Self-Consistent Simulations of Beam and Plasma Systems Final Exam ("take-home")

S. M. Lund, J.-L. Vay, R. Lehe, and D. Winklehner

Thursday, June $16^{\text {th }}, 2016$

Problem 1 - Maxwell's equations and redundant information.

a) Show that the relativistic Vlasov equation

$$
\left\{\frac{\partial}{\partial t}+\boldsymbol{v} \cdot \frac{\partial}{\partial \boldsymbol{x}}+q[\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B}] \cdot \frac{\partial}{\partial \boldsymbol{p}}\right\} f(\boldsymbol{x}, \boldsymbol{p}, t)=0
$$

with

$$
\boldsymbol{v}=\frac{\boldsymbol{p}}{\gamma m}=\frac{\boldsymbol{p} / m}{\left[1+\boldsymbol{p}^{2} /(m c)^{2}\right]^{1 / 2}}
$$

implies conservation of charge with

$$
\frac{\partial}{\partial t} \rho+\frac{\partial}{\partial \boldsymbol{x}} \cdot \mathbf{J}=0
$$

where

$$
\begin{aligned}
& \rho=q \int d^{3} p f \\
& \mathbf{J}=q \int d^{3} p \boldsymbol{v} f
\end{aligned}
$$

Hint 1: Use the same steps as in Monday's problem 3 a).
Hint 2: You are permitted to do this non-relativistically if you want. The result holds either way.
b) The 3D Maxwell equations are linear, $1^{\text {st }}$-order-in-time, kinematic equations for $\boldsymbol{E}(\boldsymbol{x}, t)$, $\boldsymbol{B}(\boldsymbol{x}, t)$ if $\rho(\boldsymbol{x}, t)$ and $\mathbf{J}(\boldsymbol{x}, t)$ are regarded as prescribed sources.

1) How many field components are in $\boldsymbol{E}, \boldsymbol{B}$?
2) How many equations are in the standard set of Maxwell equations?

$$
\begin{aligned}
\nabla \cdot \boldsymbol{E} & =\frac{\rho}{\epsilon_{0}} \\
\nabla \times \boldsymbol{E} & =-\frac{\partial}{\partial t} \boldsymbol{B} \\
\nabla \cdot \boldsymbol{B} & =0 \\
\nabla \times \boldsymbol{B} & =\mu_{0} \mathbf{J}+\mu_{0} \epsilon_{0} \frac{\partial}{\partial t} \boldsymbol{E}
\end{aligned}
$$

3) What initial $(t=0)$ values are required for \boldsymbol{E} and \boldsymbol{B} to solve the Maxwell equations for $\boldsymbol{E}(\boldsymbol{x}, t)$ and $\boldsymbol{B}(\boldsymbol{x}, t)$ for all times t with $\rho(\boldsymbol{x}, t)$ and $\mathbf{J}(\boldsymbol{x}, t)$ specified?
c) To better understand the situation in b), show that the Maxwell equations imply that

$$
\begin{aligned}
\nabla \times(\nabla \times \boldsymbol{E})+\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \boldsymbol{E} & =-\mu_{0} \frac{\partial}{\partial t} \mathbf{J} \\
\nabla \times(\nabla \times \boldsymbol{B})+\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \boldsymbol{B} & =\mu_{0} \nabla \times \mathbf{J}
\end{aligned}
$$

where

$$
\mu_{0} \epsilon_{0}=\frac{1}{c^{2}} .
$$

$\rightarrow 62^{\text {nd }}$-order-in-time equations for 6 field components $\boldsymbol{E}, \boldsymbol{B}$.
d) Show that

$$
\nabla \times \boldsymbol{E}=-\frac{\partial}{\partial t} \boldsymbol{B}
$$

implies that

$$
\frac{\partial}{\partial t} \nabla \cdot \boldsymbol{B}=0 .
$$

Does this imply that $\nabla \cdot \boldsymbol{B}(\boldsymbol{x}, t)=0$ for all times t if $\nabla \cdot \boldsymbol{B}(\boldsymbol{x}, t=0)=0$?
e) Show that

$$
\nabla \times \boldsymbol{B}=\mu_{0} \mathbf{J}+\mu_{0} \epsilon_{0} \frac{\partial}{\partial t} \boldsymbol{E} \quad \text { and } \quad \frac{\partial}{\partial t} \rho+\frac{\partial}{\partial \boldsymbol{x}} \cdot \mathbf{J}=0
$$

imply that

$$
\frac{\partial}{\partial t}\left(\nabla \cdot \boldsymbol{E}-\rho / \epsilon_{0}\right)=0
$$

