}{2}^+$. One-neutron transfer reactions on 86Sr and 90Zr establish these as $1d_{5/2}$ single-particle states and also provide information on the location of the excited $0g_{7/2}$, $1d_{3/2}$, and $2s_{1/2}$ states [12]. In addition, it is known that the excitation energy of the $7/2^+\rightarrow 5/2^+$ states comes down linearly from about 2.0 MeV in 91Zr to about 0.6 MeV in 97Pd [7]. A reduction of the gap between the $0g_{7/2}$ and $1d_{5/2}$ single-particle states is obtained in the SNB model space due to the relatively large proton-neutron TBME connecting the $0g_{9/2}$ and $0g_{7/2}$ orbitals. However, the reduction compared to experiment is too strong by about 30%. Better agreement can be obtained by renormalizing the proton-neutron G matrix elements by a factor of 0.7. This renormalization improves agreement with experiment for the absolute change in the neutron SPE between 86Sr and 97Pd, and also improves the agreement with the location of the strong GT states in the β^+ decay of 98Cd.

0556-2813/94/06.00
Thus, we have adopted this renormalization for all calculations within the SNB model spaces. The absolute single-particle energies in units of MeV relative to a 100Sn closed shell in model space SNB are for protons $-3.38 \ (1p_{1/2})$ and $-2.99 \ (0g_{7/2})$, and for neutrons $-10.15 \ (0g_{7/2})$, $-10.10 \ (1d_{5/2})$, $-8.09 \ (1d_{3/2})$, $-8.40 \ (2s_{1/2})$, and $-7.85 \ (0h_{11/2})$. It is interesting to note the crossover of the $0g_{7/2}$ and $1d_{5/2}$ states in 101Sn relative to the other $N=51$ nuclei, and it would be very important to have an experimental confirmation of the ground state spin and level structure of 101Sn. The low-lying position of the $0g_{7/2}$ orbital is very important for the $M1$ and GT properties in this mass region. Standard Skyrme Hartree-Fock and Woods-Saxon potential models, whose parameters are determined from the properties of nuclei near the valley of stability, predict the $0g_{7/2}$ orbital to be less bound than the $1d_{5/2}$ orbital by 0.5 to 2.0 MeV [13].

Levels schemes and decay properties of many nuclei have been calculated and compared to experiment. High-spin yrast levels in 104Sn, 105Sn, 106Sn, 102In, 101In, 98Cd, 100Cd, 101Cd, 102Cd, 97Ag, 98Ag, 99Ag, 96Rh, and 97Rh calculated in the SNB model space were found to agree with experiment to within a few hundred keV. (Our results for 104Sn and 106Sn are in somewhat better agreement with experiment than those obtained with the G matrix approach of England et al. [14].) In addition, the splittings of the low-lying $1/2^-$ and $9/2^+$ states in the odd-proton nuclei and the $5/2^+$ and $7/2^+$ states in the odd-neutron nuclei are reproduced, and the closely spaced states in the low-lying odd-odd multiplets [5,15] are reproduced about as well as the results of previous calculations [6,16].

We concentrate, in this Rapid Communication, on the Gamow-Teller (GT) β^+ decay properties of nuclei near 100Sn. We will compare with recent experiments and comment on the significance of the predictions for future experiments. First we discuss the decay of the even-even $N=50$ isotones which have been the subject of several previous theoretical calculations [4–6,17]. In Fig. 1 experimental B(GT) values deduced from the β^+ decay of 94Ru [18], 96Pd [15], and 98Cd [5] are compared to the SNB calculation. For purposes of comparison, the theoretical B(GT) values have been divided by four which is approximately the hindrance factor observed in the 98Cd decay (but not the calculated hindrance factors to be discussed below). We will concentrate first on the shape of the GT strength distribution and then discuss to the origin of the hindrance. The dashed line represents the experimental sensitivity limit—that is, a B(GT) of this value would result in a gamma transition which is too weak to be observed in the present experiments. The calculated GT strength distributions are in reasonable agreement with experiment. The small Q_{ec} window for the 94Ru decay allows for only a small fraction of the GT strength to be observed experimentally. But, by the time one reaches 98Cd, the Q_{ec} window is large enough to allow for most of the calculated strength to be observed experimentally. The Skouras and Manakos calculations [4] obtain the mean energy of the GT distribution of 98Cd 0.5 to 1.0 MeV too high compared to experiment. In the present calculation, the mean energy of the GT distribution was lowered and brought into better agreement with experiment when the proton-neutron TBME were renormalized by the factor of 0.7 discussed above.

