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Rela;vis;c	Boris	pusher	
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For	the	velocity	component,	the	Boris	pusher	writes	
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Rela;vis;c	Boris	pusher:	problem	with	E+v×B≈0	

un+1 = un

Assuming	E	and	B	such	that	E+v×B=0:	
	
	
	
	
	
	
	
	
meaning	that	pusher	is	consistent	with	(E+v×B=0)	only	if	E=B=0,	and	is	thus		
inaccurate	for	e.g.	ultra-rela;vis;c	beams.	
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Replace	Boris	velocity	pusher	

–  Velocity	push:	

with	

–  Velocity	push:	

Looks	implicit	but	solvable	analy;cally	

	 	 	 	 	with	
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u = γv

Lorentz	invariant	par;cle	pusher	
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γF=1 γF=2 (output 
in γF=1)


Lab frame
particle cycling in constant B field

Boosted frame γ=2
ExB drift adds to gyration

X analytic New Boris Boris tan(α/α) cor. 
Y analytic New Boris Boris tan(α/α) cor. 

X analytic New Boris Boris tan(α/α) cor. 
Y analytic New Boris Boris tan(α/α) cor. 

Vay – IPAM 2012

Lorentz	invariant	par;cle	pusher:	test	w/	1	par;cle	
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			Calcula;on	of	e-cloud	induced	instability	of	a	proton	bunch	
	

• 	Proton	beam:	γ=500,	σz=13	cm	
• 	L=5	km,	con;nuous	focusing	

electron		
streamlines	

beam	

	

Beam	was	lost	aZer	a	few	betatron	oscilla;ons	with	Boris	pusher.	
	

Accurate	result	was	obtained	with	new	pusher.		

				

Applica;on	to	modeling	of	two-stream	instability	
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Applica;on	to	modeling	of	two-stream	instability	
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	Need	to	follow	short	(σz=13	cm)	and	s;ff	(γ=500)	proton	beam	for	5	km:	
•  	mobile	background	electrons	react	in	frac;on	of	beam	è	small	;me	steps	

electron		
streamlines	

beam	

	

Two	solu;ons:	

•  separate	treatment	of	slow	(beam)	and	fast	(electrons)	components	è	quasista;c	approx.	

•  solve	in	a	Lorentz	boosted	frame	which	matches	beam	&	electrons	;me	scales	

Modeling	of	two-stream	instability	is	expensive	
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bend	driZ	 driZ	quad	

sn		la`ce	

2-D	slab	of	electrons	(fast	;me	scale)	

3-D	beam	
(long	;me	
scale)	

s	

Quasista;c	approxima;on	

1.  2-D	slab	of	electrons	is	stepped	backward	(with	small	;me	steps)	through	
the	beam	field	and	its	self-field	(solving	2-D	Poisson	at	each	step),	

2.  2-D	electron	fields	are	stacked	in	a	3-D	array	and	added	to	beam	self-field,	
3.  3-D	field	is	used	to	kick	the	3-D	beam,	
4.  3-D	beam	is	pushed	to	next	sta;on	with	large	;me	steps,	
5.  Solve	Poisson	for	3-D	beam	self-field.	

re
pe

at
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Op;mal	Lorentz	boosted	frame	

Lorentz	
	

	transforma;on	
Lab	frame	

Accelerator	

Boosted	frame	

Accel.	

Beam	 Beam	

l L

βc

L /γl / γ 1−ββb( )⎡⎣ ⎤⎦

≈ 1+β( )γl

βbc
βb ≈1

Many	;me	steps	needed	to	follow	
short	s;ff	high-energy	beam	into	long	
accelerator	filled	with	fast	reac;ng	
electron	clouds.	

Much	less	;me	steps	needed	to	follow	
long	low-energy	beam	into	shorter	
accelerator	filled	with	s;ffer	electron	
clouds.	
	
