Self-Consistent Simulations of Beam and Plasma Systems Final Exam ("take-home")

S. M. Lund, J.-L. Vay, R. Lehe, and D. Winklehner

Thursday, June 16th, 2016

Problem 1 - Maxwell's equations and redundant information.

a) Show that the relativistic Vlasov equation

$$\left\{\frac{\partial}{\partial t} + \boldsymbol{v} \cdot \frac{\partial}{\partial \boldsymbol{x}} + q\left[\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}\right] \cdot \frac{\partial}{\partial \boldsymbol{p}}\right\} f(\boldsymbol{x}, \boldsymbol{p}, t) = 0$$

with

$$v = rac{p}{\gamma m} = rac{p/m}{\left[1 + p^2/(mc)^2\right]^{1/2}}$$

implies conservation of charge with

$$\frac{\partial}{\partial t}\rho + \frac{\partial}{\partial x} \cdot \mathbf{J} = 0$$

where

$$\rho = q \int d^3 p f$$

$$\mathbf{J} = q \int d^3 p \boldsymbol{v} f$$

Hint 1: Use the same steps as in Monday's problem 3 a).

Hint 2: You are permitted to do this non-relativistically if you want. The result holds either way.

- b) The 3D Maxwell equations are linear, 1st-order-in-time, kinematic equations for E(x,t), B(x,t) if $\rho(x,t)$ and J(x,t) are regarded as prescribed sources.
 - 1) How many field components are in E, B?
 - 2) How many equations are in the standard set of Maxwell equations?

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$
$$\nabla \times \mathbf{E} = -\frac{\partial}{\partial t} \mathbf{B}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial}{\partial t} \mathbf{E}$$

~

- 3) What initial (t = 0) values are required for \boldsymbol{E} and \boldsymbol{B} to solve the Maxwell equations for $\boldsymbol{E}(\boldsymbol{x},t)$ and $\boldsymbol{B}(\boldsymbol{x},t)$ for all times t with $\rho(\boldsymbol{x},t)$ and $\mathbf{J}(\boldsymbol{x},t)$ specified?
- c) To better understand the situation in b), show that the Maxwell equations imply that

$$\nabla \times (\nabla \times \boldsymbol{E}) + \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \boldsymbol{E} = -\mu_0 \frac{\partial}{\partial t} \mathbf{J}$$
$$\nabla \times (\nabla \times \boldsymbol{B}) + \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \boldsymbol{B} = \mu_0 \nabla \times \mathbf{J}$$

where

$$\mu_0 \epsilon_0 = \frac{1}{c^2}.$$

 $\rightarrow 6$ 2nd-order-in-time equations for 6 field components **E**, **B**.

d) Show that

$$abla imes oldsymbol{E} = -rac{\partial}{\partial t}oldsymbol{B}$$

implies that

$$\frac{\partial}{\partial t} \nabla \cdot \boldsymbol{B} = 0.$$

Does this imply that $\nabla \cdot \boldsymbol{B}(\boldsymbol{x},t) = 0$ for all times t if $\nabla \cdot \boldsymbol{B}(\boldsymbol{x},t=0) = 0$?

e) Show that

$$abla imes \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial}{\partial t} \mathbf{E} \quad \text{and} \quad \frac{\partial}{\partial t} \rho + \frac{\partial}{\partial \mathbf{x}} \cdot \mathbf{J} = 0$$

imply that

$$\frac{\partial}{\partial t} \left(\nabla \cdot \boldsymbol{E} - \rho / \epsilon_0 \right) = 0.$$

Does this imply that $\nabla \cdot \boldsymbol{E} = \rho/\epsilon_0$ for all times t if $\nabla \cdot \boldsymbol{E} = \rho/\epsilon_0$ at t = 0?

f) Show that the Maxwell equations

$$abla imes \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial}{\partial t} \mathbf{E} \quad \text{and} \quad \nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$

imply that

$$\frac{\partial}{\partial t}\rho + \frac{\partial}{\partial \boldsymbol{x}}\cdot\mathbf{J} = 0$$

Does this imply that the Maxwell equations should only be applied to charge ρ and current sources **J** which locally conserve charge?

