

U.S. Particle Accelerator School

Education in Beam Physics and Accelerator Technology

Self-Consistent Simulations of Beam and Plasma Systems Steven M. Lund, Jean-Luc Vay, Rémi Lehe and Daniel Winklehner Colorado State U., Ft. Collins, CO, 13-17 June, 2016

A3. Special Topics

Jean-Luc Vay Lawrence Berkeley National Laboratory

Outline

- Particle pushers
 - Relativistic Boris pusher
 - Lorentz invariant pusher
 - Application to the modeling of electron cloud instability
- Quasistatic method
 - Concept
 - Application to the modeling of electron cloud instability
- Optimal Lorentz boosted frame
 - Concept
 - Application to the modeling of electron cloud instability
 - Generalization
 - Application to the modeling of laser-plasma accelerators

Relativistic Boris pusher

For the velocity component, the Boris pusher writes

$$u^{n+1} = u^n + \frac{q\Delta t}{m} \left(E^{n+1/2} + \frac{u^{n+1} + u^n}{2\gamma^{n+1/2}} \times B^{n+1/2} \right) \quad \text{with} \quad u = \gamma v$$

which decomposes into

with
$$\gamma^{n+1/2} = \sqrt{1 + \left(u^n + \frac{q\Delta t}{2m}E^{n+1/2}\right)^2 / c^2} = \sqrt{1 + \left(u^{n+1} - \frac{q\Delta t}{2m}E^{n+1/2}\right)^2 / c^2}$$

Relativistic Boris pusher: problem with E+v×B≈0

Assuming E and B such that E+v×B=0:

meaning that pusher is consistent with (E+v×B=0) only if E=B=0, and is thus inaccurate for e.g. ultra-relativistic beams.

Lorentz invariant particle pusher

Replace Boris velocity pusher

- Velocity push:
$$u^{n+1} = u^n + \frac{q\Delta t}{m} \left(E^{n+1/2} + \frac{u^{n+1} + u^n}{2\gamma^{n+1/2}} \times B^{n+1/2} \right) \qquad u = \gamma v$$

with

$$u^{n+1} = u^n + \frac{q\Delta t}{m} \left(E^{n+1/2} + \frac{v^{n+1} + v^n}{2} \times B^{n+1/2} \right)$$

Velocity push:

Looks implicit but solvable analytically

$$\begin{cases} \gamma^{i+1} = \sqrt{\frac{\sigma + \sqrt{\sigma^2 + 4(\tau^2 + u^{*2})}}{2}}\\ \mathbf{u}^{i+1} = [\mathbf{u}' + (\mathbf{u}' \cdot \mathbf{t})\mathbf{t} + \mathbf{u}' \times \mathbf{t}]/(1 + t^2) \end{cases}$$

with
$$\begin{bmatrix} \mathbf{u}' = \mathbf{u}^{\mathbf{i}} + \frac{q\Delta t}{m} \left(\mathbf{E}^{i+1/2} + \frac{\mathbf{v}^{i}}{2} \times \mathbf{B}^{i+1/2} \right) \\ \boldsymbol{\tau} = (q\Delta t/2m) \mathbf{B}^{i+1/2} \\ \boldsymbol{u}^{*} = \mathbf{u}' \cdot \boldsymbol{\tau}/c \\ \boldsymbol{\sigma} = \gamma'^{2} - \tau^{2} \\ \boldsymbol{\gamma}' = \sqrt{1 + \boldsymbol{u}'^{2}/c^{2}} \\ \mathbf{t} = \boldsymbol{\tau}/\gamma^{i+1} \end{bmatrix}$$

Lorentz invariant particle pusher: test w/ 1 particle

Application to modeling of two-stream instability

Calculation of e-cloud induced instability of a proton bunch

Beam was lost after a few betatron oscillations with Boris pusher.

Accurate result was obtained with new pusher.

