Transverse Particle Resonances with Application to Circular Accelerators* Prof. Steven M. Lund Physics and Astronomy Department Facility for Rare Isotope Beams (FRIB) Michigan State University (MSU) US Particle Accelerator School (USPAS) Lectures on "Beam Physics with Intense Space-Charge" Steven M. Lund and John J. Barnard US Particle Accelerator School Winter Session Old Dominion University, 19-30 January, 2015 (Version 20160413) * Research supported by: FRIB/MSU, 2014 onward via: U.S. Department of Energy Office of Science Cooperative Agreement DE-SC0000661 and National Science Foundation Grant No. PHY-1102511 and LLNL/LBNL, before 2014 via: US Dept. of Energy Contract Nos. DE-AC52-07NA27344 and DE-AC02-05CH11231 SM Lund, USPAS, 2015 Particle Resonances	Stylend, USPAS, 2015 Particle Resonances: Outline
Transverse Particle Resonances: Detailed Outline	Transverse Particle Resonances: Detailed Outline - 2
 Overview Hill's Equation Review: Betatron Form of Phase-Amplitude Solution Transform Approach Random and Systematic Perturbations Acting on Orbits 	 5) Solution of the Perturbed Hill's Equation: Resonances Fourier Expansion of Perturbations and Resonance Terms Resonance Conditions 6) Machine Operating Points: Tune Restrictions Resulting from Resonances

2) Floquet Coordinates and Hill's Equation Transformation of Hill's Equation

Phase-Space Structure of Solution Expression of the Courant-Snyder Invariant Phase-Space Area Transform

- 3) Perturbed Hill's Equation in Floquet Coordinates Transformation Result for x-Equation
- 4) Sources of and Forms of Perturbation Terms Power Series Expansion of Perturbations

Connection to Multipole Field Errors

- 6) Machine Operating Points: Tune Restrictions Resulting from Resonances Tune Restrictions from Low Order Resonances
- 7) Space-Charge Effects on Particle Resonances

Introduction Laslett Space-Charge Limit Discussion

Contact Information

References

Acknowledgments

S1: Overview

In our treatment of transverse single particle orbits of lattices with s-varying focusing, we found that Hill's Equation describes the orbits to leading-order approximation:

$$x''(s) + \kappa_x(s)x(s) = 0$$

$$y''(s) + \kappa_y(s)y(s) = 0$$

where $\kappa_x(s)$, $\kappa_y(s)$ are functions that describe linear applied focusing forces of the lattice

Focusing functions can also incorporate linear space-charge forces
 Self-consistent for special case of a KV distribution

In analyzing Hill's equations we employed phase-amplitude methods

 See: S.M. Lund lectures on Transverse Particle Dynamics, S8, on the betatron form of the solution

$$\begin{aligned} x(s) &= A_{xi}\sqrt{\beta_x(s)}\cos\psi_x(s) & A_{xi} = \text{const} \\ \frac{1}{2}\beta_x(s)\beta_x''(s) - \frac{1}{4}\beta_x'^2(s) + \kappa_x(s)\beta_x^2(s) = 1 & \psi_x(s) = \psi_{xi} + \int_{s_i}^s \frac{d\bar{s}}{\beta_x(\bar{s})} \\ \beta_x(s + L_p) &= \beta_x(s) & \beta_x(s) > 0 \end{aligned}$$
SM Lund, USPAS, 2015 Particle Resonances 5

These transforms will help us more simply understand the action of perturbations (from applied field nonlinearities,) acting on the particle orbits:

$$\begin{aligned} x''(s) + \kappa_x(s)x(s) &= \mathcal{P}_x(s; \mathbf{x}_{\perp}, \mathbf{x}'_{\perp}, \vec{\delta}) \\ y''(s) + \kappa_y(s)y(s) &= \mathcal{P}_y(s; \mathbf{x}_{\perp}, \mathbf{x}'_{\perp}, \vec{\delta}) \\ \mathcal{P}_x, \ \mathcal{P}_y &= \text{Perturbations} \\ \vec{\delta} &= \text{Extra Coupling Variables} \end{aligned}$$
For simplicity, we restrict analysis to:

$$\gamma_b \beta_b &= \text{const} \qquad \text{No Acceleration} \\ \delta &= 0 \qquad \text{No Axial Momentum Spread} \\ \phi &= 0 \qquad \text{Neglect Space-Charge} \end{aligned}$$
• Acceleration can be incorporated using transformations (see Transverse Particle Dynamics, S10)
• Comments on space-charge effects will be made in S7
We also take the applied focusing lattice to be periodic with:

$$\begin{aligned} \kappa_x(s + L_p) &= \kappa_x(s) \\ \kappa_y(s + L_p) &= \kappa_y(s) \end{aligned} L_p = \text{Lattice Period} \end{aligned}$$
SM Lund, USPAS, 2015

This formulation simplified identification of the Courant-Snyder invariant:

$$\left(\frac{x}{w_x}\right)^2 + (w_x x' - w'_x x)^2 = A_x^2 = \text{const}$$
$$\frac{1 + \beta_x'^2/4}{\beta_x} x^2 - \beta_x \beta_x' x x' + \beta_x x'^2 = A_x^2 = \epsilon_x$$
$$\gamma x^2 + 2\alpha x x' + \beta x'^2 =$$

which helped to interpret the dynamics.