g) Based on a) - f), can we solve Maxwell's equations for E(x, t) and B(x, t) for sources ρ and **J** satisfying

$$\frac{\partial}{\partial t}\rho + \frac{\partial}{\partial \boldsymbol{x}} \cdot \mathbf{J} = 0$$

for all times $t \ge 0$ by only solving the two Maxwell equations

$$abla imes oldsymbol{E} = -rac{\partial}{\partial t} oldsymbol{B} \quad ext{ and } \quad
abla imes oldsymbol{B} = \mu_0 oldsymbol{J} + \mu_0 \epsilon_0 rac{\partial}{\partial t} oldsymbol{E}$$

provided that

$$\nabla \cdot \boldsymbol{E} = rac{
ho}{\epsilon_0} \quad ext{ and } \quad \nabla \cdot \boldsymbol{B} = 0$$

are satisfied at time t = 0? If yes, does it matter if we use $\nabla \cdot \boldsymbol{E} = \rho/\epsilon_0$ and $\nabla \cdot \boldsymbol{B} = 0$? Why?

Problem 2 - Extended-stencil Maxwell solver

Let us consider the following scheme for the 1D Maxwell equations in vacuum

$$\frac{B_{y_{\ell+1/2}}^{n+1/2} - B_{y_{\ell+1/2}}^{n-1/2}}{\Delta t} = -\left(\frac{E_{x_{\ell+1}}^n - E_{x_{\ell}}^n}{\Delta z}\right)$$
$$\frac{E_{x_{\ell}}^{n+1} - E_{x_{\ell}}^n}{\Delta t} = -c^2 \left((1-\alpha)\frac{B_{y_{\ell+1/2}}^{n+1/2} - B_{y_{\ell-1/2}}^{n+1/2}}{\Delta z} + \alpha\frac{B_{y_{\ell+3/2}}^{n+1/2} - B_{y_{\ell-3/2}}^{n+1/2}}{3\Delta z}\right)$$

where $B_{y\ell'}^{n'}$ and $E_{x\ell'}^{n'}$ represent the fields B_y and E_x at time $n'\Delta t$ and position $\ell'\Delta z$.

a) By performing a Taylor expansion of the B field to order 2 in Δz (i.e. with an error term $O(\Delta z^3)$), show that the expression

$$(1-\alpha)\frac{B_{y_{\ell+1/2}}^{n+1/2} - B_{y_{\ell-1/2}}^{n+1/2}}{\Delta z} + \alpha\frac{B_{y_{\ell+3/2}}^{n+1/2} - B_{y_{\ell-3/2}}^{n+1/2}}{3\Delta z}$$

Is an approximation of $\frac{\partial B}{\partial z}$ at position $\ell \Delta z$ (and time $(n+1/2)\Delta t$) which is accurate to order 2 in Δz .

Hint: remember that $B_{y_{\ell+1/2}}^{n+1/2}$ denotes the B_y field at position $z = (\ell+1/2)\Delta z$. In other words: $B_{y_{\ell+1/2}}^{n+1/2} = B_y^{n+1/2}((\ell+1/2)\Delta z)$ (with similar expressions for $B_{y_{\ell-1/2}}^{n+1/2}$, $B_{y_{\ell+3/2}}^{n+1/2}$, $B_{y_{\ell-3/2}}^{n+1/2}$). Then perform a Taylor expansion around $z = \ell\Delta z$.

b) By combining the discrete Maxwell equations, show that the corresponding discrete propagation equation for E_x is of the form:

$$\frac{E_{x_{\ell}^{n+1}} - 2E_{x_{\ell}^{n}} + E_{x_{\ell}^{n-1}}}{c^{2}\Delta t^{2}} = \frac{E_{x_{\ell+1}^{n}} - 2E_{x_{\ell}^{n}} + E_{x_{\ell-1}^{n}}}{\Delta z^{2}}$$
(1)

$$+\beta \frac{E_{x\ell+2}^{n} - 4E_{x\ell+1}^{n} + 6E_{x\ell}^{n} - 4E_{x\ell-1}^{n} + E_{x\ell-2}^{n}}{\Delta z^{2}}$$
(2)

and give the expression of β as a function of α .