Application to modeling of two-stream instability

WARP-3D

Zlab = Om

Outline

- Particle pushers
 - Relativistic Boris pusher
 - Lorentz invariant pusher
 - Application to the modeling of electron cloud instability
- Quasistatic method
 - Concept
 - Application to the modeling of electron cloud instability
- Optimal Lorentz boosted frame
 - Concept
 - Application to the modeling of electron cloud instability
 - Generalization
 - Application to the modeling of laser-plasma accelerators

Modeling of two-stream instability is expensive

Need to follow short (σ_z =13 cm) and stiff (γ =500) proton beam for 5 km:

mobile background electrons react in fraction of beam → small time steps

Two solutions:

- separate treatment of slow (beam) and fast (electrons) components → quasistatic approx.
- solve in a Lorentz boosted frame which matches beam & electrons time scales

Quasistatic approximation

- → 1. 2-D slab of electrons is stepped backward (with small time steps) through the beam field and its self-field (solving 2-D Poisson at each step),
- 2. 2-D electron fields are stacked in a 3-D array and added to beam self-field,
 - 3. 3-D field is used to kick the 3-D beam,
 - 4. 3-D beam is pushed to next station with large time steps,
 - 5. Solve Poisson for 3-D beam self-field.

repeat

Outline

- Particle pushers
 - Relativistic Boris pusher
 - Lorentz invariant pusher
 - Application to the modeling of electron cloud instability
- Quasistatic method
 - Concept
 - Application to the modeling of electron cloud instability
- Optimal Lorentz boosted frame
 - Concept
 - Application to the modeling of electron cloud instability
 - Generalization
 - Application to the modeling of laser-plasma accelerators

Optimal Lorentz boosted frame

Many time steps needed to follow short stiff high-energy beam into long accelerator filled with fast reacting electron clouds. Much less time steps needed to follow long low-energy beam into shorter accelerator filled with stiffer electron clouds.

Number of time steps divided by $(1+\beta)\gamma^2$

With high γ , orders of magnitude speedups are possible.

Application to modeling of two-stream instability

Calculation of e-cloud induced instability of a proton bunch

Generalization of optimal boosted frame approach

General formulation:

crossing of 2 relativistic objects

The range of space and time scales is not a Lorentz invariant and scales as γ^2 for the crossing of two relativistic objects (matter of photons).

Applicable to study of electron cloud effects, plasma accelerators, free electron lasers, etc.

Range of

Laser plasma accelerators "surf" electrons on plasma waves for acceleration on ultra short distances

Modeling from first principle is very challenging

For a 10 GeV scale stage:

 \sim 1µm wavelength laser propagates into \sim 1m plasma

→ millions of time steps needed

(similar to modeling **5m** boat crossing ~**5000** km Atlantic Ocean)

Optimal boosted frame enables large speedup

Alternate or <u>complementary</u> solutions: quasistatic, laser envelope, azimuthal Fourier decomposition ("Circ"), ...

Laser injection through moving plane solves initialization issue in LBF

Standard laser injection from left boundary or all at once

Solution: injection through a moving planar antenna in front of plasma*

 Laser injected using macroparticles using Esirkepov current deposition ==> verifies Gauss' Law.

olasma

Boosted frame

Shorter Rayleigh length L_R/γ_{boost} prevents standard laser injection

- For high γ_{boost} , backward radiation is blue shifted and unresolved.

Short wavelength instability observed at entrance of plasma for large γ (\geq 100)

Is it numerical Cherenkov instability?

BTW, what is "numerical Cherenkov instability"?

Relativistic plasmas PIC subject to "numerical Cherenkov"

B. B. Godfrey, "Numerical Cherenkov instabilities in electromagnetic particle codes", *J. Comput. Phys.* **15** (1974)

Numerical dispersion leads to crossing of EM field and plasma modes -> instability.

