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Detailed Outline
Introductory Lectures on Self-Consistent Simulations
Numerical Methods for Particle and Distribution Methods: 
Introduction to the Particle in Cell (PIC) Method

A. Overview
B. Integration of Equations of Motion

- Leapfrog Advance for Electric Forces
- Leapfrog Advance for Electric and Magnetic Forces 
- Numerical Errors and Stability of the Leapfrog Method 
- Illustrative Examples 

C. Field Solution
- Electrostatic Overview 
- Green's Function Approach
- Gridded Solution: Poisson Equation and Boundary Conditions
- Methods of Gridded Field Solution
- Spectral Methods and the FFT

D. Weighting: Depositing Particles on the Field Mesh and Interpolating Gridded Fields
     to Particles

- Overview of Approaches 
- Approaches: Nearest Grid Point, Cloud in Cell, Area, Splines 

E. Computational Cycle for Particle in Cell Simulations
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Numerical Solution of Particle and Distribution Methods
A: Overview
Particle Methods        – Generally not used at high space-charge intensity
Distribution Methods – Preferred (especially PIC) for high space-charge.  
 We will motivate why now.
Why are direct particle methods are not a good choice for typical beams?

N particle coordinates

Physical beam (typical)
N ~ 1010 – 1014 particles

Although larger problems are 
possible every year with more 
powerful computers, current 
processor speeds and memory 
limit us to N     108 particles 

Fast multipole and other 
advanced methods may show 
promise to circumvent issuephase-space.png
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Numerical Solution of Particle and Distribution Methods (2)
Represent the beam evolving in the Vlasvo model by Lagrangian “macroparticles” 
advanced in time

Same q/m ratio as real particle
– Gives same single particle dynamics in the applied field
More collisions due to macroparticles having more close approaches
– Enhanced collisionality is unphysical
– Controlled by smoothing the macroparticle interaction with the self-field.  

More on this later. Must check that results are converged.

macroparticles.png

Macroparticle Properties:

Partition local density 
into macroparticles
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Numerical Solution of Particle and Distribution Methods (3)

Continuum distribution advanced on a discrete phase-space mesh
– Extreme memory for high resolution.  Example: for 4D x-p

x
, y-p

y
 with 100 

mesh points on each axis -> 1004 = 108 values to store in fast memory (RAM)
Discretization errors can lead to aliasing and unphysical behavior 

    (negative probability, etc.)

Direct Vlasov as an example:

Discretize grid points {x
i
, p

i
}

Advance distribution f(x,p,t) at 
discrete grid points in time

phase-space_grid.png
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Numerical Solution of Particle and Distribution Methods (4)
Both particle and distribution methods can be broken up into two basic parts:

0) Moving particles or distribution evaluated at grid points through a finite time 
(or axial space) step

1) Calculation of beam self-fields consistently with the distribution of particles
In both methods, significant fractions of run time may be devoted to diagnostics

Moment calculations can be computationally intensive and may be “gathered” 
frequently for evolution “histories”
Phase space projections (“snapshot” in time)
Fields (snapshot in time)

Diagnostics are also critical!
Without appropriate diagnostics runs are useless, even if correct
Must accumulate and analyze/present large amounts of data in an 
understandable format
– Trends often as important as numbers

Significant code development time may also be devoted to creating (loading) the 
initial distribution of particles to simulate

Loading will usually only take a small fraction of total run time
Can simulate particles born off of source too – but sources often have very 
difficult physics issues also
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B: Integration of Equations of Motion

Higher order methods require more storage and numerical work per time step
Fieldsolves are expensive, especially in 3D, and several fieldsolves per step 
can be necessary for higher order accuracy

Therefore, low-order methods are typically used for self-consistent space-charge.  
The “leapfrog” method is most common

Only need to store prior position and velocity
One fieldsolve per time step

 
Illustrate the leapfrog method for non-relativistic particle equations of motion:

Develop methods for particles but can be applied to moments, distributions,...
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Leapfrog Method for Electric Forces
Leapfrog Method:  for velocity independent (Electric) forces
Leapfrog Advance (time centered): Advance velocity and position out of phase

Velocity:

Position:

leapfrog.png

– 
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Leapfrog Method: Order
To analyze the properties of the leapfrog method it is convenient to write the map 
in an alternative form:

Subtract the two equations above and apply the other leapfrog advance formula:

Note correspondence of formula to discretized derivative:

Leapfrog method is 2nd order accurate
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Initial conditions must be desynchronized in leapfrog method

Leapfrog Method: Synchronization
Since x and v are not evaluated at the same time in the leapfrog method 
synchronization is necessary both to start the advance cycle and for diagnostics

Initial conditions: typically, v is pushed back half a cycle

When evaluating diagnostic quantities such as moments the particle 
coordinates and velocities should first be synchronized analogously to above

leapfrog_synch.png
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Leapfrog Method for Magnetic and Electric Forces -- 
The Boris Method
Velocity Dependent Forces
Another complication in the evolution ensues when the force has velocity 
dependence, as occurs with magnetic forces.  This complication results because x 
and v are advanced out of phase in the leapfrog method

velocity term
Electric field E accelerates
Magnetic field B bends particle trajectory without change in speed |v|

A commonly implemented time centered scheme for magnetic forces is the 
following 3-step “Boris” method:

J. Boris, in Proceedings of the 4th Conference on the 
Numerical Simulation of Plasmas (Naval Research Lab, Washington DC 1970)
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The Boris Advance

Boris Advance: The coordinate advance is the same as previous leapfrog and the 
velocity advance is modified as a 3 step procedure:
1) Half-step acceleration in electric field

2) Full step rotation in magnetic field.  Here choose coordinates so that       is 
along the z-axis and and resolve           into components parallel/perpendicular to z 

3) Half-step acceleration in electric field
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Boris Advance Continued (2)

Complication: on startup, how does one generate the out-of-phase x, v advance 
from the initial conditions? 

Calculate E, B with initial conditions
Move v backward half a time step
– Rotate with B a half-step
– Decelerate a half-step in E

Similar comments hold for synchronization of x, v for diagnostic accumulation

Now we will look at the numerical properties of the leapfrog advance cycle
Only use a simple “electric” force example to illustrate issues
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Leapfrog Advance: Errors and Numerical Stability

To better understand the leapfrog method consider the simple harmonic oscillator:

Discretized equation of motion

This has solutions for

Try a solution of the form

and it is straightforward to show 
via expansion that for small

Exact solution
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It follows for the leapfrog method applied to a simple harmonic oscillator:
For                   the method is stable
There is no amplitude error in the integration
For                   the phase error is

- Actual phase:


- Simulated phase:


- Error phase: 

Note: i to get to a fixed time              and therefore phase errors decrease as 

Leapfrog Errors and Numerical Stability Continued (2) 

// Example:

Steps for a    phase errorTime step

//
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Leapfrog Errors and Numerical Stability Continued (3) 

Exact orbit
(solid ellipse)

Numerical orbit
(dashed ellipse)

Contrast: Numerical and Actual Orbit: Simple Harmonic Oscillator

Exact:

Numerical:

Emittance = 
(Phase Space Area)/

orbit_contrast.png
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The numerical orbit conserves phase space area regardless of the number of steps 
taken!  The slight differences between the numerical and actual orbits can be 
removed by rescaling the angular frequency to account for the discrete step 

More general analysis of the leapfrog method shows it has “symplectic” 
structure, meaning it preserves the Hamiltonian nature of the dynamics
Symplectic methods are important for long tracking problems (typical in 
accelerators) to obtain the right orbit structure 
– Runge-Kutta methods are not symplectic and can result in artificial 

numerical damping in long tracking problems

Leapfrog Errors and Numerical Stability Continued (4) 
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Example: Contrast of Non-Symplectic and Symplectic Advances 
Contrast: Numerical and Actual Orbit for a Simple Harmonic Oscillator 
use scaled coordinates (max extents unity for analytical solution)
Symplectic Leapfrog Advance:

lf_np100_ns5_xvxplot.png

Sine-type 
initial 
conditions

Cosine-type 
initial 
conditions

lf_np100_ns5_yvyplot.png

lf_np100_ns10_xvxplot.png

lf_np100_ns10_yvyplot.png

5 steps per period, 100 periods 10 steps per period, 100 periods

Numerical 
Orbit

Actual 
Orbit
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Example: Contrast of Non-Symplectic and Symplectic Advances (2) 