Hint: Start by evaluating the quantity

$$\frac{1}{\Delta t} \left(\frac{E_{x_{\ell}}^{n+1} - E_{x_{\ell}}^{n}}{\Delta t} - \frac{E_{x_{\ell}}^{n} - E_{x_{\ell}}^{n-1}}{\Delta t} \right)$$

using the second Maxwell equation from above.

c) By assuming that E_x is of the form

$$E_{x\ell}^{\ n} = E_0 e^{ik\ell\Delta z - i\omega n\Delta t}$$

Show that the discrete dispersion relation is:

$$\frac{1}{c^2 \Delta t^2} \sin^2\left(\frac{\omega \Delta t}{2}\right) = \frac{1}{\Delta z^2} \sin^2\left(\frac{k\Delta z}{2}\right) - \frac{4\alpha}{3\Delta z^2} \sin^4\left(\frac{k\Delta z}{2}\right)$$

d) For $\alpha < 3/8$, show that the right-hand side of the above equation is a growing function of k, for $k \in [0, \pi/\Delta z]$.

Infer the maximum value that the right-hand takes for $k \in [0, \pi/\Delta z]$, and thus infer that the Courant limit is

$$\Delta t_{CFL} = \frac{\Delta z}{c} \frac{1}{\sqrt{1 - \frac{4\alpha}{3}}}$$

Reminder for standard formulas:

$$\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$$

Problem 3 - Python ODE solver

Write a python script to advance the moments

$$\frac{d}{ds} \begin{bmatrix} \langle \tilde{x}^2 \rangle_{\perp} \\ \langle \tilde{x}\tilde{x}' \rangle_{\perp} \\ \langle \tilde{x}^{\prime 2} \rangle_{\perp} \\ \langle \tilde{y}^2 \rangle_{\perp} \\ \langle \tilde{y}^2 \rangle_{\perp} \end{bmatrix} = \begin{bmatrix} 2 \langle \tilde{x}\tilde{x}' \rangle_{\perp} \\ \langle \tilde{x}^{\prime 2} \rangle_{\perp} - \kappa_x(s) \langle \tilde{x}^2 \rangle_{\perp} + \frac{Q \langle \tilde{x}^2 \rangle_{\perp}^{1/2}}{2[\langle \tilde{x}^2 \rangle_{\perp}^{1/2} + \langle \tilde{y}^2 \rangle_{\perp}^{1/2}]} \\ -2\kappa_x(s) \langle \tilde{x}\tilde{x}' \rangle_{\perp} + \frac{Q \langle \tilde{x}\tilde{x}' \rangle_{\perp}}{\langle \tilde{x}^2 \rangle_{\perp}^{1/2} [\langle \tilde{x}^2 \rangle_{\perp}^{1/2} + \langle \tilde{y}^2 \rangle_{\perp}^{1/2}]} \\ 2 \langle \tilde{y}\tilde{y}' \rangle_{\perp} \\ \langle \tilde{y}'^2 \rangle_{\perp} - \kappa_y(s) \langle \tilde{y}^2 \rangle_{\perp} + \frac{Q \langle \tilde{y}^2 \rangle_{\perp}^{1/2}}{2[\langle \tilde{x}^2 \rangle_{\perp}^{1/2} + \langle \tilde{y}^2 \rangle_{\perp}^{1/2}]} \\ -2\kappa_y(s) \langle \tilde{y}\tilde{y}' \rangle_{\perp} + \frac{Q \langle \tilde{y}\tilde{y}' \rangle_{\perp}}{\langle \tilde{y}^2 \rangle_{\perp}^{1/2} + \langle \tilde{y}^2 \rangle_{\perp}^{1/2}]} \end{bmatrix}$$

with $\kappa_x(s) = -\kappa_y(s) = \hat{\kappa} \cos\left(\frac{2\pi s}{L_p}\right)$. Use a perveance of $\mathbf{Q} = 6 \times 10^{-4}$, focus strength $\hat{\kappa} = \frac{30}{\text{meter}^2}$, and lattice period $\mathbf{L}_p = 0.5$ m.

a) Use a scientific python package with an ODE integrator (e.g. scipy.integrate.odeint) to evolve the second order moments from an (arbitrary) initial condition at s = 0.

