Electromagnetic Particle-In-Cell codes

Remi Lehe

Lawrence Berkeley National Laboratory (LBNL)

US Particle Accelerator School (USPAS) Summer Session Self-Consistent Simulations of Beam and Plasma Systems Steven M. Lund, Jean-Luc Vay & Remi Lehe Colorado State U, Ft. Collins, CO, 13-17 June, 2016

Electromagnetic Particle-In-Cell codes: Outline

1 Electromagnetic PIC vs. electrostatic PIC

- When to use electrostatic or electromagnetic PIC
- The PIC loop in electrostatic and electromagnetic PIC

2 Finite-difference electromagnetic field solvers

- Staggering in time
- Staggering in space
- The equations $\boldsymbol{\nabla}\cdot\boldsymbol{B}=0$ and $\boldsymbol{\nabla}\cdot\boldsymbol{E}=\rho/\epsilon_0$

3 Current deposition and continuity equation

- Direct current deposition and continuity equation
- Boris correction
- Charge-conserving deposition

When to use ES-PIC or EM-PIC

Electrostatics
$$\frac{\partial \boldsymbol{B}}{\partial t} \approx \boldsymbol{0}$$
$$\boldsymbol{\nabla} \cdot \boldsymbol{E} = \frac{\rho}{\epsilon_0} \qquad \left(\rightarrow \boldsymbol{\nabla}^2 \phi = -\frac{\rho}{\epsilon_0} \right)$$

Approximate set of equations:

- Magnetic fields vary **slowly**.
- Magnetic fields are typically externally generated. The magnetic fields generated by beams/plasma are neglected.
- Fast evolutions such as radiation/retardation effects are neglected.

Electromagnetics

$$oldsymbol{
abla} oldsymbol{
abla} oldsymbol{E} = rac{
ho}{\epsilon_0} \qquad oldsymbol{
abla} imes oldsymbol{E} = -rac{\partial oldsymbol{B}}{\partial t}$$
 $oldsymbol{
abla} \cdot oldsymbol{B} = oldsymbol{0} \qquad oldsymbol{
abla} imes oldsymbol{B} = \mu_0 oldsymbol{j} + rac{1}{c^2} rac{\partial oldsymbol{E}}{\partial t}$

Full set of equations:

- Self-consistently includes magnetic fields generated by the beams/plasmas.
- Supports **fast** evolution of fields and esp. retardation/radiation effects

When to use ES-PIC or EM-PIC

Intuitive examples (animations)

- The particles are **slow** compared to *c*.
- The fields change **adiabatically** and depend only on the **instantaneous** positions of the particles.
- \rightarrow Electrostatic PIC is OK
 - The particles move **close to** *c*, and accelerate abruptly.
 - The fields depend on the **history** of the particles (radiation effects)
- \rightarrow Electromagnetic PIC is needed

Field solvers

Deposition of J

References

When to use ES-PIC or EM-PIC

Example using electrostatic PIC:

Sub-GeV acceleration of ions in conventional accelerators

• The ions are slower than c.

Example using electromagnetic PIC:

Laser-driven acceleration of electrons in plasmas

- Presence of radiation (the laser)
- The electrons move close to c.

When to use ES-PIC or EM-PIC

Other examples using electromagnetic PIC

• Capturing the **self-consistent** evolution of the **B** field is key.

• Presence of radiation (lasers)

Field solvers

Deposition of J

Field solver in ES-PIC and EM-PIC

Electrostatic field solver

$$oldsymbol{
abla}^2 \phi = -rac{
ho}{\epsilon_0} \qquad oldsymbol{E} = -oldsymbol{
abla} \phi$$

The fields are **recalculated from scratch** at each timestep, from the **current** particle charge density. (no dependence on the history) Electromagnetic field solver

$$rac{\partial oldsymbol{B}}{\partial t} = -oldsymbol{
abla} imes oldsymbol{E}$$
 $rac{\partial oldsymbol{E}}{\partial t} = c^2 oldsymbol{
abla} imes oldsymbol{B} - \mu_0 c^2 oldsymbol{j}$

The fields are **updated** at each timestep.