Contrast: Numerical and Actual Orbit for a Simple Harmonic Oscillator
Non-Symplectic 2nd Order Runge-Kutta Advance: (see earlier notes on RK advance)

rk2_np10_ns6_xvxplot.png

Sine-type 
initial 
conditions

Cosine-type 
initial 
conditions

rk2_np50_ns20_xvxplot.png

6 steps per period, 10 periods 20 steps per period, 50 periods

Numerical 
Orbit

Actual 
Orbit

rk2_np10_ns6_yvyplot.png rk2_np50_ns20_yvyplot.png
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Contrast: Numerical and Actual Orbit for a Simple Harmonic Oscillator
Non-Symplectic 4th Order Runge-Kutta Advance: (analog to notes on 2nd order RK adv)

rk4_np20_ns5_xvxplot.png

Sine-type 
initial 
conditions

Cosine-type 
initial 
conditions

rk4_np200_ns10_xvxplot.png

5 steps per period, 20 periods 10 steps per period, 200 periods

Numerical 
Orbit

Actual 
Orbit

rk4_np20_ns5_yvyplot.png rk4_np200_ns10_yvyplot.png

Example: Contrast of Non-Symplectic and Symplectic Advances (3) 
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Example: Leapfrog Stability Applied to the Nonlinear
                 Envelope Equation in a Continuous Focusing Lattice 

For linear equations of motion, numerical stability requires:

Here, k is the wave number of the phase advance of the quantity evolving under 
the linear force.   The continuous focusing envelope equation is nonlinear:

 Several wavenumbers k expected to be expressed in the envelope evolution:

.... Depressed     Particle Betatron Motion

.... Undepressed Particle Betatron Motion

.... Quadrupole Envelope Mode

.... Breathing Envelope Mode
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Example: Leapfrog Stability and the Continuous Foc. Envelope Equation (2)

Expect that                     for the fastest (largest k) component determines stability.

Numerical simulations for an initially matched envelope with:

The highest k-mode, the breathing mode determines stability, i.e.
is the stability criterion.  Other values of produce results in 

agreement with this conclusion.  
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Numerical simulations an initially matched envelope with:
Note that numerical errors seed small amplitude mismatch and that the plot scale 
to the left is  ~ 10-13 , corresponding to numerical errors.  

Example: Leapfrog Stability and the Continuous Foc. Envelope Equation (3)
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Comments of 2D and 3D Axisymmetric Particle Moves 

To be added:

Comments on moving ring particles:
- 3D axisymmetry => particles rings,  3D axisymmetry => particles are infinite 
   cylindrical shells.  
- Angular momentum will be conserved for such particles (can rotate)
- Easier to do in many cases using x-y movers 
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C: Field Solution
The self-consistent calculation of beam-produced self-fields is vital to accurately 
simulate forces acting on particles in intense beams

Linear structure of the Maxwell equations allow fields to be resolved into 
externally applied and self (beam generated) components

applied fields generated by magnets and electrodes

self fields generated by beam charges and currents

Can be calculated at high resolution in external codes and imported or 
specified via analytic formulas
Sometimes calculated from code fieldsolve via applied charges and currents 
and boundary conditions 

At high beam intensities can be a large fraction (on average) of  applied fields
Can be important to calculate with realistic boundary conditions 
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Electrostatic Field Solution

For simplicity, we restrict analysis to electrostatic problems to illustrate methods:

The Maxwell equations to be solved for E are

B
a
 specified via another code or theory

E
a
 due to biased electrodes and E

s
 due to beam space-charge

implies that we can always take and so



SM Lund, USPAS,  2016 27Self-Consistent Simulations

Electrostatic Field Solution: Typical Problem

As an example, it might be necessary to solve (2D) fields of a beam within an 
electric quadrupole assembly.