We will now exploit this formulation to better (analytically!) understand resonant instabilities in periodic focusing lattices. This is done by choosing coordinates such that *stable* unperturbed orbits described by Hill's equation:

$$x''(s) + \kappa_x(s)x(s) = 0$$

are mapped to a continuous oscillator

SM Lund, USPAS, 2015

7

$$\tilde{x}''(\tilde{s}) + \tilde{k}_{\beta 0}^2 \tilde{x}(\tilde{s}) = 0$$

$$\tilde{k}_{\beta 0}^2 = \text{const} > 0$$

$$\tilde{\cdots} = \text{Transformed Coordinate}$$

 Because the linear lattice is designed for single particle stability this transformation can be effected for any practical machine operating point

6

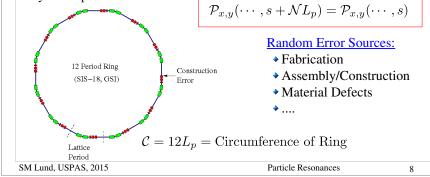
For a ring we also always have the superperiodicity condition:

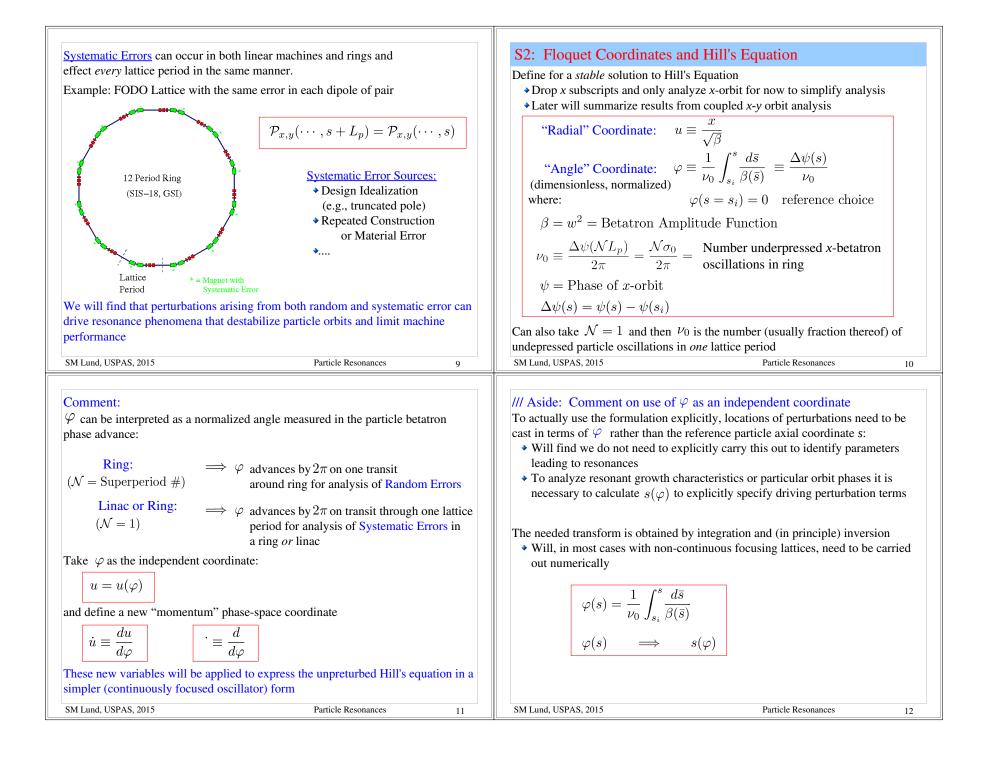
$$\mathcal{P}_x(s + \mathcal{C}; \mathbf{x}_{\perp}, \mathbf{x}'_{\perp}, \vec{\delta}) = \mathcal{P}_x(s; \mathbf{x}_{\perp}, \mathbf{x}'_{\perp}, \vec{\delta})$$

$$\mathcal{P}_{y}(s + \mathcal{C}; \mathbf{x}_{\perp}, \mathbf{x}'_{\perp}, \vec{\delta}) = \mathcal{P}_{y}(s; \mathbf{x}_{\perp}, \mathbf{x}'_{\perp}, \vec{\delta})$$
$$\mathcal{C} = \mathcal{N}L_{p} = \text{Circumference Ring}$$
$$\mathcal{N} \equiv \text{Superperiodicity}$$

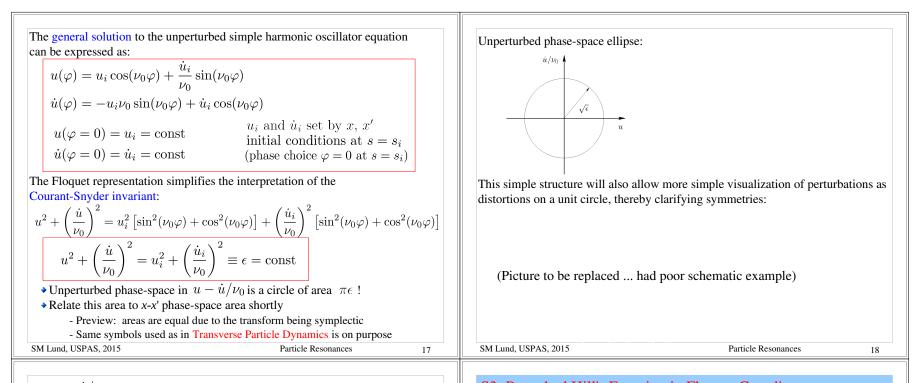
Perturbations can be Random and/or Systematic:

Random Errors in a ring will be felt once per particle lap in the ring rather than every lattice period