Hint: use scipy.integrate.odeint? in ipython for more information. Ask for help if you are stuck!

b) Apply the result in a) to advance from the initial condition

$$\langle \tilde{x}^2 \rangle_{\perp} = \langle \tilde{y}^2 \rangle_{\perp} = \frac{1}{4} \text{ mm}^2 \langle \tilde{x}\tilde{x}' \rangle_{\perp} = \langle \tilde{y}\tilde{y}' \rangle_{\perp} = 0 \langle \tilde{x}'^2 \rangle_{\perp} = \langle \tilde{y}'^2 \rangle_{\perp} = 25 \text{ mrad}^2$$

Use matplotlib to plot all 2nd order moments on an axial mesh with at least 10 grid points over 10 lattice periods.

c) Plot the combination of moments corresponding to rms x-emittance

$$\epsilon_{x,rms} = \sqrt{\langle \tilde{x}^2 \rangle_{\perp} \langle \tilde{x}'^2 \rangle_{\perp} - \langle \tilde{x}\tilde{x}' \rangle_{\perp}^2} \quad [mm\text{-}mrad]$$

vs. s for 10 periods. Should you expect this value to be constant to numerical precision?

d) Show that initial conditions at s = 0 can be found for some values of $\langle \tilde{x}^2 \rangle_{\perp}$ and $\langle \tilde{y}^2 \rangle_{\perp}$ with initial conditions

$$\langle \tilde{x}\tilde{x}' \rangle_{\perp} = \langle \tilde{y}\tilde{y}' \rangle_{\perp} = 0 \langle \tilde{x}'^2 \rangle_{\perp} = \langle \tilde{y}'^2 \rangle_{\perp} = 25 \text{ mrad}^2$$

such that all moments repeat to numeral precision at $s = L_p$. Is $\epsilon_{x,rms}$ still constant?

Hint: Try numerical root finding from initial guess values of $\langle \tilde{x}^2 \rangle_{\perp} = \langle \tilde{y}^2 \rangle_{\perp}$.

Problem 4 - Alternative particle pusher

In order to integrate the continuous equations of motion

$$\frac{d\boldsymbol{x}}{dt} = \frac{\boldsymbol{p}}{\gamma m} \qquad \frac{d\boldsymbol{p}}{dt} = q\left(\boldsymbol{E} + \frac{\boldsymbol{p}}{\gamma m} \times \boldsymbol{B}\right) \quad (\text{with } \gamma = \sqrt{1 + \boldsymbol{p}^2/(mc)^2})$$

we choose to use the following staggered scheme

$$\frac{\boldsymbol{x}^{n+1} - \boldsymbol{x}^n}{\Delta t} = \frac{\boldsymbol{p}^{n+1/2}}{\gamma^{n+1/2}m} \tag{3}$$

$$\frac{\mathbf{p}^{n+1/2} - \mathbf{p}^{n-1/2}}{\Delta t} = q \left(\mathbf{E}^n + \frac{1}{2} \left(\frac{\mathbf{p}^{n+1/2}}{\gamma^{n+1/2}m} + \frac{\mathbf{p}^{n-1/2}}{\gamma^{n-1/2}m} \right) \times \mathbf{B}^n \right)$$
(4)

where the superscripts n, n+1/2 and n+1 indicates that the corresponding quantity is taken at time $n\Delta t$, $(n+1/2)\Delta t$ and $(n+1)\Delta t$, and where $\gamma^{n+1/2} = \sqrt{1 + (p^{n+1/2})^2/(mc)^2}$ and $\gamma^{n-1/2} = \sqrt{1 + (p^{n-1/2})^2/(mc)^2}$.

While equation (3) is easy to convert into an update equation $(\boldsymbol{x}^{n+1} = \boldsymbol{x}^n + \frac{\boldsymbol{p}^{n+1/2}}{\gamma^{n+1/2}m}\Delta t)$, it is more difficult to obtain $\boldsymbol{p}^{n+1/2}$ from $\boldsymbol{p}^{n-1/2}$, since equation (4) is implicit (i.e. it involves $\boldsymbol{p}^{n+1/2}$ in both its right-hand side and left-hand side). The aim of this problem is to obtain the corresponding update equation.

a) Verify that the following scheme

$$\boldsymbol{p}' = \boldsymbol{p}^{n-1/2} + q\boldsymbol{E}^n \Delta t + \boldsymbol{p}^{n-1/2} \times \boldsymbol{s} \qquad \qquad \boldsymbol{s} = \frac{q\Delta t\boldsymbol{B}^n}{2\gamma^{n-1/2}m} \tag{5}$$

$$\boldsymbol{p}^{n+1/2} = \boldsymbol{p}' + \boldsymbol{p}^{n+1/2} \times \boldsymbol{t} \qquad \qquad \boldsymbol{t} = \frac{q\Delta t \boldsymbol{B}^n}{2\gamma^{n+1/2}m} \tag{6}$$

satisfies equation (4). Which one of the two above equations is implicit?