Space/time discretization aliases → more crossings in 2/3-D

Space/time discretization aliases → more crossings in 2/3-D

Analysis calls for full PIC numerical dispersion relation

Maps of unstable modes

<u>Normal modes</u> at $k_x=0.5\pi/\Delta x$ for $c\Delta t=0.7\Delta z$

Projection of normal modes intersection

Numerical dispersion relation of full-PIC algorithm

$$\begin{aligned} \begin{array}{l} \textbf{2-D relation} \\ \textbf{(Fourier space):} & \left(\begin{array}{c} \xi_{z,z} + [\omega] & \xi_{z,x} & \xi_{z,y} + [k_x] \\ \xi_{x,z} & \xi_{x,x} + [\omega] & \xi_{x,y} - [k_z] \\ [k_x] & -[k_z] & [\omega] \end{array}\right) & \left(\begin{array}{c} E_z \\ E_x \\ B_y \end{array}\right) = 0. \end{aligned} \\ \\ [\omega] = \sin\left(\omega\frac{\Delta t}{2}\right) / \left(\frac{\Delta t}{2}\right) & [k_z] = k_z \sin\left(k\frac{\Delta t}{2}\right) / \left(k\frac{\Delta t}{2}\right) & [k_x] = k_x \sin\left(k\frac{\Delta t}{2}\right) / \left(k\frac{\Delta t}{2}\right) \end{aligned} \\ \\ S^J = \left[\sin\left(k'_z\frac{\Delta z}{2}\right) / \left(k'_z\frac{\Delta z}{2}\right)\right]^{\ell_z+1} \left[\sin\left(k'_x\frac{\Delta x}{2}\right) / \left(k'_x\frac{\Delta x}{2}\right)\right]^{\ell_x+1}, \\ S^{\mathsf{E}_z} = \left[\sin\left(k'_z\frac{\Delta z}{2}\right) / \left(k'_z\frac{\Delta z}{2}\right)\right]^{\ell_z} \left[\sin\left(k'_x\frac{\Delta x}{2}\right) / \left(k'_x\frac{\Delta x}{2}\right)\right]^{\ell_x+1} (-1)^{m_z}, \\ S^{\mathsf{E}_x} = \left[\sin\left(k'_z\frac{\Delta z}{2}\right) / \left(k'_z\frac{\Delta z}{2}\right)\right]^{\ell_z+1} \left[\sin\left(k'_x\frac{\Delta x}{2}\right) / \left(k'_x\frac{\Delta x}{2}\right)\right]^{\ell_x} (-1)^{m_x}, \\ S^{\mathsf{B}_y} = \cos\left(\omega\frac{\Delta t}{2}\right) \left[\sin\left(k'_z\frac{\Delta z}{2}\right) / \left(k'_z\frac{\Delta z}{2}\right)\right]^{\ell_z} \left[\sin\left(k'_x\frac{\Delta x}{2}\right) / \left(k'_x\frac{\Delta x}{2}\right)\right]^{\ell_x} (-1)^{m_x}. \end{aligned}$$

*B. B. Godfrey, J. L. Vay, I. Haber, J. Comp. Phys. 248 (2013)

Numerical dispersion relation of full-PIC algorithm (II)