	atr
$\varphi(s) = \frac{1}{\nu_0} \int_{s_i}^s \frac{d\bar{s}}{\beta(\bar{s})} \implies \frac{d\varphi}{ds} = \frac{1}{\nu_0\beta}$ Rate of change in s not constant except for continuous focusing lattices Continuous Focusing: Simplest case $\kappa_x = k_{\beta0}^2 = \text{const}$ $\frac{d\varphi}{ds} = \frac{2\pi}{C} = \text{const} \implies \varphi(s) = \frac{2\pi}{C}(s - s_i)$ Periodic Focusing: Simple FODO lattice to illustrate Add numerical example/plot in future version of notes.	From the definition $u \equiv \frac{x}{\sqrt{\beta}}$ Rearranging this and using the chain rule: $x = \sqrt{\beta}u$ $x' = \frac{\beta'}{2\sqrt{\beta}}u + \sqrt{\beta}\frac{du}{d\varphi}\frac{d\varphi}{ds} \qquad \qquad \frac{d}{ds} = \frac{d\varphi}{ds}\frac{d}{d\varphi}$ From: $\varphi \equiv \frac{1}{\nu_0}\int_{s_i}^s \frac{d\bar{s}}{\beta(\bar{s})} \implies \qquad \qquad \frac{d\varphi}{ds} = \frac{1}{\nu_0\beta}$ we obtain $x' = \frac{\beta'}{2\sqrt{\beta}}u + \frac{1}{\nu_0\sqrt{\beta}}\dot{u}$ $x''' = \frac{d}{ds}x' = \frac{\beta''}{2\sqrt{\beta}}u - \frac{\beta'^2}{4\beta^{3/2}}u + \frac{\beta'}{2\nu_0\beta^{3/2}}\dot{u} - \frac{\beta'}{2\nu_0\beta^{3/2}}\dot{u} + \frac{1}{\nu_0^2\beta^{3/2}}\ddot{u}$
SM Lund, USPAS, 2015 Particle Resonances 13	SM Lund, USPAS, 2015 Particle Resonances 14
Summary: $\begin{aligned} x &= \sqrt{\beta}u \\ x' &= \frac{\beta'}{2\sqrt{\beta}}u + \frac{1}{\nu_0\sqrt{\beta}}\dot{u} \\ x'' &= \frac{\beta''}{2\sqrt{\beta}}u - \frac{\beta'^2}{4\beta^{3/2}}u + \frac{1}{\nu_0^2\beta^{3/2}}\ddot{u} \\ \text{Insert these results in the perturbed Hill's equation:} \\ x''(s) + \kappa_x(s)x(s) &= \mathcal{P} \qquad \mathcal{P} \equiv \mathcal{P}_x \\ \text{giving} &\frac{\ddot{u}}{\nu_0^2\beta^{3/2}} + \frac{\beta''u}{2\sqrt{\beta}} - \frac{\beta'^2u}{4\beta^{3/2}} + \kappa\beta^2 = \mathcal{P} \\ \implies \ddot{u} + \nu_0^2 \left[\frac{\beta\beta''}{2} - \frac{\beta'^2}{4} + \kappa\beta^2\right]u = \nu_0^2\beta^{3/2}\mathcal{P} \\ \text{But the betatron amplitude equation satisfies:} \\ &\frac{\beta\beta''}{2} - \frac{\beta'^2}{4} + \kappa\beta^2 = 1 \qquad \beta(s + L_p) = \beta(s) \\ \text{So the terms in [] = 1 and the perturbed Hills equation reduces to} \\ &\tilde{u} + \nu_0^2 u = \nu_0^2\beta^{3/2}\mathcal{P} \end{aligned}$	Hill's equation reduces to simple harmonic oscillator form when unperturbed $\mathcal{P} = 0$: Unperturbed: $\ddot{u} + \nu_0^2 u = 0$ Perturbed: $\ddot{u} + \nu_0^2 u = \nu_0^2 \beta^{3/2} \mathcal{P}$ In the absence of perturbations, the Floquet transform has mapped a stable, time dependent solution to Hill's equation to a simple harmonic oscillator!
SM Lund, USPAS, 2015 Particle Resonances 15	SM Lund, USPAS, 2015 Particle Resonances 16



The $u - \dot{u}/\nu_0$ variables also preserve phase-space area • Feature of the transform being symplectic (Hamiltonian Dynamics)

From previous results:

Transform area elements by calculating the Jacobian:

$$dx \otimes dx' = |J| du \otimes d\dot{u}$$

$$J = \det \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial \dot{u}} \\ \frac{\partial x}{\partial u} & \frac{\partial x}{\partial \dot{u}} \end{vmatrix} = \det \begin{vmatrix} \sqrt{\beta} & 0 \\ \frac{\beta'}{2\sqrt{\beta}} & \frac{1}{\nu_0\sqrt{\beta}} \end{vmatrix} = \frac{1}{\nu_0}$$

$$dx \otimes dx' = du \otimes \frac{d\dot{u}}{\nu_0}$$

Thus the Courant-Snyder invariant ϵ is the usual single particle emittance in *x*-*x*' phase-space; see lectures on Transverse Dynamics, S7

SM Lund, USPAS, 2015	
----------------------	--

S3: Perturbed Hill's Equation in Floquet Coordinates Return to the perturbed Hill's equation in S1: $\begin{array}{l}
x''(s) + \kappa_x(s)x(s) = \mathcal{P}_x(s; \mathbf{x}_{\perp}, \mathbf{x}'_{\perp}, \vec{\delta}) \\
y''(s) + \kappa_y(s)y(s) = \mathcal{P}_y(s; \mathbf{x}_{\perp}, \mathbf{x}'_{\perp}, \vec{\delta}) \\
\mathcal{P}_x, \ \mathcal{P}_y = \text{Perturbations} \\
\vec{\delta} = \text{Extra Coupling Variables}
\end{array}$

Drop the extra coupling variables and apply the Floquet transform in S2 and consider only transverse multipole magnetic field perturbations

- Examine only *x*-equation, *y*-equation analogous
- From S4 in Transverse Particle Dynamics terms B_x , B_y only have variation in x,y. If solenoid magnetic field errors are put in, terms with x', y'dependence will also be needed
- Drop *x*-subscript in \mathcal{P}_x to simplify notation

SM Lund, USPAS, 2015

19

$$\ddot{u} + \nu_0^2 u = \nu_0^2 \beta^{3/2} \mathcal{P} \qquad \qquad \mathcal{P} = \mathcal{P}(s(\varphi), \sqrt{\beta}u, y, \vec{\delta})$$

Transform y similarly to x If analyzing general orbit with x and y motion Particle Resonances 20 Expand the perturbation in a power series:

- Can be done for *all* physical applied field perturbations
- Multipole symmetries can be applied to restrict the form of the perturbations - See: S4 in these notes and S3 in Transverse Particle Dynamics
- Perturbations can be random (once per lap; in ring) or systematic (every lattice period; in ring or in linac)

$$\mathcal{P}(x, y, s) = \mathcal{P}_0(y, s) + \mathcal{P}_1(y, s)x + \mathcal{P}_2(y, s)x^2 + \cdots$$
$$= \sum_{n=0}^{\infty} \mathcal{P}_n(y, s)x^n$$

Take:

$$x = \sqrt{\beta u}$$

to obtain:

$$\ddot{u} + \nu_0^2 u = \nu_0^2 \sum_{n=0}^{\infty} \beta^{\frac{n+3}{2}} \mathcal{P}_n(y,s) u^n$$

A similar equation applies in the *y*-plane.