EM-PIC vs. ES-PIC

Field solvers

Deposition of .

References

The PIC loop in Electrostatic-PIC

The PIC loop in Electromagnetic-PIC

Electromagnetic Particle-In-Cell codes: Outline

1 Electromagnetic PIC vs. electrostatic PIC

- When to use electrostatic or electromagnetic PIC
- The PIC loop in electrostatic and electromagnetic PIC

2 Finite-difference electromagnetic field solvers

- Staggering in time
- Staggering in space
- The equations $\boldsymbol{\nabla}\cdot\boldsymbol{B}=0$ and $\boldsymbol{\nabla}\cdot\boldsymbol{E}=\rho/\epsilon_0$

3 Current deposition and continuity equation

- Direct current deposition and continuity equation
- Boris correction
- Charge-conserving deposition

Reminder: (Monday's Overview of Basic Numerical Methods)

 ${\bf Centered}$ discretization of derivatives is more accurate

Non-centered discretization

$$\frac{\partial f}{\partial t}\Big|_{n} = \frac{f_{n+1} - f_{n}}{\Delta t} + \mathcal{O}(\Delta t)$$

$$\frac{\partial f}{\partial t}\Big|_{n}$$

$$\underbrace{\xrightarrow{n\Delta t}}_{f_{n}} \underbrace{\xrightarrow{(n+1)\Delta t}}_{f_{n+1}} t$$

Centered discretization

$$\begin{split} \frac{\partial f}{\partial t} \bigg|_{n} &= \frac{f_{n+1/2} - f_{n-1/2}}{\Delta t} + \mathcal{O}(\Delta t^{2}) \\ & \frac{\partial f}{\partial t} \bigg|_{n} \\ \underbrace{\xrightarrow{n\Delta t} \quad \underbrace{f_{n-1/2} \quad \stackrel{n\Delta t}{\longrightarrow} \quad \underbrace{f_{n+1/2} \quad \stackrel{(n+1)\Delta t}{\longrightarrow} }_{f_{n+1/2}}}_{t} \end{split}$$

- How to discretize $\frac{\partial \boldsymbol{E}}{\partial t} = c^2 \boldsymbol{\nabla} \times \boldsymbol{B} \mu_0 c^2 \boldsymbol{j}$ in time?
- How to stagger E, B and j?

- E is defined at integer timestep.
- B and j are defined at half-integer timestep.

Implication for **field gathering**

The particle pusher requires \boldsymbol{B} at time $n\Delta t$. This is obtained by averaging $\boldsymbol{B}^{n+1/2}$ and $\boldsymbol{B}^{n-1/2}$.

Implication for **current deposition**

The current should be deposited at time $(n + 1/2)\Delta t$. This is done by using the particle's $\boldsymbol{v}_i^{n+1/2}$ and **some combination** of \boldsymbol{x}_i^n and \boldsymbol{x}_i^{n+1} . (See Section 3)

Staggering in time: the full EM-PIC cycle

Field solvers

Deposition of J

References

Staggering in space (1D)

To illustrate staggering in space, let us consider a **simplified case** where the fields vary only along z (1D case).

- How to discretize these equations?
- How to stagger E_x , B_y , j_x ?

Field solvers

Deposition of J

References

Staggering in space (1D)