specified on domain 
boundary or 
consistently to model 
assembly in free 
space

beam_lattice_2d.png

Quadrupole 
electrodes held at ±V

Beam beam_lattice_2d.png
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Electrostatic Field Solution by Green's Function
Formally, the solution to      can be constructed with a Green's function, illustrated 
here with Dirichlet boundary conditions:

This yields (Jackson, Classical Electrodynamics)

Self-field component Applied field from electrode potentials

Definitions:

Unit normal vector to 
boundary surface
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Electrostatic Field Solution by Green's Function (2)

Macro-particle charge and coordinate

Can be calculated on mesh in advance and need not be recalculated if 
transverse geometry does not change 

Then the field at the ith macro-particle is (self-field term removed):

Can be analytical in simple situations

Macro-particle number

Let:
Self Field       :

Applied Field       :

Comment:
We evaluate at macropararticle 
coordinate with no shape factor for 
simplicity.   
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Electrostatic Field Solution by Green's Function (3)
The Green's Function expression for       will, in general, be a numerically 
intensive expression to evaluate at each macroparticle

N
p
(N

p
 – 1) terms to evaluate and G itself will in general be complicated and 

may require many costly numerical operations for each term, limiting N
p

Small N
p
 for which this procedure is practical will result in a noisy field

– Enhanced, unphysically high, close approaches (collisions) with poor statistics can 
change the physics

Special “fast multipole” methods based on Green's functions can reduce the 
scaling to ~N

p
 or ~N

p
ln(N

p
).

– Coefficient is large and smoothing is not easily implemented, potentially rendering 
such methods inferior to gridded methods (to be covered) for Vlasov evolution

– May prove superior for scattering effects in particle formulations

// Example: Self fields in free space

//
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Field Solution on a Discrete Grid
An alternative procedure is needed to

0) Calculate fields efficiently by discretization of the Maxwell equations
1) Smooth interactions to compensate for limited particle numbers

Approach: Solve the Maxwell Equations on a discrete spatial grid and then 
smooth the interactions calculated from the gridded field.
Discretization: 2D uniform grid (1D and 3D analogous)

Field components, potential, 
and charge are gridded

Comments:
       must be calculated from macro-particles, not necessarily on mesh points
Fields will ultimately be needed at marco-particle coordinates, not on mesh 
points

These issues will be covered later under “particle weighting” in Sec. 4.D
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Field Solution on a Discrete Grid:
Example Problem, Beam in an Electric Quadrupole

specified on grid 
boundary and possibly 
on surfaces within the 
grid

Beam in an electric quadrupole lattice (2D)

beam_lattice_2d_grid.png
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Gridded Field Solution: Discretized Poisson Eqn.
For 2nd  order centered differencing (see 4.B Basic Numerical Methods), the 
Poisson Equation

with the gridded field components calculated as

Boundary conditions must also be incorporated as constraint equations
Dirichlet Conditions:

Neumann Conditions:

specified on surfaces

specified on surfaces

becomes
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Gridded Field Solution: Discretized Dirichlet Boundary Cond

Dirichlet Conditions:

Example:

specified on surface

at right grid edge

For cells

Dirichlet.png
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Gridded Field Solution: Discretized Neumann Boundary Cond

Neumann Conditions:

Example:

specified on surfaces

at right grid edge

Neumann.png

Use 1st order forward 
difference formula at surface
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      will in general be sparse due to use of local, low-order finite differencing
Many fast, numerically efficient inversion methods exist for sparse matrices
– Specific method best used depends on type of differencing and BC's

Solution of Discretized Poisson Eqn -- Direct Matrix Method
The finite-differenced Poisson Equation and the boundary conditions can be 
expressed in matrix form as:

Coefficients matrix from local finite differences.  This matrix will be 
sparse, i.e., most elements will equal zero
Vector of unknown potentials at grid points

“Source” terms resulting from beam charge deposited on the grid          and 
known potentials from boundary condition constraints

Formal solution found by matrix inversion:

Direct inversion of is not practical due to the large dimension of the problem
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Example Discretized Field Solution

To illustrate this procedure, consider a simple 1D example with Dirichlet BC's

Discretize to               :    

Note: irrelevant

Correspond to surface terms that fix boundary condition potentials

rho_1d_Dirichlet.png
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Example Discretized Field Solution (2)