SM Lund, USPAS, 2015

Trace back how the applied magnetic field terms enter the x-plane equation of motion:

- See: S2, Transverse Particle Dynamics
- Apply equation in S2 with: $\beta_b = \text{const}, \ \phi \simeq \text{const}, \ E_x^a \simeq 0, \ B_z^a \simeq 0$ To include axial $(B_z^a \neq 0)$ field errors, follow a similar pattern to generalize

Particle Resonances

$$x^{\prime\prime} = -\frac{q}{m\gamma_b\beta_bc}B_y^a$$

Express this equation as:

$$x'' + \kappa_x(s)x = -\frac{q}{m\gamma_b\beta_bc} \begin{bmatrix} B^a_y(x,y,s) - B^a_y(x,y,s) \big|_{\lim x \text{-foc}} \end{bmatrix}$$
Nonlinear focusing terms only in []

• "Normal" part of linear applied magnetic field contained in focus func κ_r

Compare to the form of the perturbed Hill's equation:

$$x'' + \kappa_x x = \mathcal{P}_x = \sum_{n=0}^{\infty} \mathcal{P}_n(y, s) x^n$$
SM Lund, USPAS, 2015

S4: Sources of and Forms of Perturbation Terms

Within a 2D transverse model it was shown that transverse applied magnetic field components entering the equations of motion can be expanded as:

• See: S3, Transverse Particle Dynamics: 2D components axial integral 3D components Applied electric fields can be analogously expanded

$$\underline{B}^{*}(\underline{z}) = B_{x}^{a}(x, y) - iB_{y}^{a}(x, y) = \sum_{n=1}^{\infty} \underline{b}_{n} \left(\frac{\underline{z}}{r_{p}}\right)^{n-1}$$

$$\underline{b}_{n} = \text{const (complex)} \equiv \mathcal{A}_{n} - i\mathcal{B}_{n} \quad \underline{z} = x + iy \quad i = \sqrt{-1}$$

$$n = \text{Multipole Index} \quad r_{p} = \text{Aperture "Pipe" Radius}$$

$$\mathcal{B}_{n} \Longrightarrow \text{"Normal" Multipoles}$$

$$\mathcal{A}_{n} \Longrightarrow \text{"Skew" Multipoles}$$
Cartesian projections: $\overline{B_{x}} - i\overline{B_{y}} = (\mathcal{A}_{n} - i\mathcal{B}_{n})(x + iy)^{n-1}/r_{p}^{n-1}$

- Cartes.	ian projections.	$D_x iDy = (r$	$(n i \mathcal{O}_n)(x + i g)$	/ ' p	
Index	Name	Norma	$l \left(\mathcal{A}_n = 0 \right)$	Skew (B	n = 0)
n		$B_x r_p^{n-1} / \mathcal{B}_n$	$B_y r_p^{n-1} / \mathcal{B}_n$	$B_x r_p^{n-1} / \mathcal{A}_n$	$B_y r_p^{n-1} / \mathcal{A}_n$
1	Dipole	0	1	1	
2	Quadrupole	y	x	x	-y
3	Sextupole	2xy	$x^2 - y^2$	$x^2 - y^2$	-2xy
4	Octupole	$3x^2y - y^3$	$x^3 - 3xy^2$	$x^3 - 3xy^2$	$-3x^2y + y^3$
5	Decapole	$4x^3y - 4xy^3$	$x^4 - 6x^2y^2 + y^4$	$x^4 - 6x^2y^2 + y^4$	$-4x^3y + 4xy^3$
SM Lund,	USPAS, 2015			Particle Resonances	22

Gives:

21

23

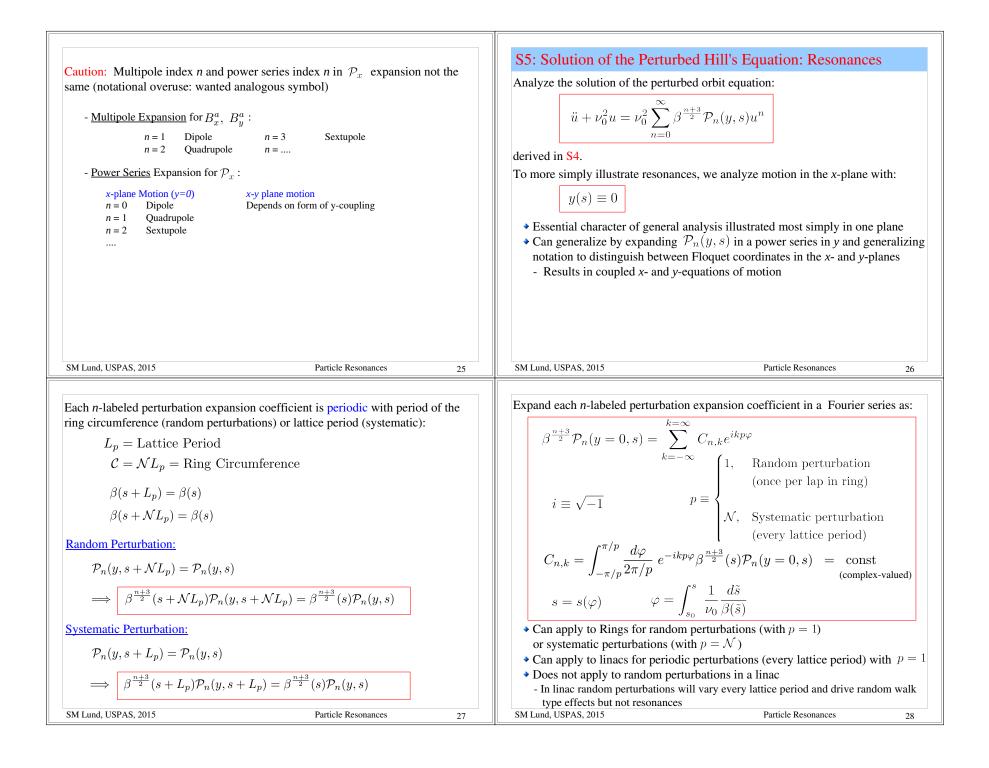
$$\implies \boxed{\mathcal{P}_x = -\frac{q}{m\gamma_b\beta_bc} \left[B_y^a - B_y^a \Big|_{\text{lin }x\text{-foc}} \right]}$$