1D discretized Maxwell equations for E_x and B_y

$$\begin{array}{rcl} \partial_{t}B_{y}|_{k+\frac{1}{2}}^{n} &=& -\partial_{z}E_{x}|_{k+\frac{1}{2}}^{n} \\ i.e. & \frac{B_{y_{k+\frac{1}{2}}}^{n+\frac{1}{2}} - B_{y_{k+\frac{1}{2}}}^{n-\frac{1}{2}}}{\Delta t} &=& -\left(\frac{E_{x_{k+1}}^{n} - E_{x_{k}}^{n}}{\Delta z}\right) \\ & \partial_{t}E_{x}|_{k}^{n+\frac{1}{2}} &=& -c^{2}\partial_{z}B_{y}|_{k}^{n+\frac{1}{2}} - \mu_{0}c^{2}j_{x_{k}}^{n+\frac{1}{2}} \\ i.e. & \frac{E_{x_{k}}^{n+1} - E_{x_{k}}^{n}}{\Delta t} &=& -c^{2}\left(\frac{B_{y_{k+\frac{1}{2}}}^{n+\frac{1}{2}} - B_{y_{k-\frac{1}{2}}}^{n+\frac{1}{2}}}{\Delta z}\right) - \mu_{0}c^{2}j_{x_{k}}^{n+\frac{1}{2}} \\ \hline & & & & \\ \hline \end{array} \end{array}$$

18

$\overline{\text{Staggering in space (3D): the Yee grid}}$

The different components of the different fields are staggered, so that all derivatives in the Maxwell equations are centered (Yee, 1966).

Staggering in space (3D): the Yee grid

Field	Position in space and time				Notation
	x	У	\mathbf{Z}	\mathbf{t}	
E_x	$(i+\frac{1}{2})\Delta x$	$j\Delta y$	$k\Delta z$	$n\Delta t$	$E_x_{i+\frac{1}{2},j,k}^n$
E_y	$i\Delta x$	$(j+\frac{1}{2})\Delta y$	$k\Delta z$	$n\Delta t$	$E_{y_{i,j+\frac{1}{2},k}^n}$
E_z	$i\Delta x$	$j\Delta y$	$(k+\frac{1}{2})\Delta z$	$n\Delta t$	$E_{z_{i,j,k+\frac{1}{2}}}^{n}$
B_x	$i\Delta x$	$(j+\frac{1}{2})\Delta y$	$(k+\frac{1}{2})\Delta z$	$(n+\frac{1}{2})\Delta t$	$B_{x_{i,j+\frac{1}{2},k+\frac{1}{2}}^{n+\frac{1}{2}}}$
B_y	$(i+\frac{1}{2})\Delta x$	$j\Delta y$	$(k+\frac{1}{2})\Delta z$	$(n+\frac{1}{2})\Delta t$	$B_{y_{i+\frac{1}{2},j,k+\frac{1}{2}}^{n+\frac{1}{2}}}$
B_z	$(i+\frac{1}{2})\Delta x$	$(j+\frac{1}{2})\Delta y$	$k\Delta z$	$(n+\frac{1}{2})\Delta t$	$B_{z_{i+\frac{1}{2},j+\frac{1}{2},k}^{n+\frac{1}{2}}}$
ρ	$i\Delta x$	$j\Delta y$	$k\Delta z$	$n\Delta t$	$\rho_{i,j,k}^n$
j_x	$(i+\frac{1}{2})\Delta x$	$j\Delta y$	$k\Delta z$	$(n+\frac{1}{2})\Delta t$	$j_{x_{i+\frac{1}{2},j,k}^{n+\frac{1}{2}}}$
j_y	$i\Delta x$	$(j+\frac{1}{2})\Delta y$	$k\Delta z$	$(n+\frac{1}{2})\Delta t$	$j_{y_{i,j+\frac{1}{2},k}^{n+\frac{1}{2}}}$
j_z	$i\Delta x$	$j\Delta y$	$(k+\frac{1}{2})\Delta z$	$(n+\frac{1}{2})\Delta t$	$j_{z_{i,j,k+\frac{1}{2}}^{n+\frac{1}{2}}}$

(example of a Maxwell equation on the white board)