The total GT strength extracted from the 98Cd decay experiment is 3.5$^{+0.8}_{-0.7}$ compared to a total of 13.4 calculated to

FIG. 1. Gamow-Teller strength distributions for the even-even $N=50$ isotones. The theoretical calculations on the left are compared to experiment on the right. For this comparison the theory has been divided by a factor of 4 (see the text for a detailed discussion of the experimental and theoretical hindrance factors). The amount of GT strength which lies outside the sensitivity limit and Q_{ec} window is indicated.
lie within the sensitivity limit. Experiment is thus hindered by about a factor of $h_{\text{exp}} = 3.8^{+0.7}_{-0.6}$ compared to theory. Understanding this hindrance is important in general and in particular for the calculations of the nuclear double-beta decays [19] which are used to set limits on the neutrino mass.

In the 0d_1s shell nuclei ($A = 16–40$) one observes a factor of $h_{\text{high}} = 1/0.6 = 1.67$ hindrance when experimental GT strengths are compared to those calculated within the full 0d_1s model space [20]. From comparison of $M1$ and GT matrix elements one can deduce that about two-thirds (in the amplitude) of this comes from higher-order configuration mixing while one-third comes from the delta-particle nucleon-hole admixture [21]. Observation of approximately the same hindrance factor for the total β^- strength in heavy nuclei deduced from (p,n) reactions [22] indicates that the mass dependence of higher-order and delta admixture effects is not large, and one may expect about the same factor of $h_{\text{high}} = 1.67$ to contribute in the 100Sn region. This leaves another factor of $h_{\text{exp}}/h_{\text{high}} = 2.3 \pm 0.4$ to be understood.

The calculation for 100Sn in the SNB model space is extremely simple—just a single $0g_{9/2}$ proton hole–$0g_{7/2}$ neutron particle final state with a $B(GT) = 17.8$. Instead of this simple calculation, we show in Fig. 1 a calculation within a two-particle–two-hole $(2p2h)$ model space. The $2p2h$ model space [23] allows for $2p2h$ admixture in the 100Sn initial state and $2p2h$ and $3p3h$ admixture in the 101In 1^+ final states, and thus explicitly includes the core-polarization correction calculated in perturbation theory by Towner [24] and Johnstone [6], as well as some higher-order terms. The dimension of the final state is about 6000, and it is not possible to include more particle-hole states in the calculation or to carry out a similar calculation for 96Sn. The results for 100Sn are very interesting. The lowest 1^+ state remains predominantly $1p1h$ in structure but the strength is reduced to 80% of that calculated in the SNB model space [25]. The final states which have a predominantly $2p2h$ and $3p3h$ structure do not start in the spectrum until about 6 MeV in excitation and carry only a few percent of the total GT strength. For the analogous calculations in the $0d_1s$ and $0f1p$ shells [26,27] the simple state and complex states are nearly degenerate in energy resulting in a spreading of the GT strength over many states (a large spreading width). The very different result for 100Sn is due to the relative reduction of the residual interaction compared to the $0g_{9/2}$–$0g_{7/2}$ spin-orbit splitting and to the fact that both the $0g_{9/2}$ and $0g_{7/2}$ orbitals lie next to the Fermi surface. As has been pointed out [28], it is the Coulomb interaction which pushes the proton $0g_{9/2}$ SPE above the neutron $0g_{7/2}$ SPE and opens up the Q-value window for this strong GT decay. The $0g$ hindrance factor we obtain for 100Sn of $h_{0g} = 1.25$ is smaller than the results obtained in perturbation theory by Johnstone [6] ($h_{0g} = 1.60$) but consistent with the interaction-dependent range given by Towner [17] ($h_{0g} = 1.29–1.71$).

