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Outline
Introductory Lectures on Self-Consistent Simulations

Initial Distributions and Particle Loading
A. Overview
B. The KV Equilibrium and the rms Equivalent Beam
C. Beam Envelope Matching
D. Semi-Gaussian Beam
E. PseudoEquilibrium Distributions Based on Continuous Focusing Equilibria
F. Injection off a Source
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Initial Distributions and Particle Loading
A: Overview
To start the large particle or distribution simulations, the initial distribution 
function of the beam must be specified.  

For direct Vlasov simulations, the distribution need simply be deposited on 
the  phase-space grid

For PIC simulations, an appropriate distribution of macro-particle phase-space 
coordinates must be generated or “loaded” to represent the 
Vlasov distribution

1D schematic 
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Discussion:
In realistic accelerators, focusing elements in the lattice are s-varying.  In such 
situations there are no known smooth equilibrium distributions.

The KV distribution is an exact equilibrium for linear focusing fields, but has 
unphysical (singular) structure in 4-dimensional transverse phase-space

It is unclear in most cases if the beam is even best thought of as an equilibrium 
distribution as is typical in plasma physics.

Neutral plasma: approx local thermal equilibrium 
Beam: Intense self fields and finite geometry complicate 

In accelerators, the beam is injected from a source and may only reside in the 
machine (especially for a linac) for a small number of characteristic oscillation 
periods and may not fully relax to an equilibrium like state within the machine.

tpe_lat_fodo.png
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The lack of known, physically reasonable equilibria and the fact that the beams 
are injected from a source motivates so-called “source-to-target” simulations 
where particles are simulated off the source and tracked to the target.  Such first 
principles simulations are most realistic if carried out with the actual focusing 
fields, accelerating waveforms, alignment errors, etc.  Ideally, source-to-target 
simulations promise to predict expected machine performance.  

Initial Distributions: Source-to-Target Simulations

mid-pulse_diode.png
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However, ideal of source-to-target simulations can rarely be carried out due to:
Source often contains much physics imperfectly modeled

- Example: plasma injectors with complicated material physics, etc.
Source is often incompletely described

- Example: important alignment and material errors may not be known
Computer limitations: 

- Memory required and simulation time
- Convergence and accuracies
- Limits of numerical methods applied
   Eample: singular description needed for Child-Langmuir model of 
                 space-charge limited injection
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Due to the practical difficulty of carrying out simulations off the source, two 
alternative methods are commonly applied:

1) Load an idealized initial distribution
Specify 6D phase space (or less for reduced model) at specific time 
Based on physically reasonable theory assumptions 

2) Load experimentally measured distribution
Construct/synthesize  a distribution based on experimental measurements

Discussion:
The 2nd option of generating a distribution from experimental measurements, 
unfortunately, often has practical difficulties:

Real diagnostics often are far from ideal 6D snapshots of beam phase-space
- Distribution must be reconstructed from partial data on 

            limited projection(s) of phase-space measured 
- Typically many assumptions must be made in the synthesis process

Process of measuring the beam can itself change the beam 
It can be helpful to understand processes and limitations starting from idealized 
initial beams with “equivalent” parameters to experimental measures

– Example: use measured value of beam energy and charge, rms beam 
sizes, and rms measure phase-space area

Initial Distributions: Types of Specified Loads
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Discussion Continued:
Because of the practical difficulties of loading a distribution based exclusively on 
experimental measurements, idealized distributions are often loaded:

Employ distributions based on reasonable, physical approximation
Use limited experimental measures to initialize:

- Energy, current, rms equivalent beam sizes and emittances 
Simpler initial state can often aid insight:

- Fewer simultaneous processes can allow one to more clearly understand
   how limits arise
- Seed perturbations of relevance when analyzing resonance effects, 
  instabilities, halo, etc. 