Staggering in space (3D): the Maxwell equations

Maxwell-Ampère

$$\partial_t E_x \Big|_{i+\frac{1}{2},j,k}^{n+\frac{1}{2}} = c^2 \partial_y B_z \Big|_{i+\frac{1}{2},j,k}^{n+\frac{1}{2}} - c^2 \partial_z B_y \Big|_{i+\frac{1}{2},j,k}^{n+\frac{1}{2}} - \mu_0 c^2 j_x {}_{i+\frac{1}{2},j,k}^{n+\frac{1}{2}}$$

$$\begin{aligned} \partial_t E_y \Big|_{i,j+\frac{1}{2},k}^{n+\frac{1}{2}} &= c^2 \partial_z B_x \Big|_{i,j+\frac{1}{2},k}^{n+\frac{1}{2}} - c^2 \partial_x B_z \Big|_{i,j+\frac{1}{2},k}^{n+\frac{1}{2}} - \mu_0 c^2 j_y {}_{i,j+\frac{1}{2},k}^{n+\frac{1}{2}} \\ \partial_t E_z \Big|_{i,j,k+\frac{1}{2}}^{n+\frac{1}{2}} &= c^2 \partial_x B_y \Big|_{i,j,k+\frac{1}{2}}^{n+\frac{1}{2}} - c^2 \partial_y B_x \Big|_{i,j,k+\frac{1}{2}}^{n+\frac{1}{2}} - \mu_0 c^2 j_z {}_{i,j,k+\frac{1}{2}}^{n+\frac{1}{2}} \end{aligned}$$

Maxwell-Faraday

$$\frac{\partial_{t}B_{x}|_{i,j+\frac{1}{2},k+\frac{1}{2}}^{n} = -\partial_{y}E_{z}|_{i,j+\frac{1}{2},k+\frac{1}{2}}^{n} + \partial_{z}E_{y}|_{i,j+\frac{1}{2},k+\frac{1}{2}}^{n}}{\partial_{t}B_{y}|_{i+\frac{1}{2},j,k+\frac{1}{2}}^{n} = -\partial_{z}E_{x}|_{i+\frac{1}{2},j,k+\frac{1}{2}}^{n} + \partial_{x}E_{z}|_{i+\frac{1}{2},j,k+\frac{1}{2}}^{n}} \\ \frac{\partial_{t}B_{z}|_{i+\frac{1}{2},j+\frac{1}{2},k}^{n} = -\partial_{z}E_{y}|_{i+\frac{1}{2},j+\frac{1}{2},k}^{n} + \partial_{y}E_{z}|_{i+\frac{1}{2},j+\frac{1}{2},k}^{n}} \\ \frac{\partial_{t}F|_{i',j',k'}^{n'} \equiv \frac{F_{i',j',k'}^{n'+\frac{1}{2}} - F_{i',j',k'}^{n'-\frac{1}{2}}}{\Delta t} \quad \partial_{x}F|_{i',j',k'}^{n'} \equiv \frac{F_{i'+\frac{1}{2},j',k'}^{n'-\frac{1}{2},j,k'}}{\Delta x} \\ \partial_{y}F|_{i',j',k'}^{n'} \equiv \frac{F_{i',j'+\frac{1}{2},k'}^{n'-\frac{1}{2}} - F_{i',j'-\frac{1}{2},k'}^{n'-\frac{1}{2}}}{\Delta y} \quad \partial_{z}F|_{i',j',k'}^{n'} \equiv \frac{F_{i',j',k'+\frac{1}{2}}^{n'-\frac{1}{2},j',k'}}{\Delta z}$$

The equations $\nabla \cdot \boldsymbol{B} = 0$ and $\nabla \cdot \boldsymbol{E} = \rho/\epsilon_0$

Gauss law for magnetic field

$$\nabla \cdot \boldsymbol{B} = 0$$

$$\partial_x B_x \Big|_{i+\frac{1}{2}, j+\frac{1}{2}, k+\frac{1}{2}}^{n+\frac{1}{2}} + \partial_y B_y \Big|_{i+\frac{1}{2}, j+\frac{1}{2}, k+\frac{1}{2}}^{n+\frac{1}{2}} + \partial_z B_z \Big|_{i+\frac{1}{2}, j+\frac{1}{2}, k+\frac{1}{2}}^{n+\frac{1}{2}} = 0$$

Gauss law

$$\boldsymbol{\nabla} \cdot \boldsymbol{E} = \frac{\rho}{\epsilon_0}$$

$$\partial_x E_x|_{i,j,k}^n + \partial_y E_y|_{i,j,k}^n + \partial_z E_z|_{i,j,k}^n = \frac{\rho_{i,j,k}^n}{\epsilon_0}$$

These equations are not used during the PIC loop! \rightarrow Are they actually satisfied?