Some Z dependence is expected for the $0g$ hindrance factor. The results of Towner and Johnstone for the ratio $h_{0g}(^{98}$Cd)/$h_{0g}(^{100}$Sn) range from 1.23 to 1.30 and are much less interaction dependent than the actual range of values given above. Assuming a ratio of 1.30, our hindrance factor of $h_{0g} = 1.25$ for 100Sn would translate into a factor of $h_{0g} = 1.62$ for 98Cd compared to $h_{\text{exp}}/h_{\text{high}} = 2.3 \pm 0.4$. We speculate in analogy with the $0d_1s$ and $0f1p$ shell calculations [26,29] that higher-order mixing between the $0g_{9/2}$ and $0g_{7/2}$ orbitals is responsible for the remaining hindrance in the 100Sn region—such calculations for the 100Sn region may soon be possible within the Monte Carlo shell-model approach [29]. The experimental hindrance obtained for 100Sn compared to that of 90Cd will be important in deciding which hindrance mechanism is most important. [Starting with the SNB model space and $h = 2.09 \,(= 1.67 \times 1.25)$ and $Q_{\text{ee}} = 7$ MeV we obtain $T_{1/2}(^{100}$Sn) = 0.53 s.]

Similar calculations have been also performed for the GT decays of odd-A and odd-odd nuclei in the vicinity of 100Sn. Before this work the GT strength distributions for the decays of non-even-even nuclei in the region of 100Sn were presented only for 95Tc and 99Rh [6]. In this Rapid Communications we present as examples the GT strength distributions obtained for the decays of 101Sn and 100In—the closest neighbors of 100Sn. Over 100 levels in 101In are expected to be fed in the decay of 101Sn (we assume a $0g_{7/2}$ single-particle ground state), see Fig. 2(a). Most of the strength is found at high excitation energies well above the proton separation energy ($S_p \approx 1.4$ MeV) in the 101In isotope. This leads to a beta-delayed proton branching ratio above 40%, and explains why it was possible at all to detect a few tens of the protons assigned to the decay of 101Sn which was produced in the heavy-ion fusion-evaporation reaction and identified at an on-line mass separator with an intensity of 40 atoms per hour [2]. Using $h = 4$ we obtain $T_{1/2}(^{101}$Sn) = 1.5 s.
which is not far from the experimental value of $T_{1/2}=3\pm 1\ s$ [2].

The GT decay of 106In, which has a theoretical ground state spin of 7^+, is shown in Fig. 2(b). Most of the strength is located in a broad symmetric peak centered at about 6 MeV. In addition, a small side peak at about 2.5 MeV can be seen. It is interesting to notice the similarity of calculated GT distribution for 106In with the experimental one obtained for the decay of 104In using the Total Absorption Gamma Spectrometer (TAGS) [30,31]. (The latter decay cannot be calculated due to the large number of neutron valence particles.) The TAGS method allows one, in principle, to obtain the “true” GT distributions even for such complex decays with high gamma multiplicity and statistical gamma cascades following beta decay. The 106In decay is limited by a Q_{nc} value which is about 2 MeV lower than the one for 104In, which results in a cutoff of the GT strength at higher excitation energies. However, the theoretical picture for 106In resembles the main GT strength features measured already for 104In. Using $h=4$ we obtain $T_{1/2}(^{106}$In$)=6.8\ s$, which is close to the experimental result of $T_{1/2}$ of about 6 s [3].

In summary, we predict a very simple β^- decay mode for 106Sn. The experimental observation of beta-delayed gammas and/or protons will provide a test of the model, and the hindrance factor obtained for this decay compared to that of 98Cd will provide a test of the hindrance mechanism. The calculated GT decays of 102Sn and 106In show the importance of being able to measure the total decay energy in a TAGS experiment.

Part of this work was carried out during our visit to GSI and we would like to thank Ernst Roeckl and Wolfgang Nörenberg for their hospitality during this stay. B.A.B. would like to acknowledge support from the U.S. National Science Foundation Grants No. PHY-90-17077 and No. PHY-94-03666 and from the Alexander von Humboldt Foundation.

[23] We omitted the $0h_{11/2}$ neutron orbital. For the neutron TBME we used a modified surface delta interaction with the two constants chosen to approximately reproduce the binding energies of the 0$^+$ and 6$^+$ states in 96Sn obtained in model space SNB.
[25] Since the proton separation energy for 100In is estimated to be about 1.2 MeV [G. Audi and A. H. Wapstra, Nucl. Phys. A565, 1 (1993)], the predicted excitation energy of 1.8 MeV for the low-lying 1$^+$ state is still low enough that it should predominantly gamma decay. Proton decay (which would be easier to detect experimentally) would start to become important if the excitation energy were about 3 MeV or higher.