
Self-Consistent Simulations of Beam and Plasma Systems

Final Exam (“take-home”)

S. M. Lund, J.-L. Vay, R. Lehe, and D. Winklehner

Thursday, June 16th, 2016

Problem 1 - Maxwell’s equations and redundant information.

a) Show that the relativistic Vlasov equation{
∂

∂t
+ v · ∂

∂x
+ q [E + v ×B] · ∂

∂p

}
f(x,p, t) = 0

with

v =
p

γm
=

p/m

[1 + p2/(mc)2]1/2

implies conservation of charge with

∂

∂t
ρ+

∂

∂x
· J = 0

where

ρ = q

∫
d3p f

J = q

∫
d3p vf

Hint 1: Use the same steps as in Monday’s problem 3 a).

Hint 2: You are permitted to do this non-relativistically if you want. The result holds either
way.

b) The 3D Maxwell equations are linear, 1st-order-in-time, kinematic equations for E(x, t),
B(x, t) if ρ(x, t) and J(x, t) are regarded as prescribed sources.

1) How many field components are in E, B?

2) How many equations are in the standard set of Maxwell equations?

∇ ·E =
ρ

ε0

∇×E = − ∂

∂t
B

∇ ·B = 0

∇×B = µ0J + µ0ε0
∂

∂t
E
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3) What initial (t = 0) values are required for E and B to solve the Maxwell equations for
E(x, t) and B(x, t) for all times t with ρ(x, t) and J(x, t) specified?

c) To better understand the situation in b), show that the Maxwell equations imply that

∇× (∇×E) +
1

c2

∂2

∂t2
E = −µ0

∂

∂t
J

∇× (∇×B) +
1

c2

∂2

∂t2
B = µ0∇× J

where

µ0ε0 =
1

c2
.

→ 6 2nd-order-in-time equations for 6 field components E, B.

d) Show that

∇×E = − ∂

∂t
B

implies that
∂

∂t
∇ ·B = 0.

Does this imply that ∇ ·B(x, t) = 0 for all times t if ∇ ·B(x, t = 0) = 0?

e) Show that

∇×B = µ0J + µ0ε0
∂

∂t
E and

∂

∂t
ρ+

∂

∂x
· J = 0

imply that
∂

∂t
(∇ ·E − ρ/ε0) = 0.

Does this imply that ∇ ·E = ρ/ε0 for all times t if ∇ ·E = ρ/ε0 at t = 0?

f) Show that the Maxwell equations

∇×B = µ0J + µ0ε0
∂

∂t
E and ∇ ·E =

ρ

ε0

imply that
∂

∂t
ρ+

∂

∂x
· J = 0.

Does this imply that the Maxwell equations should only be applied to charge ρ and current
sources J which locally conserve charge?

g) Based on a) - f), can we solve Maxwell’s equations for E(x, t) and B(x, t) for sources ρ and
J satisfying

∂

∂t
ρ+

∂

∂x
· J = 0

for all times t ≥ 0 by only solving the two Maxwell equations

∇×E = − ∂

∂t
B and ∇×B = µ0J + µ0ε0

∂

∂t
E

provided that

∇ ·E =
ρ

ε0
and ∇ ·B = 0

are satisfied at time t = 0? If yes, does it matter if we use ∇·E = ρ/ε0 and ∇·B = 0? Why?
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Problem 2 - Extended-stencil Maxwell solver

Let us consider the following scheme for the 1D Maxwell equations in vacuum

By
n+1/2
`+1/2 −By

n−1/2
`+1/2

∆t
= −

(
Ex

n
`+1 − Exn`

∆z

)

Ex
n+1
` − Exn`

∆t
= −c2

(1− α)
By

n+1/2
`+1/2 −By

n+1/2
`−1/2

∆z
+ α

By
n+1/2
`+3/2 −By

n+1/2
`−3/2

3∆z


where By

n′

`′ and Ex
n′
`′ represent the fields By and Ex at time n′∆t and position `′∆z.

a) By performing a Taylor expansion of the B field to order 2 in ∆z (i.e. with an error term
O(∆z3)), show that the expression

(1− α)
By

n+1/2
`+1/2 −By

n+1/2
`−1/2

∆z
+ α

By
n+1/2
`+3/2 −By

n+1/2
`−3/2

3∆z

Is an approximation of ∂B
∂z at position `∆z (and time (n+ 1/2)∆t) which is accurate to order

2 in ∆z.