Does this imply that $\nabla \cdot \boldsymbol{E}=\rho / \epsilon_{0}$ for all times t if $\nabla \cdot \boldsymbol{E}=\rho / \epsilon_{0}$ at $t=0$?
f) Show that the Maxwell equations

$$
\nabla \times \boldsymbol{B}=\mu_{0} \mathbf{J}+\mu_{0} \epsilon_{0} \frac{\partial}{\partial t} \boldsymbol{E} \quad \text { and } \quad \nabla \cdot \boldsymbol{E}=\frac{\rho}{\epsilon_{0}}
$$

imply that

$$
\frac{\partial}{\partial t} \rho+\frac{\partial}{\partial \boldsymbol{x}} \cdot \mathbf{J}=0
$$

Does this imply that the Maxwell equations should only be applied to charge ρ and current sources \mathbf{J} which locally conserve charge?
g) Based on a) - f), can we solve Maxwell's equations for $\boldsymbol{E}(\boldsymbol{x}, t)$ and $\boldsymbol{B}(\boldsymbol{x}, t)$ for sources ρ and J satisfying

$$
\frac{\partial}{\partial t} \rho+\frac{\partial}{\partial \boldsymbol{x}} \cdot \mathbf{J}=0
$$

for all times $t \geq 0$ by only solving the two Maxwell equations

$$
\nabla \times \boldsymbol{E}=-\frac{\partial}{\partial t} \boldsymbol{B} \quad \text { and } \quad \nabla \times \boldsymbol{B}=\mu_{0} \mathbf{J}+\mu_{0} \epsilon_{0} \frac{\partial}{\partial t} \boldsymbol{E}
$$

provided that

$$
\nabla \cdot \boldsymbol{E}=\frac{\rho}{\epsilon_{0}} \quad \text { and } \quad \nabla \cdot \boldsymbol{B}=0
$$

are satisfied at time $t=0$? If yes, does it matter if we use $\nabla \cdot \boldsymbol{E}=\rho / \epsilon_{0}$ and $\nabla \cdot \boldsymbol{B}=0$? Why?

Problem 2-Extended-stencil Maxwell solver

Let us consider the following scheme for the 1D Maxwell equations in vacuum

$$
\begin{aligned}
& \frac{B_{y_{\ell+1 / 2}}^{n+1 / 2}-B_{y_{\ell+1 / 2}}^{n-1 / 2}}{\Delta t}=-\left(\frac{E_{x+1}^{n}-E_{x}^{n}}{\Delta z}\right) \\
& \frac{E_{x}{ }^{n+1}-E_{x}{ }_{\ell}^{n}}{\Delta t}=-c^{2}\left((1-\alpha) \frac{B_{y_{\ell+1 / 2}}^{n+1 / 2}-B_{y}{ }_{\ell-1 / 2}^{n+1 / 2}}{\Delta z}+\alpha \frac{\left.B_{y_{\ell+3 / 2}^{n+1 / 2}-B_{y_{\ell-3 / 2}}^{n+1 / 2}}^{3 \Delta z}\right)}{}\right)
\end{aligned}
$$

where $B_{y}{ }_{\ell^{\prime}}^{n^{\prime}}$ and $E_{x}{ }_{\ell^{\prime}}^{n^{\prime}}$ represent the fields B_{y} and E_{x} at time $n^{\prime} \Delta t$ and position $\ell^{\prime} \Delta z$.
a) By performing a Taylor expansion of the B field to order 2 in Δz (i.e. with an error term $\left.O\left(\Delta z^{3}\right)\right)$, show that the expression

Is an approximation of $\frac{\partial B}{\partial z}$ at position $\ell \Delta z$ (and time $(n+1 / 2) \Delta t$) which is accurate to order 2 in Δz.
Hint: remember that $B_{y_{\ell+1 / 2}}^{n+1 / 2}$ denotes the B_{y} field at position $z=(\ell+1 / 2) \Delta z$. In other words: $B_{y_{\ell+1 / 2}}^{n+1 / 2}=B_{y}{ }^{n+1 / 2}((\ell+1 / 2) \Delta z)$ (with similar expressions for $B_{y_{\ell-1 / 2}}{ }^{n+1 / 2}, B_{y_{\ell+3 / 2}}{ }^{n+1 / 2}, B_{y_{\ell-3 / 2}}{ }^{n+1 / 2}$). Then perform a Taylor expansion around $z=\ell \Delta z$.
b) By combining the discrete Maxwell equations, show that the corresponding discrete propagation equation for E_{x} is of the form:

$$
\begin{align*}
& \frac{E_{x}^{n+1}-2 E_{x \ell}^{n}+E_{x}^{n-1}}{c^{2} \Delta t^{2}}= \frac{E_{x \ell+1}^{n}-2 E_{x \ell}^{n}+E_{x \ell-1}^{n}}{\Delta z^{2}} \tag{1}\\
&+\beta \frac{E_{x}^{n} n+2}{n}-4 E_{x \ell+1}^{n}+6 E_{x \ell}^{n}-4 E_{x \ell-1}^{n}+E_{x \ell-2}^{n} \tag{2}\\
& \Delta z^{2}
\end{align*}
$$

and give the expression of β as a function of α.
Hint: Start by evaluating the quantity

$$
\frac{1}{\Delta t}\left(\frac{E_{x_{\ell}}^{n+1}-E_{x}^{n}}{\Delta t}-\frac{E_{x \ell}^{n}-E_{x_{\ell}}^{n-1}}{\Delta t}\right)
$$

using the second Maxwell equation from above.
c) By assuming that E_{x} is of the form

$$
E_{x}{ }_{\ell}^{n}=E_{0} e^{i k \ell \Delta z-i \omega n \Delta t}
$$

Show that the discrete dispersion relation is:

$$
\frac{1}{c^{2} \Delta t^{2}} \sin ^{2}\left(\frac{\omega \Delta t}{2}\right)=\frac{1}{\Delta z^{2}} \sin ^{2}\left(\frac{k \Delta z}{2}\right)-\frac{4 \alpha}{3 \Delta z^{2}} \sin ^{4}\left(\frac{k \Delta z}{2}\right)
$$

d) For $\alpha<3 / 8$, show that the right-hand side of the above equation is a growing function of k, for $k \in[0, \pi / \Delta z]$.
Infer the maximum value that the right-hand takes for $k \in[0, \pi / \Delta z]$, and thus infer that the Courant limit is

$$
\Delta t_{C F L}=\frac{\Delta z}{c} \frac{1}{\sqrt{1-\frac{4 \alpha}{3}}}
$$

Reminder for standard formulas:

$$
\sin (x)=\frac{e^{i x}-e^{-i x}}{2 i}
$$

Problem 3-Python ODE solver

Write a python script to advance the moments
with $\kappa_{x}(s)=-\kappa_{y}(s)=\hat{\kappa} \cos \left(\frac{2 \pi s}{L_{p}}\right)$. Use a perveance of $\mathrm{Q}=6 \times 10^{-4}$, focus strength $\hat{\kappa}=\frac{30}{\text { meter }^{2}}$, and lattice period $\mathrm{L}_{\mathrm{p}}=0.5 \mathrm{~m}$.
a) Use a scientific python package with an ODE integrator (e.g. scipy.integrate.odeint) to evolve the second order moments from an (arbitrary) initial condition at $s=0$.
Hint: use scipy.integrate.odeint? in ipython for more information. Ask for help if you are stuck!
b) Apply the result in a) to advance from the initial condition

$$
\begin{aligned}
\left\langle\tilde{x}^{2}\right\rangle_{\perp} & =\left\langle\tilde{y}^{2}\right\rangle_{\perp}
\end{aligned}=\frac{1}{4} \mathrm{~mm}^{2}{ }^{2}=0 . \mathrm{mrad}^{2}
$$

Use matplotlib to plot all $2^{\text {nd }}$ order moments on an axial mesh with at least 10 grid points over 10 lattice periods.
c) Plot the combination of moments corresponding to rms x-emittance

$$
\epsilon_{x, r m s}=\sqrt{\left\langle\tilde{x}^{2}\right\rangle_{\perp}\left\langle\tilde{x}^{\prime 2}\right\rangle_{\perp}-\left\langle\tilde{x} \tilde{x}^{\prime}\right\rangle_{\perp}^{2}} \quad[m m-m r a d]
$$

vs. s for 10 periods. Should you expect this value to be constant to numerical precision?
d) Show that initial conditions at $s=0$ can be found for some values of $\left\langle\tilde{x}^{2}\right\rangle_{\perp}$ and $\left\langle\tilde{y}^{2}\right\rangle_{\perp}$ with initial conditions

$$
\begin{aligned}
\left\langle\tilde{x} \tilde{x}^{\prime}\right\rangle_{\perp} & =\left\langle\tilde{y} \tilde{y}^{\prime}\right\rangle_{\perp}
\end{aligned}=0 .
$$

such that all moments repeat to numeral precision at $s=\mathrm{L}_{\mathrm{p}}$. Is $\epsilon_{x, r m s}$ still constant?
Hint: Try numerical root finding from initial guess values of $\left\langle\tilde{x}^{2}\right\rangle_{\perp}=\left\langle\tilde{y}^{2}\right\rangle_{\perp}$.