where the y-field components can be obtained from the multipole expansion as:

$$B_y^a = -\operatorname{Im}[\underline{B}^*] \qquad \underline{B}^* = \sum_{n=1}^{\infty} \underline{b}_n \left(\frac{x+iy}{r_p}\right)^{n-1}$$
$$B_y^a|_{\lim x - \text{focus}} = -\operatorname{Im}[\underline{B}^*|_{n=1 \text{ term}}] \qquad \underline{B}^* = \sum_{n=1}^{\infty} \underline{b}_n \left(\frac{x+iy}{r_p}\right)^{n-1}$$

- •Use multipole field components of magnets to obtain explicit form of field component perturbations consistent with the Maxwell equations
- Need to subtract off design component of linear filed from \mathcal{P}_x perturbation term since it is included in κ_x
- Similar steps employed to identify *y*-plane perturbation terms, perturbations from solenoidal field components, and perturbations for applied electric field components

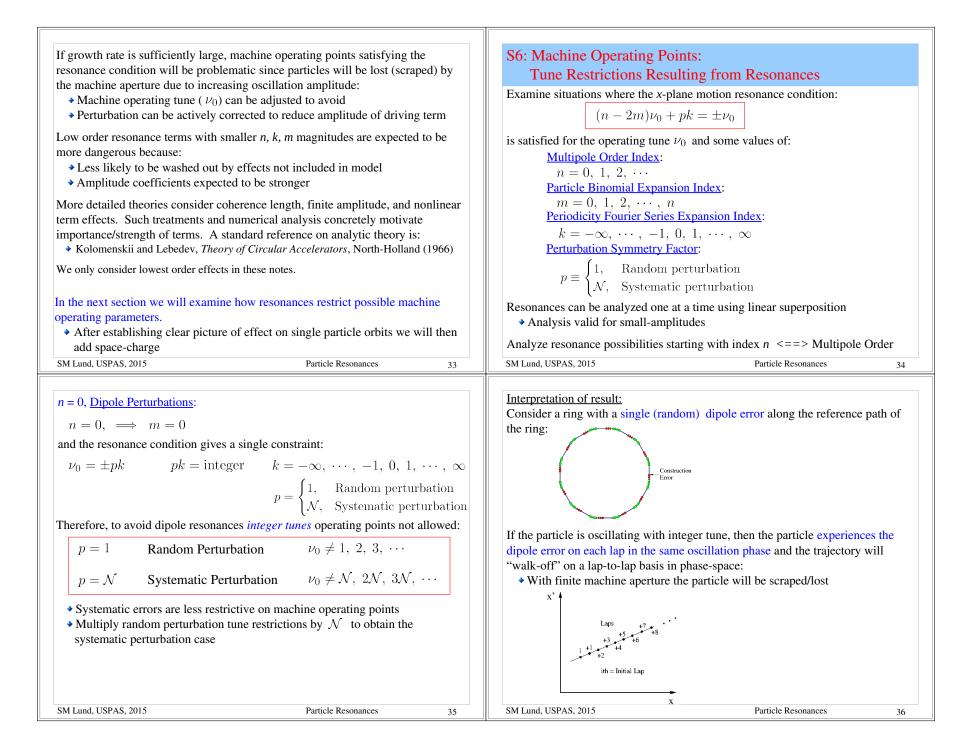
SM Lund, USPAS, 2015



The perturbed equation of motion becomes:

$$\begin{aligned} \vec{\mu} + \rho_0^2 u = \rho_0^2 \sum_{n=1}^{k-\infty} C_{n,n} e^{ihp_n} y^n \\ \text{Expand the solution are:} \\ \vec{\mu} = v_0^2 + \delta u \\ \delta u = perturbation due to errors \\ \text{where } v_0 \text{ is the solution of the simple harmonic oscillator equation with diving terms \\ \delta u = perturbations \\ \vec{\mu}_u = v_0^2 + \delta u \\ \delta u = perturbations due to errors \\ \text{where } v_0 \text{ is the solution of the simple harmonic oscillator equation of the HSI survey \\ \vec{\mu}_u = v_0, (08(2n\varphi + \varphi_1) = un) \frac{e^{i((n+\varphi_1) + \omega_1)}}{2} + un) \frac{e^{i((n+\varphi_1) + \omega_1)}}{2} \\ \text{where } v_0 \text{ is the solution of the simple harmonic oscillator equation in the absence of perturbations so that \\ |h_0| \gg |\delta w| \\ \text{Then to leading order, the equation of motion for δu is:

$$\left[\frac{\delta}{m} + v_0^2 \delta w - v_0^2 \sum_{w=0}^{\infty} \sum_{n=0}^{k-\infty} C_{n,k} e^{i(w_1 + \varphi_1)} e^{i((n+\varphi_1) + \omega_2) - \omega_1^2} e^{i((n+\varphi_1) + \omega_2) - \omega_1^2} e^{i(n+\varphi_1) + \omega_2^2} e^{i(n+\varphi_1)$$$$



n = 1, <u>Quadrupole Perturbations</u>:

 $n = 1, \implies m = 0, 1$

and the resonance conditions give:

 $\begin{array}{ll} n=1,\ m=0: & \nu_0+pk=\pm\nu_0 & \text{Give two cases:} \\ n=1,\ m=1: & -\nu_0+pk=\pm\nu_0 \\ \text{Implications of two cases:} & \text{Can be treated by "renormalizing" oscillator} \\ 1)\ pk=0 \Rightarrow k=0 & \text{focusing strength: need not be considered} \\ 2)\ \nu_0=\pm\frac{pk}{2} \Rightarrow \nu_0=\frac{|pk|}{2} \\ \text{Therefore, to avoid quadrupole resonances, the following tune operating points} are not allowed:} \end{array}$