Matrix has tri-diagonal structure and can be rapidly inverted using optimized 
numerical methods to efficiently calculate the  

Sparse matrices need not be stored in full (waste of memory)

The 1D discretized Poisson equation and boundary conditions can be expressed in 
matrix form as:
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Field Solution Methods on Grid

Many other methods exist to solve the discretized field equations.  These methods 
fall into three broad classes:
1) Direct Matrix Methods

Fast inversion of sparse matrix
2) Spectral Methods

Fast Fourier Transform (FFT)
– Periodic boundary conditions
– Sine transform (           on grid boundary)
– FFT + capacity matrix for arbitrary conductors
– Free space boundary conditions

3) Relaxation Methods
Successive over-relaxation (SOR)
– General boundary conditions and structures
Multigrid (good, fast, and accurate method for complicated boundaries)



SM Lund, USPAS,  2016 40Self-Consistent Simulations

Field Solution Methods on Grid Continued (2)

Sometimes methods in these three classes are combined.  For example, one might 
employ spectral methods transversely and invert the tri-diagonal matrix 
longitudinally.

Other discretization procedures are also widely employed, giving rise to other 
classes of field solutions such as:

Finite elements
Variational
Monte Carlo

Methods of field solution are central to the efficient numerical solution of intense 
beam problems.  It is not possible to review them all here.  But before discussing 
particle weighting, we will first overview the important spectral methods and 
FFT's
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Spectral Methods and the FFT

The spectral approach combined with numerically efficient Fast Fourier 
Transforms (FFT's) is commonly used to efficiently solve the Poisson Equation on 
a discrete spatial grid

Approach provides spectral information on fields that can be used to smooth 
the interactions
Efficiency of method enabled progress in early simulations in the 1960s
– Computers had very limited memory and speed
Method remains important and can be augmented in various ways to 
implement needed boundary conditions
– Simple to code using numerical libraries for FFT
– Efficiency still important ... especially in 3D geometries
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Spectral Method: Discrete Fourier Transform
Illustrate in 1D for simplicity (multidimensional case analogous) 

Continuous Fourier Transforms (Reminder)

Transform Poisson Equation:

Similar procedures work to calculate the field on a finite, discrete spatial grid
Develop by analogy to continuous transforms
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//  Aside:  Transform conventions and notation vary

//

Physics convention:
Reflects common usage in dynamics and quantum mechanics

Symmetrical convention:
Factors of           used symmetrically can be convenient numerically

Sometimes

Subtlety:
If                   as                   then k must contain a large enough positive 
imaginary part for transform to exist and contour to carry out inversion 
contour must be taken consistently
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Discrete Fourier Transform (2)
Discretize the problem as follows:

The discrete transform is the defined by analogy to the continuous transform by:

Analogy

In this section we employ j as a grid index to avoid confusion with
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Discrete Fourier Transform (3)

Note that is periodic in n with period n
x

Then an inverse transform can be constructed exactly:

Let                               so n and j have the same ranges

This exact inversion is proved in the problems by summing a geometric series
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Spectral Methods: Aliasing

The discrete transform describes a periodic problem if indices are extended
Discretization errors (aliasing) can occur

Figure to be edited:

Plots will be 
replaced with 
real transforms 
based on a 
Gaussian 
distribution in 
future versions 
of the notes
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Discrete Transform Formulas
Application of the Discrete Fourier Transform to solve Poisson's Equation:

Applying the discrete transform yields:

Poisson's Equation becomes:

Note: factors of K
n

2 need only be calculated once per simulation (store values)
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Derivation of Discrete Transform Eqns.
/// Example Derivation of a formula for the discrete transformed E-field:

Substitute transforms into difference formula:

Discretized E-field

Transforms
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This equation must hold true for each term in the sum proportional to 

to be valid for a general j.

