Two-proton decay of 45Fe has been observed with a peak energy of (1.14 ± 0.05) MeV and a half-life of $(4.7^{+3.4}_{-1.4})$ ms [1]. An independent experiment with less statistics and a lower energy resolution gave an energy of (1.1 ± 0.1) MeV and a half-life of $(3.2^{+2.6}_{-0.8})$ ms [2]. The average half-life from the two experiments is $(3.8^{+2.0}_{-0.8})$ ms [3]. The two-proton decay branch is experimentally estimated to be $70-80\%$ [3]. A 75% two-proton branch would give a two-proton decay half-life of 4–8 ms and a beta decay half-life of 12–23 ms. The lower beta decay half-life is not far from the prediction of 7 ms [4]. The energy is in good agreement with predictions of (1.15 ± 0.09) MeV [5], (1.28 ± 0.18) MeV [4], and (1.22 ± 0.05) MeV [6].

In this paper we give a first quantitative calculation for the di-proton decay of 45Fe in terms of a recent extension of the R matrix [7], which includes the s-wave $p+p$ interaction as an intermediate state. This model allows us to make a connection to the interesting questions about pairing correlations. The results presented here supersede the previous R-matrix results of Ref. [1] in which an approximation was made for the reduced width, and those of Ref. [5] in which also the s-wave $p+p$ interaction was ignored. The half-life is $T_{1/2} = (4.56 \times 10^{-19}/\Gamma)$ MeV ms, where Γ is the decay width, taken in this model to be the R-matrix observed width Γ^0. This is given by the formula [7]

$$\Gamma^0 = 2 \gamma^2 \tilde{P} \Gamma (1 + \gamma^2 \tilde{S} \tilde{S})$$

(1)

with

$$\tilde{P} = \int_0^Q P(Q-U)\rho(U)dU,$$

(2)

$$\tilde{S} = \int_{E=Q}^{\infty} \frac{dS(E-U)}{dE} \rho(U)dU,$$

(3)

where Q is the available decay energy, P and S are the R-matrix penetration and shift factors [8], and ρ is the density-of-states function, which is expressed in terms of the $p+p$ s-wave phase shift by Eq. (3) of Ref. [7], with $a_2 = 2.90$ fm, $\epsilon = 0.25$ fm, $A = -0.0045$ fm$^{-1}$, and $B = 1.073$ fm.

The reduced width γ^2 is related to the spectroscopic factor S and the dimensionless reduced width θ^2_{sp} by [9]

$$\gamma^2 = S \theta^2_{sp} \frac{\hbar^2}{M a^2},$$

(4)

where M is the reduced mass and a is the channel radius. This is given as in Ref. [7] by the conventional formula

$$a = 1.45(A_1^{1/3} + A_2^{1/3}) \text{ fm},$$

(5)

where A_1 is the mass number of the daughter nucleus and $A_2 = 2$ for the di-proton, which is $a = 6.91$ fm for $A_1 = 43$ and $A_2 = 2$.

The single-particle dimensionless reduced width θ^2_{sp} is given by

$$\theta^2_{sp} = \frac{(a/2)u^2(a)}{\int_0^a u^2(r)dr},$$

(6)

where $u(r)/r$ is the single-particle radial wave function. θ^2_{sp} depends upon the potential parameters for the di-proton nucleus interaction. For the potential we take the Woods-Saxon form cutoff at radius $r = a$ plus a uniform-sphere Coulomb potential with radius $R_C = r_C A_1^{1/3}$. The Woods-Saxon parameters are $R = r_0 A_1^{1/3}$ for the radius, a_0 for the diffuseness, and a well depth adjusted to reproduce the resonance energy. The potential parameters are taken from an analysis of low-energy deuteron scattering [10]: $r_0 = 1.17$ fm, $a_0 = 0.72$ fm, and $r_C = 1.30$ fm.

The final result depends upon the channel radius a through the penetration factor \tilde{P}, the energy derivative of the shift factor \tilde{S}^2, and the reduced width γ^2. We find that when the channel radius a is chosen to be large enough (beyond the range of the strong interaction) the final result is insensitive to the choice of a.

To calculate the spectroscopic factor we project the shell-model wave function onto the $0s$ internal (relative) wave...
function for a di-proton in the pf shell by using harmonic oscillator wave functions with the general formalism of Ref. [11] to obtain

\[S = \left(\frac{A}{A-2} \right)^{\lambda} G^2(pf)C(A,Z), \]

(7)

where $G^2 = 5/16$, A is the mass of parent nucleus ($A = 45$ in our case), and

\[C(A,Z) = \langle \langle \Psi(A-2,Z-2) | \Psi_\text{c} | \Psi(A,Z) \rangle \rangle^2 \]

is the cluster overlap for the di-proton cluster wave function Ψ_c in the pf shell with $L=0, S=0$, and $T=1$ in the SU3 basis.

The spectroscopic factor depends on the model space. In Ref. [5] it was assumed that the 45Fe to 43Cr matrix element could be approximated by that for the 46Fe to 44Cr matrix element. That is, the sd-shell neutron hole is an inactive spectator in the transition. We have checked this assumption by calculating the cluster overlaps for 45Fe and 46Fe in the sd-pf model space with the full pf shell for the protons and one-neutron hole for 45Fe. With the sd-pf Hamiltonian from Ref. [12] the ratio $C(^{45}$Fe)/$C(^{46}$Fe) is 0.96. Thus we confirm that the 45Fe di-proton overlap is essentially the same as that for 46Fe. We use the FPD6 interaction from Ref. [13] to obtain $C(^{46}$Fe) = 0.480, which gives $S = 0.197$. Thus we use $S = 0.20$ for the present calculation, which is essentially the same as the original value of 0.195 obtained in Ref. [5].