 $\nu_0 \neq \frac{|pk|}{2} \qquad p = \begin{cases} 1, & \text{Random perturbation} \\ \mathcal{N}, & \text{Systematic perturbation} \\ k = -\infty, \cdots, -1, 0, 1, \cdots, \infty \end{cases}$

New restriction: tunes cannot be half-integer values

• Integers also restricted for p = 1 random, but redundant with dipole case

• Some large integers restricted for p = N systematic perturbations SM Lund, USPAS, 2015 Particle Resonances

n = 2, Sextupole Perturbations:

$$n=2, \implies m=0, 1, 2$$

and the resonance conditions give the three constraints below:

$$n = 2, m = 0: \qquad 2\nu_0 + pk = \pm\nu_0$$

$$n = 2, m = 1: \qquad pk = \pm\nu_0$$

$$n = 2, m = 2: \qquad -2\nu_0 + pk = \pm\nu_0$$

Therefore, to avoid sextupole resonances, the following tunes are not allowed:

$$\nu_{0} \neq \begin{cases} |pk| & \text{integer} \\ |pk|/2 & \text{half-integer} \\ |pk|/3 & \text{third-integer} \end{cases} p = \begin{cases} 1, & \text{Random perturbation} \\ \mathcal{N}, & \text{Systematic perturbation} \\ k = -\infty, \cdots, -1, 0, 1, \cdots, \infty \end{cases}$$

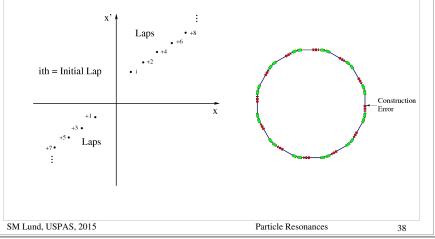
Integer and ¹/₂-integer restrictions already obtained for dipole and quadrupole perturbations

1/3-integer restriction new

Higher-order (n > 2) cases analyzed analogously

Interpretation of result (new restrictions):

For a single (random) quadrupole error along the azimuth of a ring, a similar qualitative argument as presented in the dipole resonance case leads one to conclude that if a particle oscillates with ½ integer tune, then the orbit can "walk-off" on a lap-to-lap basis in phase-space:



General form of resonance condition

37

39

The general resonance condition (all *n*-values) for *x*-plane motion can be summarized as:

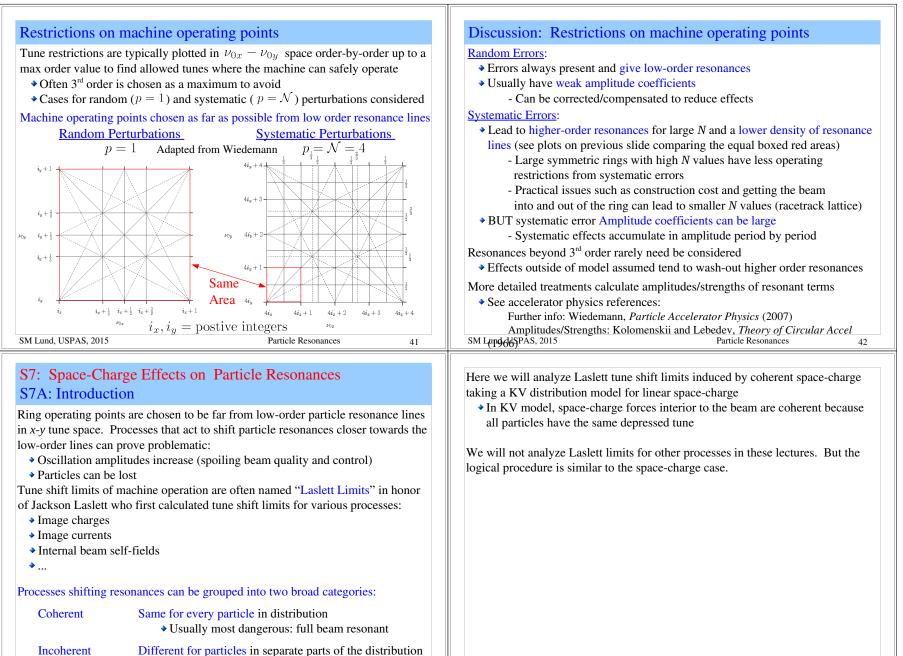
$$M\nu_0 = N$$
 $M, N =$ Integers of same sign
 $|M| =$ "Order" of resonance

- Higher order numbers M are typically less dangerous
 - Longer coherence length for validity of theory: effects not included can "wash-out" the resonance
 - Coefficients generally smaller

Particle motion is not (measure zero) really restricted to the *x*-plane, and a more complete analysis taking into account coupled *x*- and *y*-plane motion shows that the generalized resonance condition is:

 Place unperturbed y-orbit in rhs perturtation term, then leading-order expand analogously to x-case to obtain additional driving terms

$$M_x \nu_{0x} + M_y \nu_{0y} = N \qquad M_x, M_y, N = \text{Integers of same sign} \\ |M_x| + |M_y| = "\text{Order" of resonance} \\ \nu_{0x} = x \text{-plane tune} \\ \nu_{0y} = y \text{-plane tune} \\ \bullet \text{Lower order resonances are more dangerous analogously to x-case} \\ \text{SM Lund, USPAS, 2015} \qquad \text{Particle Resonances} \qquad 40 \\ \end{array}$$



◆ Usually less dangerous: only effects part of beam

SM Lund, USPAS, 2015

Particle Resonances

43

SM Lund, USPAS, 2015

Particle Resonances

S7B: Laslett Space-Charge Limit

Laslett first obtained a space-charge limit for rings by assuming that the beam space-charge is uniformly distributed as in a KV model and thereby acts as a coherent shift to previously derived resonance conditions. Denote:

 $\nu_{0x} \equiv x$ -tune (bare) in absence of space-charge

$$\nu_x \equiv x$$
-tune (depressed) with uniform density beam

 $\Delta \nu_x \equiv \nu_{0x} - \nu_x =$ Space-charge tune shift $\Delta \nu_r > 0$

Assume that dipole (integer) and quadrupole (half-integer) tunes only need be excluded when space-charge effects are included.