Number	of	;me	steps	divided	by	(1+β)γ2	

With	high	γ,	orders	of	magnitude	speedups	are	possible.		
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			Calcula;on	of	e-cloud	induced	instability	of	a	proton	bunch	
	

• 	Proton	beam:	γ=500,	σz=13	cm	
• 	L=5	km,	con;nuous	focusing	

electron		
streamlines	

beam	

Applica;on	to	modeling	of	two-stream	instability	

proton	bunch	radius	vs.	z	
CPU	?me	(on	8	cores	in	2006):	

• 	lab	frame:	>2	weeks	
• 	frame	with	γ2=512:	<30	min	

Speedup	x1000	
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 Generaliza;on	of	op;mal	boosted	frame	approach	
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General formulation:
crossing of 2 relativistic objects

Γx/t= (L/l, T/δt)*

γ0

γ0

γ0

γ0

γ0

Range	of		
space/;me	scales		

Γx/t ∝ γ2 

The	range	of	space	and	?me	scales	is	not	a	Lorentz	invariant	and	scales	as	γ2	for	
the	crossing	of	two	rela?vis?c	objects	(maTer	of	photons).	

Applicable	to	study	of	electron	cloud	effects,	plasma	accelerators,	free	electron	lasers,	etc.	
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boat	wake	surfer	

laser	wake	e-	beam	

Laser	plasma	accelerators	“surf”	electrons	on	plasma	waves	
for	accelera;on	on	ultra	short	distances	

16

Accelera;ng	
field	

Decelelera;ng	
field	
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 Modeling	from	first	principle	is	very	challenging	
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For	a	10	GeV	scale	stage:	
	
					~1µm	wavelength	laser	propagates	into	~1m	plasma	

	è	millions	of	;me	steps	needed	

(similar	to	modeling	5m	boat	crossing	~5000	km	Atlan;c	Ocean)	
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L≈1.	m	

	l≈1.	µm	

1.	m/1.	µm=1,000,000	

Lab	frame	

compac;on		
X20,000	

l’=200.	µm	

0.01	m/200.	µm=50.	

Boosted	frame	γ	=	100	

Hendrik	Lorentz	

L’=0.01	m	

Op;mal	boosted	frame	enables	large	speedup	

Alternate	or	complementary	solu;ons:	quasista;c,	laser	envelope,	
azimuthal	Fourier	decomposi;on	(“Circ”),	…	

18
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Laser	injec?on	through	moving	plane	solves	ini?aliza?on	issue	in	LBF	

Lab	frame	
	

Standard	laser	injec;on		
from	leZ	boundary	or	all	at	once	

plasma	

Boosted	frame	
	

Shorter	Rayleigh	length	LR/γboost	
prevents	standard	laser	injec;on	

plasma	

Solu?on:	injec;on	through	a	moving	planar	
antenna	in	front	of	plasma*	

-vboost	

• Laser	injected	using	macropar;cles	
using	Esirkepov	current	deposi;on	
==>	verifies	Gauss’	Law.	

• For	high	γboost,	backward	radia;on		
is	blue	shiZed	and	unresolved.	
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Is	it	numerical	Cherenkov	instability?	
	
BTW,	what	is	“numerical	Cherenkov	instability”?		

Warp	2D	simula;on	10	GeV	LPA	(ne=1017cc,	γ=130)		

Longitudinal	electric	field	

laser	plasma	

Short	wavelength	instability	observed	at	entrance	of	plasma	for	large		γ (≥100)	
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Rela?vis?c	plasmas	PIC	subject	to	“numerical	Cherenkov”	

B. B. Godfrey, “Numerical Cherenkov instabilities in electromagnetic particle codes”, 
J. Comput. Phys. 15 (1974)
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Exact	Maxwell	 Standard	PIC		

Numerical	dispersion	leads	to	crossing	of	EM	field	and	plasma	modes	->	instability.		
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kz	

kx	

ω	

Exact	Maxwell	 Standard	PIC	

kz	

kx	

ω	

light	

plasma	
at	
β=0.99	

light	

plasma	
at	
β=0.99	

Space/;me	discre;za;on	aliases	è	more	crossings	in	2/3-D	

22
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kz	

kx	

ω	

Need	to	consider	at	least	first	aliases	mx={-3…+3}	to	study	stability.	