Problem 4-Alternative particle pusher

In order to integrate the continuous equations of motion

$$
\frac{d \boldsymbol{x}}{d t}=\frac{\boldsymbol{p}}{\gamma m} \quad \frac{d \boldsymbol{p}}{d t}=q\left(\boldsymbol{E}+\frac{\boldsymbol{p}}{\gamma m} \times \boldsymbol{B}\right) \quad\left(\text { with } \gamma=\sqrt{1+\boldsymbol{p}^{2} /(m c)^{2}}\right)
$$

we choose to use the following staggered scheme

$$
\begin{align*}
\frac{\boldsymbol{x}^{n+1}-\boldsymbol{x}^{n}}{\Delta t} & =\frac{\boldsymbol{p}^{n+1 / 2}}{\gamma^{n+1 / 2} m} \tag{3}\\
\frac{\boldsymbol{p}^{n+1 / 2}-\boldsymbol{p}^{n-1 / 2}}{\Delta t} & =q\left(\boldsymbol{E}^{n}+\frac{1}{2}\left(\frac{\boldsymbol{p}^{n+1 / 2}}{\gamma^{n+1 / 2} m}+\frac{\boldsymbol{p}^{n-1 / 2}}{\gamma^{n-1 / 2} m}\right) \times \boldsymbol{B}^{n}\right) \tag{4}
\end{align*}
$$

where the superscripts ${ }^{n},{ }^{n+1 / 2}$ and ${ }^{n+1}$ indicates that the corresponding quantity is taken at time $n \Delta t,(n+1 / 2) \Delta t$ and $(n+1) \Delta t$, and where $\gamma^{n+1 / 2}=\sqrt{1+\left(\boldsymbol{p}^{n+1 / 2}\right)^{2} /(m c)^{2}}$ and $\gamma^{n-1 / 2}=$ $\sqrt{1+\left(\boldsymbol{p}^{n-1 / 2}\right)^{2} /(m c)^{2}}$.

While equation (3) is easy to convert into an update equation ($\boldsymbol{x}^{n+1}=\boldsymbol{x}^{n}+\frac{\boldsymbol{p}^{n+1 / 2}}{\gamma^{n+1 / 2} m} \Delta t$), it is more difficult to obtain $\boldsymbol{p}^{n+1 / 2}$ from $\boldsymbol{p}^{n-1 / 2}$, since equation (4) is implicit (i.e. it involves $\boldsymbol{p}^{n+1 / 2}$ in both its right-hand side and left-hand side). The aim of this problem is to obtain the corresponding update equation.
a) Verify that the following scheme

$$
\begin{array}{rlrl}
\boldsymbol{p}^{\prime} & =\boldsymbol{p}^{n-1 / 2}+q \boldsymbol{E}^{n} \Delta t+\boldsymbol{p}^{n-1 / 2} \times \boldsymbol{s} & \boldsymbol{s} & =\frac{q \Delta t \boldsymbol{B}^{n}}{2 \gamma^{n-1 / 2} m} \\
\boldsymbol{p}^{n+1 / 2} & =\boldsymbol{p}^{\prime}+\boldsymbol{p}^{n+1 / 2} \times \boldsymbol{t} & \boldsymbol{t} & =\frac{q \Delta t \boldsymbol{B}^{n}}{2 \gamma^{n+1 / 2} m} \tag{6}
\end{array}
$$

satisfies equation (4). Which one of the two above equations is implicit?
b) By taking the vector product and scalar product of (6) by \boldsymbol{t}_{+}, show that $\boldsymbol{p}^{n+1 / 2}$ can be extracted from this equation and reads

$$
\begin{equation*}
\boldsymbol{p}^{n+1 / 2}=\frac{1}{1+\boldsymbol{t}^{2}}\left(\boldsymbol{p}^{\prime}+\boldsymbol{p}^{\prime} \times \boldsymbol{t}+\left(\boldsymbol{p}^{\prime} \cdot \boldsymbol{t}\right) \boldsymbol{t}\right) \tag{7}
\end{equation*}
$$