Hint: remember that By
n+1/2
`+1/2 denotes the By field at position z = (`+1/2)∆z. In other words:

By
n+1/2
`+1/2 = By

n+1/2((` + 1/2)∆z) (with similar expressions for By
n+1/2
`−1/2 , By

n+1/2
`+3/2 , By

n+1/2
`−3/2 ).

Then perform a Taylor expansion around z = `∆z.

b) By combining the discrete Maxwell equations, show that the corresponding discrete propaga-
tion equation for Ex is of the form:

Ex
n+1
` − 2Ex

n
` + Ex

n−1
`

c2∆t2
=

Ex
n
`+1 − 2Ex

n
` + Ex

n
`−1

∆z2
(1)

+ β
Ex

n
`+2 − 4Ex

n
`+1 + 6Ex

n
` − 4Ex

n
`−1 + Ex

n
`−2

∆z2
(2)

and give the expression of β as a function of α.

Hint: Start by evaluating the quantity

1

∆t

(
Ex

n+1
` − Exn`

∆t
−
Ex

n
` − Ex

n−1
`

∆t

)

using the second Maxwell equation from above.

c) By assuming that Ex is of the form

Ex
n
` = E0e

ik`∆z−iωn∆t

Show that the discrete dispersion relation is:

1

c2∆t2
sin2

(
ω∆t

2

)
=

1

∆z2
sin2

(
k∆z

2

)
− 4α

3∆z2
sin4

(
k∆z

2

)
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d) For α < 3/8, show that the right-hand side of the above equation is a growing function of k,
for k ∈ [0, π/∆z].

Infer the maximum value that the right-hand takes for k ∈ [0, π/∆z], and thus infer that the
Courant limit is

∆tCFL =
∆z

c

1√
1− 4α

3

Reminder for standard formulas:

sin(x) =
eix − e−ix

2i

Problem 3 - Python ODE solver

Write a python script to advance the moments

d

ds



〈x̃2〉⊥
〈x̃x̃′〉⊥
〈x̃′2〉⊥
〈ỹ2〉⊥
〈ỹỹ′〉⊥
〈ỹ′2〉⊥

 =



2〈x̃x̃′〉⊥
〈x̃′2〉⊥ − κx(s)〈x̃2〉⊥ +

Q〈x̃2〉1/2⊥
2[〈x̃2〉1/2⊥ +〈ỹ2〉1/2⊥ ]

−2κx(s)〈x̃x̃′〉⊥ + Q〈x̃x̃′〉⊥
〈x̃2〉1/2⊥ [〈x̃2〉1/2⊥ +〈ỹ2〉1/2⊥ ]

2〈ỹỹ′〉⊥
〈ỹ′2〉⊥ − κy(s)〈ỹ2〉⊥ +

Q〈ỹ2〉1/2⊥
2[〈x̃2〉1/2⊥ +〈ỹ2〉1/2⊥ ]

−2κy(s)〈ỹỹ′〉⊥ + Q〈ỹỹ′〉⊥
〈ỹ2〉1/2⊥ [〈x̃2〉1/2⊥ +〈ỹ2〉1/2⊥ ]


with κx(s) = −κy(s) = κ̂ cos

(
2πs
Lp

)
. Use a perveance of Q = 6 × 10−4, focus strength κ̂ = 30

meter2
,

and lattice period Lp = 0.5 m.

a) Use a scientific python package with an ODE integrator (e.g. scipy.integrate.odeint) to
evolve the second order moments from an (arbitrary) initial condition at s = 0.

Hint: use scipy.integrate.odeint? in ipython for more information. Ask for help if you
are stuck!

b) Apply the result in a) to advance from the initial condition

〈x̃2〉⊥ = 〈ỹ2〉⊥ =
1

4
mm2

〈x̃x̃′〉⊥ = 〈ỹỹ′〉⊥ = 0

〈x̃′2〉⊥ = 〈ỹ′2〉⊥ = 25 mrad2

Use matplotlib to plot all 2nd order moments on an axial mesh with at least 10 grid points
over 10 lattice periods.

c) Plot the combination of moments corresponding to rms x-emittance

εx,rms =
√
〈x̃2〉⊥〈x̃′2〉⊥ − 〈x̃x̃′〉2⊥ [mm-mrad]

vs. s for 10 periods. Should you expect this value to be constant to numerical precision?
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d) Show that initial conditions at s = 0 can be found for some values of 〈x̃2〉⊥ and 〈ỹ2〉⊥ with
initial conditions

〈x̃x̃′〉⊥ = 〈ỹỹ′〉⊥ = 0

〈x̃′2〉⊥ = 〈ỹ′2〉⊥ = 25 mrad2

such that all moments repeat to numeral precision at s = Lp. Is εx,rms still constant?