kz	

kx	

ω	

Space/;me	discre;za;on	aliases	è	more	crossings	in	2/3-D	

Standard	PIC	

light	

plasma	
at	
β=0.99	

light	

plasma	
at	
β=0.99	

aliases	 aliases	

Analysis	calls	for	full	PIC	numerical	dispersion	rela?on	

Exact	Maxwell	

23
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Maps	of	unstable	modes	

Normal	modes		
at	kx=0.5π/Δx	for	cΔt=0.7Δz	

EM	modes	
Plasma	modes	

Projec;on	of	normal		
modes	intersec;on	

24
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Numerical	dispersion	rela?on	of	full-PIC	algorithm	

2-D	rela?on		
(Fourier	space):	

*B. B. Godfrey, J. L. Vay, I. Haber, J. Comp. Phys. 248 (2013)

25
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*B. B. Godfrey, J. L. Vay, I. Haber, J. Comp. Phys. 248 (2013)

Numerical	dispersion	rela?on	of	full-PIC	algorithm	(II)	

26
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Then	simplify	and	solve	with	Mathema;ca…	

Numerical	dispersion	rela?on	of	full-PIC	algorithm	(III)	

27

*B. B. Godfrey, J. L. Vay, I. Haber, J. Comp. Phys. 248 (2013)
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Growth	rates	from	theory	match	Warp	simula?ons	

Theory Warp 

kx 

kz kz 

kx 

Warp run uses uniform drifting plasma with periodic BC. 
Yee finite difference, energy conserving gather (cΔt/Δx=0.7) 

28

Latest theory has led to ne insight and the development 
of very effective methods to mitigate the instability. 
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Lab	frame	 Frame	of	wake	(γ=130)	

spectrum spectrum

Physics	in	boosted	frame	also	allows	the	use		of	wideband	filtering	

Time	history	of	laser	spectrum	(rela;ve	to	laser	λ0	in	vacuum)	

Dephasing	;me	

Content	concentrated	around	λ0		

0              0              

Content	concentrated	at	much	larger	λ		

More	filtering	possible	without	altering	physics*.	

Spectrum	very	different	in	lab	and	boosted	frames	
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Ti
m
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m
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Laser field 

Laser field 

Lab frame 

Wake frame 

Hyperbolic rotation 
from Lorentz 
Transformation 
converts laser…

…spatial oscillations 
into 

time beating
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 Speedup	verified	by	us	and	others	to	over	a	million	

>1	million	x	speedup	
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Warp:	
1.  J.-L.	Vay,	et	al.,	Phys.	Plasmas	18	

123103	(2011)	
2.  J.-L.	Vay,	et	al.,	Phys.	Plasmas	

(le-er)	18	030701	(2011)	
3.  J.-L.	Vay,	et	al.,	J.	Comput.	Phys.	

230	5908	(2011)	
4.  J.-L.	Vay	et	al,	PAC	Proc.	(2009)	

Osiris:	
1.  S.	Mar;ns,	et	al.,	Nat.	Phys.		6	

311	(2010)		
2.  S.	Mar;ns,	et	al.,	Comput.	Phys.	

Comm.		181	869	(2010)		
3.  S.	Mar;ns,	et	al.,	Phys.	Plasmas		

17	056705	(2010)		
4.  S.	Mar;ns	et	al,	PAC	Proc.	(2009)	

Vorpal:	
1.  D.	Bruhwiler,	et	al.,		AIP	Conf.	