Reminder: For any set of 3 vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$, one has $(\boldsymbol{a} \times \boldsymbol{b}) \times \boldsymbol{c}=(\boldsymbol{a} \cdot \boldsymbol{c}) \boldsymbol{b}-(\boldsymbol{b} \cdot \boldsymbol{c}) \boldsymbol{a}$
c) In fact, equation (7) is still not explicit, since the expression of \boldsymbol{t} (in equation (3)) depends on $\boldsymbol{p}^{n+1 / 2}$, through $\gamma^{n+1 / 2}$.
Thus, in order to extract $\boldsymbol{p}^{n+1 / 2}$ explicitly from equation (7), take the following steps:

- From equation (7), show that the expression of $\left(\boldsymbol{p}^{n+1 / 2}\right)^{2}$ is:

$$
\begin{equation*}
\left(\boldsymbol{p}^{n+1 / 2}\right)^{2}=\frac{\left(\boldsymbol{p}^{\prime}\right)^{2}+\left(\boldsymbol{p}^{\prime} \cdot \boldsymbol{t}\right)^{2}}{1+\boldsymbol{t}^{2}} \tag{8}
\end{equation*}
$$

Reminder: For any set of two vectors $\boldsymbol{a}, \boldsymbol{b}$, one has $(\boldsymbol{a} \times \boldsymbol{b}) \cdot(\boldsymbol{a} \times \boldsymbol{b})=\boldsymbol{a}^{2} \boldsymbol{b}^{2}-(\boldsymbol{a} \cdot \boldsymbol{b})^{2}$

- Using the notation

$$
\begin{equation*}
\boldsymbol{\tau}=\frac{q \boldsymbol{B} \Delta t}{2 m}=\gamma^{n+1 / 2} \boldsymbol{t} \tag{9}
\end{equation*}
$$

show that equation (8) leads to

$$
\begin{equation*}
\left(\gamma^{2}\right)^{2}+\left[\tau^{2}-\left(\gamma^{\prime}\right)^{2}\right] \gamma^{2}-\left[\left(u^{*}\right)^{2}+\tau^{2}\right]=0 \tag{10}
\end{equation*}
$$

where γ is a short-hand notation for $\gamma^{n+1 / 2}$ (in other words $\left.\gamma^{2}=1+\left(\boldsymbol{p}^{n+1 / 2}\right)^{2} /(m c)^{2}\right)$ and where the following notations where used

$$
\begin{equation*}
\tau^{2}=\boldsymbol{\tau}^{2} \quad u=\frac{\boldsymbol{p}^{\prime} \cdot \boldsymbol{\tau}}{m c} \quad\left(\gamma^{\prime}\right)^{2}=1+\frac{\left(\boldsymbol{p}^{\prime}\right)^{2}}{(m c)^{2}} \tag{11}
\end{equation*}
$$

- By remarking that equation (10) is a second-order polynomial in γ^{2}, show that its solution is:

$$
\begin{equation*}
\gamma=\frac{1}{\sqrt{2}} \sqrt{\left(\gamma^{\prime}\right)^{2}-\tau^{2}+\sqrt{\left[\left(\gamma^{\prime}\right)^{2}-\tau^{2}\right]^{2}+4 u^{2}+4 \tau^{2}}} \tag{12}
\end{equation*}
$$

d) Summing up all the previous step, in an actual algorithm (e.g. in Python) that computes $\boldsymbol{p}^{n+1 / 2}$ from $\boldsymbol{p}^{n-1 / 2}$, in which order should the following steps be executed?
i) Compute $\gamma^{n+1 / 2}$ (also denoted here as γ) using equation (12) and equation (11).
ii) Compute \boldsymbol{s} using equation (3), and $\boldsymbol{\tau}$ using equation (11)
iii) Compute $\boldsymbol{p}^{n+1 / 2}$ using equation (7)
iv) Compute \boldsymbol{p}^{\prime} from $\boldsymbol{p}^{n-1 / 2}$ using equation (5)
v) Compute \boldsymbol{t} from $\boldsymbol{\tau}$ and $\gamma^{n+1 / 2}$ (using equation (9))
e) Download the script particle_pusher.py from
https://raw.githubusercontent.com/RemiLehe/uspas_exercise/master/particle_pusher. py
This is an incomplete script that implements the solver considered here. Find the lines tagged by \#\# ASSIGNEMENT and complete them with the appropriate code.
f) Run the script (python particle_pusher.py). It integrates the equations of motion for a relativistic electron $(\gamma \simeq 100)$, in a magnetic field of 1 Tesla.

What do you expect the motion to be? Are the results from the code quantitatively consistent with the expected Larmor period of $\tau=\frac{2 \pi \gamma m_{e}}{e B_{0}}$ (with $B_{0}=1 T, m_{e}=0.9 \times 10^{-30} \mathrm{~kg}$ and $e=1.6 \times 10^{-19} C$) ?