///
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Comments on Discrete Fourier Transform (DFT):
Formulated method in 1D for simplicity, but straightforward to generalize to 
2D or 3D
– Apply  transform along each coordinate axis
Can optimize further than the simple sketch given here: Field is real
Zero potential outer grid boundary conditions simply incorporated by use of 
sine transform variant 
Symmetries can be exploited to implement free space boundary conditions by 
using a mesh only 4x larger than the region containing particles 
– Allows use of fine mesh only where needed
– Implemented in some common accelerator codes like IMPACT 
– See Hockney and Eastwood book
Method outlined can be augmented by the use of capacity matrices to put 
conducting structures within mesh
– Beyond scope of this discussion
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Spectral Methods: Discrete Transform Field Solution

Typical discrete Fourier transform field solution (not optimized)

Forward
Transform

Multiply
Inverse
Transform

Finite
Difference

DFT IDFT

Comments
K

n

2 factors can be calculated once and stored to increase numerical efficiency
        is typically found on grid using finite difference of          rather than
from         and inverse discreet Fourier transform 
- Less optimized numerical work 
- More simply integrated in code with other discretized grid methods 

 DFT  = Discreet Fourier Transform
IDFT  = Inverse Discreet Fourier Transform
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Discussion of Spectral Methods and the FFT

The Fast Fourier Transform (FFT) makes this procedure numerically efficient
Discrete transform (no optimization), ~(n

x
 + 1)2 complex operations

FFT exploits symmetries to reduce needed operations to ~ (n
x
 + 1)ln(n

x
 + 1)

– Huge savings for large n
x

The needed symmetries exist only for certain numbers of grid points.  In the 
simplest manifestations: n

x
 + 1 = 2p, p = 1, 2, 3, ...

– Reduced freedom in grid choices
– Other manifestations allow n

x
 + 1 = 2p and products of prime numbers for 

more possibilities
The FFT can be combined with other procedures such as capacity matrices to 
implement boundary conditions for interior conductors, etc.

Allows rapid field solutions in complicated conductor geometries when 
capacity matrix elements can be pre-calculated and stored
Symmetries can be exploited using 4x domain size to implement free-space 
boundary conditions (see Hockney and Eastwood)

FFT is the fastest method for simple geometries
Simple to code using typical numerical libraries for FFT's
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D: Weighting: Depositing Particles on the Field Mesh
and Interpolating Gridded Fields to Particles

We have outlined methods to solve the electrostatic Maxwell's equations on a 
discrete spatial grid.  To complete the description we must:

Specify how to deposit macro-particle charges and current onto the grid
– Macroparticles not generally at mesh points
Specify how to interpolate fields on the spatial grid points to the 
macroparticle coordinates (not generally at mesh points) to apply in the 
particle advance
Smooth interactions resulting from the small number of macro-particles to 
reduce artificial collisions resulting from the use of an unphysically small 
number of macro-particles needed for rapid simulation

This is called the particle weighting problem
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Weighting (2)
Particle weighting problem for electrostatic fields

It is found that it is usually better to employ the same weighting schemes to 
deposit both the macro-particle charges and currents on the mesh and to 
extrapolate the fields at gridded points to the macro-particles

Avoids unphysical self-forces where the particle accelerates itself

bl_fig_2-2b.png

[Adapted from Birdsall and Langdon]
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Weighting Methods

Many methods of particle weighting exist.  They can be grouped into 4 categories:
1) Nearest Grid Point
2) Cloud in Cell (CIC)

- Shaped particles
- PIC method, linearly shaped particles

3) Multipole
- Dipole, subtracted dipole, etc.

4) Higher order methods
- Splines
- k-space cutoffs in discrete transforms

Possible hybrid methods also exist.  We will illustrate methods 1) and 2) for 
electrostatic problems.  Descriptions of other methods can be found in the 
literature.
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Weighting: Nearest Grid Point
1) Nearest Grid Point:  Assign charges to the nearest grid cell

Fast and simple: Show for 1D; 2D and 3D generalization straightforward
Noisy

Charge of macro-particle

Closest grid cell

Charge Deposition on ith Grid:

Field “Interpolation” to Particle:

Coordinate of macro-particle

bl_fig_2-6a.png

bl_fig_2-6a.png

[Adapted from Birdsall and Langdon]
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bl_fig_2-6a.pngComments on nearest grid point weighting:
Very easy to code and fast, but square shaped particles with abrupt transitions 
as they move through the grid result in enhanced statistical noise 
– Method consequently not commonly used 
Currents can be interpolated to grid similarly for electromagnetic field solves 
and/or diagnostics.  Deposit macro-particle current density contributions 

on nearest mesh point.
The 1D example is contrived:  1D Poisson equation Green's function 
simple/fast (sum charge to left – sum charge to right)
– Use 1D only to show method simply; 2D and 3D relevant
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Weighting : Cloud in Cell
2) Cloud in Cell:  Shaped macro-particles pass freely through each other

Smoother than Nearest Grid Point, but more numerical work
For linear interpolation results in simple, commonly used “Particle in Cell” 
(PIC) method

bl_fig_2-6b.png

[Adapted from Birdsall and Langdon]
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Cloud in Cell (2)
Charge and coordinate of macro-particle

Closest grid cell

Charge Deposition on ith Grid:

Field Interpolation to Particle:

Comments:
Linear interpolation results in triangularly shaped particles
Shape smooths interactions reducing collisionality
– Vlasov evolution with limited number of shaped particles
Simple shape is fast to calculate numerically
Currents can be similarly deposited on grid similarly for electromagnetic 
solving and/or diagnostics by depositing current density contributions 
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Weighting: Area Weighting

In a 2D cloud-in-cell system, weighting is accomplished using rectangular “area 
weighting” to nearest grid points

Macro-particle charge
Macro-particle coordinates

Mesh charges

area_weighting.png
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Area Weighting (2)

Comments:
Procedure easily generalized to 3D using opposing diagonal volume elements 
of the eight grid points bounding the grid cell  
Currents can be interpolated to grid similarly for electromagnetic solving 
and/or diagnostics

Charge Deposition to Four Nearest Grids:

Field Interpolation From Four Nearest Grids:
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//  Aside:  Efficient numerical numerical operation for area weighting

//

Give outline on how to efficiently 
code for rapid calculation with 
minimal number of multiplications.  
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Higher Order Weighting: Splines

To be added: Slide on Splines to
illustrate what is meant by higher order methods
Make Points:
- Requires more numerical work and harder to code
- Some schemes can introduce neg probability problems
- Should evaluate against simpler low order methods using 
  same computer power to see which method wins. 
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S4E: Computational Cycle for Particle-In-Cell Simulations

We now have (simplified) notions of the parts that make up a 
Particle-In-Cell (PIC) simulation of Vlasov beam evolution

0) Particle Moving
1) Field Solver on a discrete grid
2) Weighting of particle and fields to and from the grid

bl_fig_2.3a.png

[Adapted from Birdsall and Langdon]
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Computational Cycle for Particle-In-Cell Simulations Contd.
Comments:

Diagnostics must also be accumulated for useful runs  (see Intro. Lec. 05)
- Particles (coordinates and velocities) and fields will need to be synchronized 

(common time) when diagnostics are accumulated
Initial conditions must be set (particle load, see Intro. Lec. 06)

- Particle and field variables may need appropriate de-synchronization to initialize 
advance

Benchmarking/Testing is critical and also very difficult
– Must test thoroughly to convince yourself answers are correct
– Known problems useful for testing: analytic, when possible,  allows 
   precise error evaluation
– Invariants (e.g., system canonical angular momentum in 

axisymmetric systems) provide strong checks 
– Other benchmarked codes on established problems provide good checks 
– Push algorithms to clear failure so you learn what is dangerous 
– Can be surprising how methods fail when applied outside of 

original intended context: important to check/verify with problem changes!

Ignorance is not bliss in simulation.  It is very dangerous.  
Check often and carefully.
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Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future 
editions of US Particle Accelerator School (USPAS) and Michigan State 
University (MSU) courses.  Contact:

Prof. Steven M. Lund 
Facility for Rare Isotope Beams 
Michigan State University 
640 South Shaw Lane  
East Lansing, MI 48824

lund@frib.msu.edu 
(517) 908 – 7291 office 
(510) 459 -  4045  mobile

Please provide corrections with respect to the present archived version at: 
 
https://people.nscl.msu.edu/~lund/uspas/scs_2016

Redistributions of class material welcome.  Please do not remove author credits.

mailto:lund@frib.msu.edu
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