It is interesting to note that the two-proton overlaps that enter into the 46Fe decay are the same as those that enter into the interpretation of the 46Ca(p,t)44Ca reaction on the mirror nuclei. The two-proton transition density matrix elements are $-1.19, -0.28, -0.23$, and -0.12 for $(0f_{7/2})^2$, $(0f_{5/2})^2$, $(1p_{3/2})^2$, and $(1p_{1/2})^2$, respectively. The amplitudes are dominated by the $0f_{7/2}$ orbit, but the coherent mixture is important. If only the $0f_{7/2}$ orbit is kept, the cluster overlap is reduced by a factor of 0.28.

With $Q = 1.14$ MeV [1], we find $\theta_{sp}^2 = 0.097$ for the di-proton in a 3s state (three zeros of the wave function between 0 and ∞), leading to $\gamma^2 = 8.6 \times 10^{-3}$ MeV. Also $P = 0.638 \times 10^{-18}$ and $S'^2 = 0.286$ MeV$^{-1}$, so that the S' term in the denominator of Eq. (1) is negligible. This value of P is 3×10^{-4} times the value of $P(Q)$, the penetration factor used in the simple model [1]. The factor is small due to the integrand in Eq. (2) peaking at $U \approx 0.06$ MeV, while P is equal to $P(Q-U)$ for $U \approx 0.25$ MeV. From Eq. (1), $10^0 = 1.10 \times 10^{-26}$ MeV, and $T_{1/2} = 41$ ms. The result is sensitive to the Q value. If we take the experimental upper range of 1.19 MeV we would obtain $T_{1/2} = 10$ ms, which is in reasonable agreement with experiment. Thus there is a large uncertainty in the calculated half-life due to the error in Q value. An improved experimental Q value that will be obtained in future experiments will reduce this source of error.

With the extrapolated one-proton Q value of Ref. [5], it was estimated in Ref. [1] that the sequential decay should be negligible. Although the effective penetration factor is very small, there could be a contribution to the denominator of Eq. (1) coming from the sequential decay channel, but this is estimated to be less than 0.1, and so to have at most a 10% effect on the calculated $T_{1/2}$.

In Ref. [1] the half-life obtained with the R-matrix model (with the $p+p$ resonance) was about ten times longer than the present result. The reason is that the channel radius of $a = 4.2$ fm used in that calculation is too small (not sufficiently outside the strong interaction potential), and it was assumed that $\theta_{sp}^2 = 1$. The half-life estimates given in Ref. [5] ignored the $p+p$ resonance (which increases the half-life by a factor of about 3000), used a small value of $a = 4.0$ fm, and also assumed $\theta_{sp}^2 = 1$. Thus the present theoretical result replaces those of Refs. [1,5].

48Ni is also a good candidate for the observation of two-proton decay [5]. The pf-shell spectroscopic factor is 0.14. Using the extrapolated two-proton decay Q value of 1.36(13) MeV from Ref. [5] together with the same set of values for the other parameters discussed above for 45Fe, we obtain $T_{1/2} = 0.4, 8$, and 260 ms for $Q = 1.49, 1.36$, and 1.23 MeV, respectively.

In the present model there is some sensitivity to the potential parameters. For r_0 or a_0 increased by 0.05 fm, $T_{1/2}$ is further decreased by 20% and 18%, respectively. Thus, the assumption of our use of the deuteron-scattering potentials must be checked. There is of course a sensitivity to the spectroscopic factor. We have used one of the best configuration mixing models available, but the interaction and model-space sensitivity should be examined and also compared with the information inferred from the (p,t) reactions on mirror nuclei. The (p,t) reactions are interpreted in terms of enhancement factors ϵ relative to a given model space. For wave functions that are dominated by the $0f_{7/2}$ orbit, the experimental enhancement factor relative to the full pf shell for $L=0$ transfer is about 2.4 [14]. [When the 46Ca(p,t) data of Ref. [15] are analyzed with the FPD6 wave functions one obtains an enhancement factor of 2.2 for the transition to the 46Ca ground state. This transition is the mirror of the 48Ni di-proton decay transition.] This enhancement can be qualitatively understood in perturbation theory from the admixtures of correlated $J=0, T=1$ components from the major shell below and above the pf shell [14]. Qualitatively, one might apply the same enhancement factor to increase the di-proton decay spectroscopic factors by 2.4, giving $T_{1/2} = 17$ ms with $Q = 1.14$ MeV and $T_{1/2} = 4$ ms with $Q = 1.19$ MeV, which brings the result into better agreement with experiment (the new result for 48Ni would be 3.3 ms with $Q = 1.36$ MeV). However, the relationship between the (p,t) cross-section enhancements and those for di-proton decay needs to be quantified in terms of overlap functions for the two-proton removal process.

The work of Grigorenko et al. [16,17] provides a more general formulation for the three-body asymptotics for two-proton decay in terms of a solution of a three-body Hamiltonian. However, in this formulation the connection to the many-body nuclear structure remains at the level of the single-particle wave functions, and does not include pairing correlations. It would be useful to find a way to compare our
R-matrix results (a correlated di-proton decay through an intermediate state resonance of the two protons) with those of Grigorenko.

In summary, an R-matrix model, which includes the s-wave resonance of the two protons, provides a basis for using di-proton decay as a quantitative spectroscopic tool.

When new experimental results are available for 45Fe and 48Ni, our results will provide a means of extracting unique information on the pairing correlations of protons in the nucleus.

This work was supported by NSF Grant No. PHY-007911.