Proc	1086	29	(2009)			
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Very	high	precision	valida?on	of	BF	method	with	Warp		
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Warp-3D	–	a0=1,	n0=1019cm-3	(~100	MeV)	scaled	to	1017cm-3	(~10	GeV).	
Detailed	valida;on	for	a0>1	(non-linear	regime)	is	underway.	
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Simula;ons	in	various	frames	(γ=1,2,5,10,13)	are	almost	undis;nguishable.	
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		Enabling	simula?ons	that	were	previously	untractable	

Simula;on	of	10	GeV	stage	for	BELLA	project	(LBNL)	

Warp	2-D	

State-of-the-art	PIC	simula;ons	of	10	GeV	stages:	
	2006	(lab)	in	1D:	~	5k	CPU-hours			è	2011	(boost)	in	3D:	~	1k	CPU-hours	
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Current	state-of-the-art	in	lab:	2-D	RZ	simula;ons	in	~2	weeks	on	
thousands	of	cores.	
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Special topics summary

•  Modeling of relativistic beams/plasmas with full 
PIC may benefit from “non-standard” algorithms
-  Lorentz invariant particle pusher
-  Quasistatic approximation
-  Optimal Lorentz boosted frame

•  Quasistatic is well established method, but 
requires writing dedicated code or module

•  Boosted frame approach is newer and uses 
standard PIC at core, needing only extensions



35 

References 

1.  Brendan B. Godfrey, Jean-Luc Vay, “Improved numerical Cherenkov instability 
suppression in the generalized PSTD PIC algorithm”, Computer Physics 
Communications, 196, 221 (2015) http://dx.doi.org/10.1016/j.cpc.2015.06.008. 

2.  B. B. Godfrey, J.-L. Vay, "Suppressing the numerical Cherenkov instability in FDTD PIC 
codes", Journal of Computational Physics,  267, 1-6 (2014) http://dx.doi.org/10.1016/
j.jcp.2014.02.022 

3.  B. B. Godfrey, J.-L. Vay, I. Haber, "Numerical Stability Improvements for the 
Pseudospectral EM PIC Algorithm," IEEE Transactions on Plasma Science 42, 
1339-1344 (2014) http://dx.doi.org/10.1109/TPS.2014.2310654 

4.  B. B. Godfrey, J.-L. Vay, I. Haber, “Numerical stability analysis of the pseudo-spectral 
analytical time-domain PIC algorithm” , J. Comput. Phys. 258, 689-704 (2014) http://
dx.doi.org/10.1016/j.jcp.2013.10.053 

5.  B. B. Godfrey, J.-L. Vay, “Numerical stability of relativistic beam multidimensional PIC 
simulations employing the Esirkepov algorithm” , J. Comput. Phys. 248, 33-46 (2013) 
http://dx.doi.org/10.1016/j.jcp.2013.04.006. 

6.  J.-L. Vay, D. P. Grote, R. H. Cohen, & A. Friedman, “Novel methods in the Particle-In-Cell 
accelerator code-framework Warp”, Computational Science & Discovery 5, 014019 
(2012) 

7.  J.-L. Vay, C. G. R. Geddes, E. Cormier-Michel, D. P. Grote, “Design of 10 GeV-1 TeV laser 
wakefield accelerators using Lorentz boosted simulations”, Phys. Plasmas 18, 123103 
(2011) 



36 

References 

1.  J.-L. Vay, C. G. R. Geddes, E. Cormier-Michel, D. P. Grote, “Numerical methods 
for instability mitigation in the modeling of laser wakefield accelerators in a 
Lorentz boosted frame”, J. Comput. Phys. 230, 5908 (2011)  

2.  J.-L. Vay, C. G. R. Geddes, E. Cormier-Michel, D. P. Grote, “Effects of hyperbolic 
rotation in Minkowski space on the modeling of plasma accelerators in a 
Lorentz boosted frame”, Phys. Plasmas (letter) 18, 030701 (2011) 

3.  J.-L. Vay, “Simulation of beams or plasmas crossing at relativistic velocity”, 
Phys. Plasmas 15 056701 (2008) 

4.  J.-L. Vay, “Noninvariance of space- and time-scale ranges under a Lorentz 
transformation and the implications for the study of relativistic interactions”, 
Phys. Rev. Lett. 98, 130405 (2007) 