Space-charge likely induces more washing-out of higher-order resonances

If the bare tune operating point is chosen as far as possible from $\frac{1}{2}$ -integer resonance lines, the maximum space-charge induced tune shift allowed is 1/4integer, giving:

Analogous equation applies in the y-plane

- Identical restriction in lattices with equal x- and y-focusing strengths SM Lund, USPAS, 2015 Particle Resonances

Estimate of Maximum Perveance Allowed by Laslett Limit: Simple Continuous Focusing Estimate

Model the focusing as continuous and assume an unbunched, transverse matched KV distribution with: σ_0 $2\pi\nu_0$

$$\kappa_x = \kappa_y = k_{\beta 0}^2 = \text{const} \quad \text{Focusing} \qquad k_{\beta 0} = \frac{1}{L_p} = \frac{1}{NL_p}$$

$$\varepsilon_x = \varepsilon_y \equiv \varepsilon = \text{const} \quad \text{Emittance}$$

$$Q = \frac{q\lambda}{2\pi\epsilon_0 m\gamma_b^3 \beta_b^2 c^2} = \text{const} \quad \text{Perveance}$$
The matched envelope equation gives:

$$r_x = r_y = r_b = \text{const}$$

$$\eta_b' + k_{\beta 0}^2 r_b - \frac{Q}{r_b} - \frac{\varepsilon^2}{r_b^3} = 0$$

Particle Resonances

$$\implies \qquad r_b^2 = \frac{Q + \sqrt{4k_{\beta 0}^2 \varepsilon^2 + Q^2}}{2k_{\beta 0}^2}$$

SM Lund, USPAS, 2015

Consider a symmetric ring (not race track for simple arguments) with:

$$\mathcal{N} =$$
Number Lattice Periods

$$L_p = Lattice Period$$

 σ_0 = Phase advance in x- or y-directions

Gives bare (undepressed) tunes:

$$\implies \quad \nu_{0x} = \nu_{0y} \equiv \nu_0 = \mathcal{N} \frac{\sigma_0}{2\pi}$$

Defining the depressed tune in the presence of KV model space-charge analogously with:

$$\nu_x = \nu_y \equiv \nu = \mathcal{N} \frac{\sigma}{2\pi}$$

Then the allowed space-charge depression σ/σ_0 for $\delta\nu = \nu_0 - \nu = 1/4$ is:

$$\sigma/\sigma_0|_{\min} = 1 - rac{\pi/2}{\mathcal{N}\sigma_0}$$

46

Depressed phase advance per lattice period can then be calculated from formulas in lectures on Transverse Equilibrium Distributions as:

$$\sigma = \sqrt{k_{\beta 0}^2 - \frac{Q}{r_b^2}} L_p = \varepsilon \int_{s_i}^{s_i + L_p} \frac{ds}{r_b^2} \qquad \qquad \text{Two forms equivalent}$$
from envelope equation

Particle Resonances

using

45

47

SM Lund, USPAS, 2015

$$\nu = \mathcal{N} \frac{\sigma}{2\pi}$$

 $k_{\beta} = \sqrt{k_{\beta0}^2 - \frac{Q}{r_b^2}} \qquad \sigma = k_{\beta}L_p$ and previous formulas gives:

$$\nu = \nu_0 \sqrt{1 - \frac{2Q}{Q + \sqrt{\frac{16\pi^2 \nu_0^2 \varepsilon^2}{\mathcal{N}^2 L_p^2} + Q^2}}}$$

Setting the phase shift to the Laslett current limit value

$$\nu|_{Q=Q_{\max}} = \nu_0 - \frac{1}{4}$$

SM Lund, USPAS, 2015

Particle Resonances

48

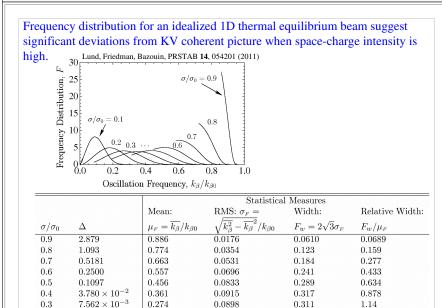
gives a constraint for the maximum value of $Q = Q_{\text{max}}$ to avoid 1/2-integer resonances:

$$\frac{2Q_{\max}}{Q_{\max} + \sqrt{\frac{16\pi^2 \nu_0^2 \varepsilon^2}{N^2 L_p^2} + Q_{\max}^2}} = 1 - \left(\frac{\nu_0 - 1/4}{\nu_0}\right)^2 = \frac{1}{2\nu_0^2}(\nu_0 - 1/8)$$

This can be arraigned into a quadratic equation for Q_{\max} and solved to show that the Laslett "current" limit expressed in terms of the maximum transportable perveance:

$$Q < Q_{\max} = \frac{\pi\varepsilon}{\mathcal{N}L_p} \left(\frac{\nu_0 - 1/8}{\nu_0}\right) \frac{1}{\sqrt{1 - \frac{1}{2\nu_0} \left(\frac{\nu_0 - 1/8}{\nu_0}\right)}} \qquad Q = \frac{q\lambda}{2\pi\epsilon_0 m\gamma_b^3 \beta_b^2 c^2} = \frac{qI}{2\pi\epsilon_0 m\gamma_b^3 \beta_b c}$$
$$\simeq \frac{\pi\varepsilon}{\mathcal{N}L_p} \left(1 + \frac{1}{8\nu_0} + \operatorname{Order}(1/\nu_0^2)\right) \qquad I = \operatorname{Beam Current}$$

II Example: Take (typical synchrotron numbers, represents peak charge in rf bunch) $\mathcal{N}L_p = \mathcal{C} = \text{Ring Circumfrance} \sim 300 \text{ m}$ $\varepsilon \sim 50 \text{ mm-mrad} \implies Q < Q_{\text{max}} \simeq \frac{\pi\varepsilon}{\mathcal{C}} \simeq 5 \times 10^{-7}$