The equation $\nabla \cdot \boldsymbol{B} = 0$

Provided that:

- $\boldsymbol{\nabla} \cdot \boldsymbol{B} = 0$ is satisfied initially
- $\frac{\partial \boldsymbol{B}}{\partial t} = -\boldsymbol{\nabla} \times \boldsymbol{E}$ is satisfied at all time.

then:
$$\frac{\partial (\boldsymbol{\nabla} \cdot \boldsymbol{B})}{\partial t} = \boldsymbol{\nabla} \cdot \frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \cdot (-\boldsymbol{\nabla} \times \boldsymbol{E}) = 0$$

i.e. $\boldsymbol{\nabla} \cdot \boldsymbol{B} = 0$ at all time

This remains true for the discretized operators.

Conservation of $\boldsymbol{\nabla}\cdot\boldsymbol{B}$

Updating \boldsymbol{B} with the discretized Maxwell-Faraday equation preserves

$$\partial_x B_x \Big|_{i+\frac{1}{2}, j+\frac{1}{2}, k+\frac{1}{2}}^{n+\frac{1}{2}} + \partial_y B_y \Big|_{i+\frac{1}{2}, j+\frac{1}{2}, k+\frac{1}{2}}^{n+\frac{1}{2}} + \partial_z B_z \Big|_{i+\frac{1}{2}, j+\frac{1}{2}, k+\frac{1}{2}}^{n+\frac{1}{2}} = 0$$

The equation $\nabla \cdot \boldsymbol{E} = \rho / \epsilon_0$

Provided that:

• $\boldsymbol{\nabla} \cdot \boldsymbol{E} = \rho/\epsilon_0$ is satisfied initially

• $\frac{\partial \boldsymbol{E}}{\partial t} = -c^2 \boldsymbol{\nabla} \times \boldsymbol{B} - \mu_0 c^2 \boldsymbol{j}$ is satisfied at all time.

then:
$$\frac{\partial}{\partial t} \left(\boldsymbol{\nabla} \cdot \boldsymbol{E} - \frac{\rho}{\epsilon_0} \right) = -\frac{1}{\epsilon_0} \left(\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{j} \right)$$

i.e. $\boldsymbol{\nabla} \cdot \boldsymbol{E} = \frac{\rho}{\epsilon_0}$ at all time, provided that $\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{j} = 0$

Conservation of $\boldsymbol{\nabla} \cdot \boldsymbol{E} = \rho/\epsilon_0$

Updating E with the discretized Maxwell-Ampère equation preserves

$$\partial_x E_x|_{i,j,k}^n + \partial_y E_y|_{i,j,k}^n + \partial_z E_z|_{i,j,k}^n = \frac{\rho_{i,j,k}^n}{\epsilon_0}$$

provided that the continuity equation is satisfied at each iteration:

$$\partial_t \rho \big|_{i,j,k}^{n+\frac{1}{2}} + \partial_x j_x \big|_{i,j,k}^{n+\frac{1}{2}} + \partial_y j_y \big|_{i,j,k}^{n+\frac{1}{2}} + \partial_z j_z \big|_{i,j,k}^{n+\frac{1}{2}} = 0$$

Electromagnetic Particle-In-Cell codes: Outline

1 Electromagnetic PIC vs. electrostatic PIC

- When to use electrostatic or electromagnetic PIC
- The PIC loop in electrostatic and electromagnetic PIC

2 Finite-difference electromagnetic field solvers

- Staggering in time
- Staggering in space
- The equations $\boldsymbol{\nabla}\cdot\boldsymbol{B}=0$ and $\boldsymbol{\nabla}\cdot\boldsymbol{E}=\rho/\epsilon_0$

3 Current deposition and continuity equation

- Direct current deposition and continuity equation
- Boris correction
- Charge-conserving deposition

Charge/current deposition: reminder

Direct current deposition: 1D example

Direct current deposition: The current j is deposited with the same shape factor as the charge density ρ .