Hint: Try numerical root finding from initial guess values of 〈x̃2〉⊥ = 〈ỹ2〉⊥.

Problem 4 - Alternative particle pusher

In order to integrate the continuous equations of motion

dx

dt
=

p

γm

dp

dt
= q

(
E +

p

γm
×B

)
(with γ =

√
1 + p2/(mc)2)

we choose to use the following staggered scheme

xn+1 − xn

∆t
=

pn+1/2

γn+1/2m
(3)

pn+1/2 − pn−1/2

∆t
= q

(
En +

1

2

(
pn+1/2

γn+1/2m
+

pn−1/2

γn−1/2m

)
×Bn

)
(4)

where the superscripts n, n+1/2 and n+1 indicates that the corresponding quantity is taken at
time n∆t, (n + 1/2)∆t and (n + 1)∆t, and where γn+1/2 =

√
1 + (pn+1/2)2/(mc)2 and γn−1/2 =√

1 + (pn−1/2)2/(mc)2.

While equation (3) is easy to convert into an update equation (xn+1 = xn + pn+1/2

γn+1/2m
∆t), it is

more difficult to obtain pn+1/2 from pn−1/2, since equation (4) is implicit (i.e. it involves pn+1/2 in
both its right-hand side and left-hand side). The aim of this problem is to obtain the corresponding
update equation.

a) Verify that the following scheme

p′ = pn−1/2 + qEn∆t+ pn−1/2 × s s =
q∆tBn

2γn−1/2m
(5)

pn+1/2 = p′ + pn+1/2 × t t =
q∆tBn

2γn+1/2m
(6)

satisfies equation (4). Which one of the two above equations is implicit?

b) By taking the vector product and scalar product of (6) by t+, show that pn+1/2 can be
extracted from this equation and reads

pn+1/2 =
1

1 + t2
(
p′ + p′ × t+ (p′ · t)t

)
(7)

Reminder: For any set of 3 vectors a, b, c, one has (a× b)× c = (a · c)b− (b · c)a
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c) In fact, equation (7) is still not explicit, since the expression of t (in equation (3)) depends on
pn+1/2, through γn+1/2.

Thus, in order to extract pn+1/2 explicitly from equation (7), take the following steps:

• From equation (7), show that the expression of (pn+1/2)2 is:

(pn+1/2)2 =
(p′)2 + (p′ · t)2

1 + t2
(8)

Reminder: For any set of two vectors a, b, one has (a× b) · (a× b) = a2b2 − (a · b)2

• Using the notation

τ =
qB∆t

2m
= γn+1/2t (9)

show that equation (8) leads to

(γ2)2 + [τ2 − (γ′)2]γ2 − [(u∗)2 + τ2] = 0 (10)

where γ is a short-hand notation for γn+1/2 (in other words γ2 = 1 + (pn+1/2)2/(mc)2)
and where the following notations where used

τ2 = τ 2 u =
p′ · τ
mc

(γ′)2 = 1 +
(p′)2

(mc)2
(11)

• By remarking that equation (10) is a second-order polynomial in γ2, show that its solution
is:

γ =
1√
2

√
(γ′)2 − τ2 +

√
[(γ′)2 − τ2]2 + 4u2 + 4τ2 (12)

d) Summing up all the previous step, in an actual algorithm (e.g. in Python) that computes
pn+1/2 from pn−1/2, in which order should the following steps be executed?

i) Compute γn+1/2 (also denoted here as γ) using equation (12) and equation (11).

ii) Compute s using equation (3), and τ using equation (11)

iii) Compute pn+1/2 using equation (7)

iv) Compute p′ from pn−1/2 using equation (5)

v) Compute t from τ and γn+1/2 (using equation (9))

e) Download the script particle_pusher.py from

https://raw.githubusercontent.com/RemiLehe/uspas_exercise/master/particle_pusher.

py

This is an incomplete script that implements the solver considered here. Find the lines tagged
by ## ASSIGNEMENT and complete them with the appropriate code.

f) Run the script (python particle_pusher.py). It integrates the equations of motion for a
relativistic electron (γ ' 100), in a magnetic field of 1 Tesla.

What do you expect the motion to be? Are the results from the code quantitatively consistent
with the expected Larmor period of τ = 2πγme

eB0
(with B0 = 1 T , me = 0.9 × 10−30 kg and

e = 1.6× 10−19 C) ?
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