$$\begin{split} \xi_{z,z} &= -n\gamma^{-2}\sum_{m} S^{J}S^{E_{z}}\csc^{2}\left[\left(\omega - k_{z}'v\right)\frac{\Delta t}{2}\right] \\ & \left(kk_{z}^{2}\Delta t + \zeta_{z}k_{x}^{2}\sin\left(k\Delta t\right)\right)\Delta t\left[\omega\right]k_{z}'/4k^{3}k_{z}, \\ \xi_{z,x} &= -n\sum_{m} S^{J}S^{E_{x}}\csc\left[\left(\omega - k_{z}'v\right)\frac{\Delta t}{2}\right]\eta_{z}k_{x}'/2k^{3}k_{z}, \\ \xi_{z,y} &= nv\sum_{m} S^{J}S^{B_{y}}\csc\left[\left(\omega - k_{z}'v\right)\frac{\Delta t}{2}\right]\eta_{z}k_{x}'/2k^{3}k_{z}, \\ \xi_{x,z} &= -n\gamma^{-2}\sum_{m} S^{J}S^{E_{z}}\csc^{2}\left[\left(\omega - k_{z}'v\right)\frac{\Delta t}{2}\right] \\ & \left(k\Delta t - \zeta_{z}\sin\left(k\Delta t\right)\right)\Delta t\left[\omega\right]k_{x}k_{z}'/4k^{3}, \\ \xi_{x,x} &= -n\sum_{m} S^{J}S^{E_{x}}\csc\left[\left(\omega - k_{z}'v\right)\frac{\Delta t}{2}\right]\eta_{x}k_{x}'/2k^{3}k_{x}, \\ \xi_{x,y} &= nv\sum_{m} S^{J}S^{B_{y}}\csc\left[\left(\omega - k_{z}'v\right)\frac{\Delta t}{2}\right]\eta_{x}k_{x}'/2k^{3}k_{x}, \end{split}$$

*B. B. Godfrey, J. L. Vay, I. Haber, J. Comp. Phys. 248 (2013)

Numerical dispersion relation of full-PIC algorithm (III)

$$\eta_z = \cot\left[\left(\omega - k'_z v\right)\frac{\Delta t}{2}\right] \left(kk_z^2 \Delta t + \zeta_z k_x^2 \sin\left(k\Delta t\right)\right) \sin\left(k'_z v\frac{\Delta t}{2}\right) \\ + \left(k\Delta t - \zeta_x \sin\left(k\Delta t\right)\right) k_z^2 \cos\left(k'_z v\frac{\Delta t}{2}\right),$$

$$\eta_x = \cot\left[\left(\omega - k'_z v\right)\frac{\Delta t}{2}\right]\left(k\Delta t - \zeta_z \sin\left(k\Delta t\right)\right)k_x^2 \sin\left(k'_z v\frac{\Delta t}{2}\right) \\ + \left(kk_x^2\Delta t + \zeta_x k_z^2 \sin\left(k\Delta t\right)\right)\cos\left(k'_z v\frac{\Delta t}{2}\right).$$

Then simplify and solve with Mathematica...

*B. B. Godfrey, J. L. Vay, I. Haber, J. Comp. Phys. 248 (2013)

Growth rates from theory match Warp simulations

Warp run uses uniform drifting plasma with periodic BC. Yee finite difference, energy conserving gather ($c\Delta t/\Delta x=0.7$)

Latest theory has led to ne insight and the development of very effective methods to mitigate the instability.

Physics in boosted frame also allows the use of wideband filtering

Time history of laser spectrum (relative to laser λ_0 in vacuum)

Spectrum very different in lab and boosted frames

Content concentrated around λ_0

Content concentrated at much larger λ

More filtering possible without altering physics*.

Speedup verified by us and others to over a million

Warp:

- 1. J.-L. Vay, et al., *Phys. Plasmas* **18** 123103 (2011)
- 2. J.-L. Vay, et al., *Phys. Plasmas* (*letter*) **18** 030701 (2011)
- 3. J.-L. Vay, et al., *J. Comput. Phys.* **230** 5908 (2011)
- 4. J.-L. Vay et al, PAC Proc. (2009)

<u>Osiris:</u>

- 1. S. Martins, et al., *Nat. Phys.* **6** 311 (2010)
- 2. S. Martins, et al., *Comput. Phys. Comm.* **181** 869 (2010)
- 3. S. Martins, et al., *Phys. Plasmas* **17** 056705 (2010)
- 4. S. Martins et al, PAC Proc. (2009)

<u>Vorpal:</u>

1. D. Bruhwiler, et al., *AIP Conf. Proc* **1086** 29 (2009)

Very high precision validation of BF method with Warp

Simulations in various frames (γ =1,2,5,10,13) are almost undistinguishable.