b) By taking the vector product and scalar product of (6) by t_+ , show that $p^{n+1/2}$ can be extracted from this equation and reads

$$\boldsymbol{p}^{n+1/2} = \frac{1}{1+\boldsymbol{t}^2} \left(\boldsymbol{p}' + \boldsymbol{p}' \times \boldsymbol{t} + (\boldsymbol{p}' \cdot \boldsymbol{t}) \boldsymbol{t} \right)$$
(7)

Reminder: For any set of 3 vectors \boldsymbol{a} , \boldsymbol{b} , \boldsymbol{c} , one has $(\boldsymbol{a} \times \boldsymbol{b}) \times \boldsymbol{c} = (\boldsymbol{a} \cdot \boldsymbol{c})\boldsymbol{b} - (\boldsymbol{b} \cdot \boldsymbol{c})\boldsymbol{a}$

c) In fact, equation (7) is still not explicit, since the expression of t (in equation (3)) depends on $p^{n+1/2}$, through $\gamma^{n+1/2}$.

Thus, in order to extract $p^{n+1/2}$ explicitly from equation (7), take the following steps:

• From equation (7), show that the expression of $(p^{n+1/2})^2$ is:

$$(\boldsymbol{p}^{n+1/2})^2 = \frac{(\boldsymbol{p}')^2 + (\boldsymbol{p}' \cdot \boldsymbol{t})^2}{1 + \boldsymbol{t}^2}$$
(8)

Reminder: For any set of two vectors \boldsymbol{a} , \boldsymbol{b} , one has $(\boldsymbol{a} \times \boldsymbol{b}) \cdot (\boldsymbol{a} \times \boldsymbol{b}) = \boldsymbol{a}^2 \boldsymbol{b}^2 - (\boldsymbol{a} \cdot \boldsymbol{b})^2$

• Using the notation

$$\boldsymbol{\tau} = \frac{q\boldsymbol{B}\Delta t}{2m} = \gamma^{n+1/2}\boldsymbol{t} \tag{9}$$

show that equation (8) leads to

$$(\gamma^2)^2 + [\tau^2 - (\gamma')^2]\gamma^2 - [(u^*)^2 + \tau^2] = 0$$
(10)

where γ is a short-hand notation for $\gamma^{n+1/2}$ (in other words $\gamma^2 = 1 + (\mathbf{p}^{n+1/2})^2/(mc)^2$) and where the following notations where used

$$\tau^2 = \boldsymbol{\tau}^2 \qquad u = \frac{\boldsymbol{p}' \cdot \boldsymbol{\tau}}{mc} \qquad (\gamma')^2 = 1 + \frac{(\boldsymbol{p}')^2}{(mc)^2} \tag{11}$$

By remarking that equation (10) is a second-order polynomial in γ², show that its solution is:

$$\gamma = \frac{1}{\sqrt{2}}\sqrt{(\gamma')^2 - \tau^2 + \sqrt{[(\gamma')^2 - \tau^2]^2 + 4u^2 + 4\tau^2}}$$
(12)

- d) Summing up all the previous step, in an actual algorithm (e.g. in Python) that computes $p^{n+1/2}$ from $p^{n-1/2}$, in which order should the following steps be executed?
 - i) Compute $\gamma^{n+1/2}$ (also denoted here as γ) using equation (12) and equation (11).
 - ii) Compute s using equation (3), and τ using equation (11)
 - iii) Compute $p^{n+1/2}$ using equation (7)
 - iv) Compute p' from $p^{n-1/2}$ using equation (5)
 - v) Compute t from τ and $\gamma^{n+1/2}$ (using equation (9))
- e) Download the script particle_pusher.py from

https://raw.githubusercontent.com/RemiLehe/uspas_exercise/master/particle_pusher.
py

This is an incomplete script that implements the solver considered here. Find the lines tagged by **## ASSIGNEMENT** and complete them with the appropriate code.

f) Run the script (python particle_pusher.py). It integrates the equations of motion for a relativistic electron ($\gamma \simeq 100$), in a magnetic field of 1 Tesla.

What do you expect the motion to be? Are the results from the code quantitatively consistent with the expected Larmor period of $\tau = \frac{2\pi\gamma m_e}{eB_0}$ (with $B_0 = 1 T$, $m_e = 0.9 \times 10^{-30} kg$ and $e = 1.6 \times 10^{-19} C$)?