Direct current deposition and continuity equation

1D continuity equation

$$\frac{\partial \rho}{\partial t} + \frac{\partial j_z}{\partial z} = 0 \qquad \rightarrow \qquad \frac{\rho_k^{n+1} - \rho_k^n}{\Delta t} + \frac{j_z^{n+\frac{1}{2}} - j_z^{n+\frac{1}{2}}_{k-\frac{1}{2}}}{\Delta z} = 0$$

Does direct deposition satisfy the continuity equation? Example with *nearest grid point*, i.e. $S(z - z_i) = 1$ if $|z - z_i| < \Delta z/2$

Direct current deposition and continuity equation

.

Direct current deposition does not satisfy the continuity equation.

Reminder:

Updating E with the discretized Maxwell-Ampère equation preserves

$$oldsymbol{
abla} \cdot oldsymbol{E} = rac{
ho}{\epsilon_0}$$

provided that the continuity equation is satisfied at each iteration.

The PIC loop with direct current deposition does not preserve

$${oldsymbol
abla}\cdot {oldsymbol E} = rac{
ho}{\epsilon_0}$$

Two alternative solutions:

- $\bullet\,$ Boris correction: correcting $\boldsymbol{\nabla}\cdot\boldsymbol{E}$ at each iteration.
- Use a charge-conserving deposition instead of direct deposition.

Boris correction

Boris correction

At each iteration, after updating E, correct it using

$$E' = E - \nabla \delta \phi$$
 with $\nabla^2 \delta \phi = \nabla \cdot E - \frac{\rho}{\epsilon_0}$

The new field E' does satisfy (demonstration on the white board)

$$oldsymbol{
abla} \cdot oldsymbol{E}' = rac{
ho}{\epsilon_0}$$

Practical implementation

The discretized version of

$$oldsymbol{
abla}^2\delta\phi=oldsymbol{
abla}\cdotoldsymbol{E}-rac{
ho}{\epsilon_0}$$

needs to be solved on the grid at each iteration, so as to obtain $\delta\phi$. \rightarrow Can be done using techniques from electrostatic PIC (see previous lecture), e.g. direct matrix, spectral or relaxation methods

Charge-conserving deposition

Charge-conserving deposition

The current j is deposited in such a way that it automatically satisfies the continuity equation

$$\partial_t \rho |_{i,j,k}^{n+\frac{1}{2}} + \partial_x j_x |_{i,j,k}^{n+\frac{1}{2}} + \partial_y j_y |_{i,j,k}^{n+\frac{1}{2}} + \partial_z j_z |_{i,j,k}^{n+\frac{1}{2}} = 0$$

Several algorithms exist, e.g.

- Esirkepov (Esirkepov, 2001)
- ZigZag (Umeda et al., 2003)

In these cases, the PIC loop automatically preserves

$$oldsymbol{
abla} \cdot oldsymbol{E} = rac{
ho}{\epsilon_0}$$

The Boris correction is not needed.

Summary

References

- Esirkepov, T. (2001). Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor. Computer Physics Communications, 135(2):144 – 153.
- Umeda, T., Omura, Y., Tominaga, T., and Matsumoto, H. (2003). A new charge conservation method in electromagnetic particle-in-cell simulations. *Computer Physics Communications*, 156(1):73 – 85.
- Yee, K. (1966). Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. Antennas and Propagation, IEEE Transactions on, 14(3):302 –307.