Warp-3D – $a_0=1$, $n_0=10^{19}$ cm⁻³ (~100 MeV) scaled to 10^{17} cm⁻³ (~10 GeV). Detailed validation for a0>1 (non-linear regime) is underway.

Enabling simulations that were previously untractable

Simulation of 10 GeV stage for BELLA project (LBNL)

State-of-the-art PIC simulations of 10 GeV stages: 2006 (lab) in 1D: ~ 5k CPU-hours → 2011 (boost) in 3D: ~ 1k CPU-hours

Current state-of-the-art in lab: 2-D RZ simulations in ~2 weeks on thousands of cores.

Special topics summary

- Modeling of relativistic beams/plasmas with full PIC may benefit from "non-standard" algorithms
 - Lorentz invariant particle pusher
 - Quasistatic approximation
 - Optimal Lorentz boosted frame
- Quasistatic is well established method, but requires writing dedicated code or module
- Boosted frame approach is newer and uses standard PIC at core, needing only extensions

References

- 1. Brendan B. Godfrey, Jean-Luc Vay, "Improved numerical Cherenkov instability suppression in the generalized PSTD PIC algorithm", Computer Physics Communications, 196, 221 (2015) http://dx.doi.org/10.1016/j.cpc.2015.06.008.
- 2. B. B. Godfrey, J.-L. Vay, "Suppressing the numerical Cherenkov instability in FDTD PIC codes", Journal of Computational Physics, 267, 1-6 (2014) http://dx.doi.org/10.1016/j.jcp.2014.02.022
- 3. B. B. Godfrey, J.-L. Vay, I. Haber, "Numerical Stability Improvements for the Pseudospectral EM PIC Algorithm," IEEE Transactions on Plasma Science 42, 1339-1344 (2014) http://dx.doi.org/10.1109/TPS.2014.2310654
- 4. B. B. Godfrey, J.-L. Vay, I. Haber, "Numerical stability analysis of the pseudo-spectral analytical time-domain PIC algorithm", J. Comput. Phys. 258, 689-704 (2014) http://dx.doi.org/10.1016/j.jcp.2013.10.053
- 5. B. B. Godfrey, J.-L. Vay, "Numerical stability of relativistic beam multidimensional PIC simulations employing the Esirkepov algorithm", J. Comput. Phys. 248, 33-46 (2013) http://dx.doi.org/10.1016/j.jcp.2013.04.006.
- 6. J.-L. Vay, D. P. Grote, R. H. Cohen, & A. Friedman, "Novel methods in the Particle-In-Cell accelerator code-framework Warp", Computational Science & Discovery 5, 014019 (2012)
- J.-L. Vay, C. G. R. Geddes, E. Cormier-Michel, D. P. Grote, "Design of 10 GeV-1 TeV laser wakefield accelerators using Lorentz boosted simulations", Phys. Plasmas 18, 123103 (2011)

References

- 1. J.-L. Vay, C. G. R. Geddes, E. Cormier-Michel, D. P. Grote, "Numerical methods for instability mitigation in the modeling of laser wakefield accelerators in a Lorentz boosted frame", J. Comput. Phys. 230, 5908 (2011)
- 2. J.-L. Vay, C. G. R. Geddes, E. Cormier-Michel, D. P. Grote, "Effects of hyperbolic rotation in Minkowski space on the modeling of plasma accelerators in a Lorentz boosted frame", Phys. Plasmas (letter) 18, 030701 (2011)
- 3. J.-L. Vay, "Simulation of beams or plasmas crossing at relativistic velocity", Phys. Plasmas 15 056701 (2008)
- 4. J.-L. Vay, "Noninvariance of space- and time-scale ranges under a Lorentz transformation and the implications for the study of relativistic interactions", Phys. Rev. Lett. 98, 130405 (2007)