0.0750

0.0465

0.260

0.161

Particle Resonances

1.37

1.58

51

0.2

0.1

SM Lund, USPAS, 2015

 3.649×10^{-4}

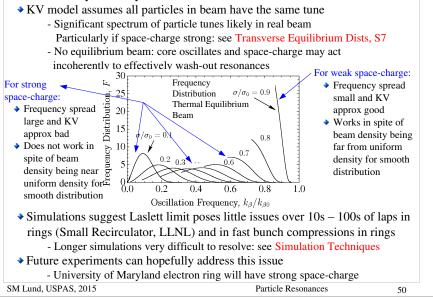
 5.522×10^{-8}

0.190

0.102

Discussion:

Laslett limit may be overly restrictive:



Discussion Continued:

- Even if internal resonances in the core of the beam are washed out due to nonlinear space-charge at high intensity, centroid resonances may still behave more as a single particle (see notes on Transverse Centroid and Envelope Descriptions of Beam Evolution) to limit beam control.
 - Steering and correction can mitigate low order centroid instabilities
 - Centroid will also have (likely weak if steering used) image charge correction to the tune
- Caution: Terminology can be very bad/confusing on topic. Some researchers:
 - Call KV Laslett space-charge shift an "incoherent tune shift" limit in spite of it being (KV) coherent
 - Call anything space-charge related "incoherent" regardless of model
 - Call beam transport near the KV Laslett space-charge shift limit a "space charge dominated beam" even though space-charge defocusing likely is only a small fraction of the applied focusing

More research on this topic is needed!

- Higher intensities can open new applications for energy and material processing
- Many possibilities to extend operating range of existing machines and make new use of developed technology

Good area for graduate thesis projects!

SM Lund, USPAS, 2015

Particle Resonances

52

Laslett Space Charge Limit for an Elliptical KV Beam	S8: Limits Induced by Space-Charge Collective Modes
 For more basic info, see material in the G. Franchetti lecture from the 2014 CERN Accelerator School in the reference below: Will summarize results from here and other sources in future version of notes http://cas.web.cern.ch/CAS/CzechRepublic2014/Lectures/FranchettiSC.pdf 	Add in future edition of notes here or in kinetic theory: Review simple 1D theory results of Sacherer and implications for rings
SM Lund, USPAS, 2015 Particle Resonances 53	SM Lund, USPAS, 2015 Particle Resonances 54
Corrections and suggestions for improvements welcome!	References: For more information see:
These notes will be corrected and expanded for reference and for use in future editions of US Particle Accelerator School (USPAS) and Michigan State University (MSU) courses. Contact: Prof. Steven M. Lund Facility for Rare Isotope Beams Michigan State University 640 South Shaw Lane East Lansing, MI 48824 Iund@frib.msu.edu (517) 908 – 7291 office (510) 459 - 4045 mobile	 These course notes are posted with updates, corrections, and supplemental material at: https://people.nscl.msu.edu/~lund/uspas/bpisc_2015 Materials associated with previous and related versions of this course are archived at: JJ Barnard and SM Lund, <i>Beam Physics with Intense Space-Charge</i>, USPAS: http://hifweb.lbl.gov/USPAS_2011 2011 Lecture Notes + Info https://people.nscl.msu.edu/~lund/uspas/bpisc_2011/ http://uspas.fnal.gov/programs/past-programs.shtml (2008, 2006, 2004) JJ Barnard and SM Lund, <i>Interaction of Intense Charged Particle Beams with</i> <i>Electric and Magnetic Fields</i>, UC Berkeley, Nuclear Engineering NE290H http://hifweb.lbl.gov/NE290H 2009 Lecture Notes + Info
Please provide corrections with respect to the present archived version at: https://people.nscl.msu.edu/~lund/uspas/bpisc_2015	
Please provide corrections with respect to the present archived version at:	SM Lund, USPAS, 2015 Particle Resonances 56

References: Continued (2):	Acknowledgments:
 E. D. Courant and H. S. Snyder, "Theory of the Alternating Gradient Synchrotron," Annals of Physics 3, 1 (1958) H. Wiedemann, <i>Particle Accelerator Physics</i>, Third Edition, Springer-Verlag (2007) A. Dragt, "Lectures on Nonlinear Orbit Dynamics," in <i>Physics of High Energy</i> <i>Accelerators</i>, edited by R.A. Carrigan, F.R. Hudson, and M. Month (AIP Conf. Proc. No. 87, 1982) p. 147 D. A. Edwards and M. J. Syphers, <i>An Introduction to the Physics of High Energy</i> <i>Accelerators</i>, Wiley (1993) F. Sacherer, <i>Transverse Space-Charge Effects in Circular Accelerators</i>, Univ. of California Berkeley, Ph.D Thesis (1968) A. A. Kolomenskii and A. N. Lebedev, <i>Theory of Circular Accelerators</i>, North- Holland (1966) 	These lecture notes reflect input from numerous scientists and engineers who helped educate the author in accelerator physics over many years. Support enabling the long hours it took to produce these lecture notes were provided by the Facility for Rare Isotope Beams (FRIB) at Michigan State University (MSU), Lawrence Livermore National Laboratory (LLNL), and Lawrence Berkeley National Laboratory (LBNL). Special thanks are deserved to:Rodger Bangerter Oliver Boine-FrankenheimMartin Berz Richard BriggsJohn Barnard Giuliano Franchetti Alex FriedmanAlex Friedman Dave GroteDave Grote Irving HaberKlaus Halbach Klaus Halbach Ingo Hoffmann Dave Judd Igor Kagonovich Eduard PozdeyezMartin Reiser Gian-Luca SabbiPeter Seidl Peter SeidlWilliam Sharp Peter Spiller Yoshi Yamazaki Simon Yu
SM Lund, USPAS, 2015 Particle Resonances 57	SM Lund, USPAS, 2015 Particle Resonances 58

Acknowledgments Continued:

Specific input strongly influencing parts of these notes on Transverse Particle Resonances include:

Guliano Franchetti (GSI): Floquet coordinates for simplified resonance analysis.

SM Lund,	USPAS,	2015

59