A significant complication:  There are no known exact smooth equilibrium 
distribution functions valid for periodic focusing channels:

Approximate theories valid for low phase advances may exist
   Startsev, Sonnad, Davidson, Struckmeier, and others

We will formulate a simple approximate procedure to load an initial distribution 
that reflects features one would expect of a quiescent high-intensity beam

6.B   1st overview ideal KV case 6.E  Pseudo-Equilibrium case  
6.D   Semi-Gaussian case: less idealized 6.F  [Future notes: Source model]  
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B: The KV Equilibrium and the rms Equivalent Beam
[Kapchinskij and Vladimirskij, Proc. Int. Conf. On High Energy Accel., p. 274 (1959); 
and Review: Lund, Kikuchi, and Davidson, PRSTAB 12, 114801 (2009)]

Free-space self-field solution within the beam (see: USPAS notes BPISC) is:

Assume a uniform density elliptical beam in a periodic focusing lattice

Line-Charge:

number 
density n

valid only within the beam!
Nonlinear outside beam

Beam Edge:

(ellipse)

(charge conservation)
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The particle equations of motion:

become within the beam:
Linear equations of motion!

Here, Q is the dimensionless perveance defined by:

 Q provides a dimensionless measure of space-charge intensity
- Appears in same form in many different space-charge problems
- See USPAS lectures on Beam Physics with Intense Space-Charge
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If we regard the envelope radii              as specified functions of s, then these 
equations of motion are Hill's equations familiar from elementary accelerator 
physics:

Suggests Procedure:
Calculate Courant-Snyder invariants under assumptions made
Construct a distribution function of Courant-Snyder invariants that generates 
the uniform density elliptical beam projection assumed
-  Nontrivial step: guess and show that it works: KV construction

Resulting distribution will be an equilibrium that does not evolve in functional 
form, but phase-space projections will evolve in s when focusing functions vary 
in s
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Review (1): The Courant-Snyder invariant of Hill's equation
[Courant and Snyder, Annl. Phys. 3, 1 (1958)]

Hill's equation describes a zero space-charge particle orbit in linear applied 
focusing fields:

As a consequence of Floquet's theorem, the solution can be cast in 
phase-amplitude form:

where  is the periodic amplitude function satisfying

  is a phase function given by 

 and    are constants set by initial conditions at
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Review (2): The Courant-Snyder invariant of Hill's equation

From this formulation, it follows that

or

square and add equations to obtain the Courant-Snyder invariant

 Simplifies interpretation of dynamics 
 Extensively used in accelerator physics 
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Phase-amplitude description of particles evolving within a uniform density beam:

Phase-amplitude form of x-orbit equations:

where

identifies the Courant-Snyder invariant

initial conditions yield:

Analogous equations hold for the y-plane
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The KV envelope equations:

Define maximum Courant-Snyder invariants:

Values must correspond to the beam-edge radii:

The equations for w
x
 and w

y
 can then be rescaled to obtain the familiar 

KV envelope equations for the matched beam envelope
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Use variable rescalings to denote x- and y-plane Courant-Snyder invariants as:

Kapchinskij and Vladimirskij constructed a delta-function distribution of a linear 
combination of these Courant-Snyder invariants that generates the correct 
uniform density elliptical beam needed for consistency with the assumptions:

 Delta function means the sum of the x- and y-invariants is a constant 
 Other forms cannot generate the needed uniform density elliptical

   beam projection (see: S9)
 Density inversion theorem covered later can be used to derive result
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The KV equilibrium is constructed from the Courant-Snyder invariants:

KV equilibrium distribution write out full arguments in x, x' :

This distribution generates the correct uniform density elliptical beam:
Show by direct calc: see USPAS notes, Beam Physics with Intense Space-Charge

Dirac delta function

Obtaining this form consistent with the assumptions, thereby 
 demonstrating full self-consistency of the KV equilibrium distribution.

-  Full 4-D form of the distribution does not evolve in s
-  Projections of the distribution can (and generally do!) evolve in s
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Moments of the KV distribution can be calculated directly from the distribution 
to further aid interpretation:

Envelope edge radius:   Envelope edge angle:

rms edge emittance (maximum Courant-Snyder invariant):

Full 4D average:

Restricted angle average:

Coherent flows (within the beam, zero otherwise):

Angular spread (x-temperature, within the beam, zero otherwise):
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Summary of 1st and 2nd order moments of the KV distribution:

All 1st and 2nd order
moments not listed 
vanish, i.e., 

see reviews by:

(limit of results presented) 
Lund and Bukh,  PRSTAB 7, 
024801 (2004),  Appendix A

S.M. Lund, T. Kikuchi, and 
R.C. Davidson, PRSTAB 12, 
114801 (2009)
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KV Envelope equation

The envelope equation reflects low-order force balances

Applied
Focusing
Lattice

Space-Charge
Defocusing
Perveance

Thermal
Defocusing
Emittance

Comments:
Envelope equation is a projection of the 4D invariant distribution

      - Envelope evolution equivalently given by moments of the 
        4D equilibrium distribution

Most important basic design equation for transport lattices with high space-charge 
intensity

- Simplest consistent model incorporating applied focusing,
   space-charge defocusing, and thermal defocusing forces
- Starting point of almost all practical machine design

Terms:

Matched Solution:
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Comments Continued:
Beam envelope matching where the beam envelope has the periodicity of the lattice

   
   will be covered in much more detail in Sec. 6.C.  Envelope matching requires specific 

choices of initial conditions

   for periodic evolution. 
Instabilities of envelope equations are well understood and real

– Must be avoided for reliable machine operation
– See USPAS lecture notes on Beam Physics with Intense Space Charge, 

    Transverse Centroid and Envelope Models
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Solenoidal Focusing FODO Quadrupole Focusing

The matched solution to the KV envelope equations reflects the symmetry of the 
focusing lattice and must in general be calculated numerically

Example Parameters

The matched beam is the most radially compact solution to the envelope 
equations rendering it highly important for beam transport

Matching Condition
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2D phase-space projections of a matched KV equilibrium beam 
in a periodic FODO quadrupole transport lattice

x-y

x-x'

y-y'

Projection

area:

area:

area:

(CS Invariant)

(CS Invariant)
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KV model shows that particle orbits in the presence of space-charge can 
be strongly modified – space charge slows the orbit response: 
Matched envelope:

Equation of motion for x-plane “depressed” orbit in the presence of space-charge:

All particles have the same value of depressed phase advance (similar Eqns in y):
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Contrast: Review, the undepressed particle phase advance calculated in 
the lectures on Transverse Particle Dynamics

The undepressed phase advance is defined as the phase advance of a particle in 
the absence of space-charge (Q = 0):

Denote by         to distinguished from the “depressed” phase advance     
   in the presence of space-charge

This can be equivalently calculated from the matched envelope with Q = 0:

 Value of          is arbitrary (answer for         is independent)
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Depressed phase advance of particles moving within a matched beam envelope:

Normalized space charge strength Cold Beam
(space-charge dominated)

Warm Beam
(kinetic dominated)

Depressed particle phase advance provides a convenient 
measure of space-charge strength
For simplicity take (plane symmetry in average focusing and emittance)

Limits:
1)

2)

Envelope just rescaled amplitude:

Matched envelope exists with 
Then              multiplying phase advance integral 
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Depressed particle x-plane orbits within a matched KV beam in a periodic 
FODO quadrupole channel for the matched beams previously shown
Solenoidal Focusing (Larmor frame orbit):

FODO Quadrupole Focusing:

x-plane orbit:

x-plane orbit:

Both Problems 
Tuned for:
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Comment: All particles in the distribution move in response to both applied and self-
fields.  You cannot turn off space-charge for an undepressed orbit.  

– Cannot really turn space-charge off: but it helps interpretation
Orbit bundles are fully consistent with uniformly filled phase-space projections for all s

x-y

x-x'

y-y'

Projection

area:

area:

area:

(CS Invariant)

(CS Invariant)
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The rms equivalent beam model helps interpret general beam evolution in 
terms of an “equivalent” local KV distribution
Real beams distributions in the lab will not be KV form.  But the KV model can 
be applied to interpret arbitrary distributions via the concept of rms equivalence. 
For the same focusing lattice, replace any beam charge  density by a 
uniform density KV beam of the same species (         ) and energy (     ) in each 
axial slice (s) using averages calculated from the actual “real” beam distribution 
with:

rms equivalent beam (identical 1st and 2nd order moments):

real distribution
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Comments on rms equivalent beam concept:

The emittances will generally evolve in s
- Means that the equivalence must be recalculated in every slice as the
   emittances evolve
- This evolution is often small for well behaved (stable) beams which we
   design for and emittance for beams with strong space-charge is small and 
   has only limited impact on the envelope

Concept is highly useful
- KV equilibrium properties well understood and are approximately correct
   to model lowest order “real” beam properties
- See, Reiser, Theory and Design of Charged Particle Beams (1994, 2008) 
  for a detailed and instructive discussion of rms equivalence
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Sacherer expanded the concept of rms equivalency by showing that the 
equivalency works exactly for beams with elliptic symmetry space-charge
[Sacherer, IEEE Trans. Nucl. Sci. 18, 1101 (1971)]

For any beam with elliptic symmetry charge density in each transverse slice:

the KV envelope equations

remain valid when (averages taken with the full distribution): 

The emittances may evolve in s under this model 
(see USPAS lectures on Transverse Kinetic Stability)

Based on very nontrivial result:
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Further comments on the KV equilibrium: Distribution Structure

KV equilibrium distribution:

Forms a highly singular hyper-shell in 4D phase-space

Singular distribution has large “Free-Energy” to drive many instabilities
- Low order envelope modes are physical and highly important 
  (see: USPAS lectures on Centroid and Envelope Descriptions of Beams)

Perturbative analysis shows strong collective instabilities
- Hofmann, Laslett, Smith, and Haber, Part. Accel. 13, 145 (1983)
- Higher order instabilities (collective modes) have unphysical aspects 
  due to (delta-function) structure of distribution and must be applied 
  with care (see: USPAS lectures on Kinetic Stability of Beams)
- Instabilities can cause problems if the KV distribution is employed 
  as an initial beam state in self-consistent simulations

Schematic: 4D singular hyper-shell surface
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Instability bands of the KV envelope equation are well understood in 
periodic focusing channels and must be avoided in machine operation

[S.M. Lund and B. Bukh, PRSTAB 7 024801 (2004)]

Solenoid (     = 0.25) Quadrupole FODO (     = 0.70)

Envelope Mode Instability Growth Rates

Cannot operate a machine in the instability bands: beam wildly unstable
Avoid on load unless you want “exciting” simulations!
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Further comments on the KV equilibrium: 2D Projections

All 2D projections of the KV distribution are uniformly filled ellipses
Not very different from what is often observed in experimental measurements and 
self-consistent simulations of stable beams with strong space-charge
Falloff of distribution at “edges” can be rapid, but smooth, for strong space-charge
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Coherent (flow): Incoherent (temperature):
Angular spreads within the beam:

Further comments on the KV equilibrium:
Angular Spreads: Coherent and Incoherent

Coherent flow required for periodic focusing to conserve charge
Temperature must be zero at the beam edge since the distribution edge is sharp
Parabolic temperature profile is consistent with linear grad P pressure forces in a fluid 
model interpretation of the (kinetic) KV distribution
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Further comments on the KV equilibrium:

The KV distribution is the only exact equilibrium distribution formed from 
Courant-Snyder invariants of linear forces valid for periodic focusing channels:

Low order properties of the distribution are physically appealing 
Illustrates relevant Courant-Snyder invariants in simple form

- Arguments demonstrate that these invariants should be a reasonable
            approximation for beams with strong space charge

KV distribution does not have a 3D generalization [see F. Sacherer, Ph.d. thesis, 1968]

Strong Vlasov instabilities associated with the KV model render the distribution 
inappropriate for use in evaluating machines at high levels of detail:

Instabilities are not all physical and render interpretation of results difficult
- Difficult to separate physical from nonphysical effects in simulations

Possible Research Problem (unsolved in 40+ years!):
Can an exact Vlasov equilibrium be constructed for a smooth (non-singular), 
nonuniform density distribution in a linear, periodic focusing channel?

Not clear what invariants can be used or if any can exist
- Nonexistence proof would also be significant

Recent perturbation theory and simulation work suggest prospects 
    - Self-similar classes of distributions

Lack of a smooth equilibrium does not imply that real machines cannot work!
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Because of a lack of theory for a smooth, self-consistent distribution that would 
be more physically appealing than the KV distribution we will examine smooth 
distributions in the idealized continuous focusing limit (after an analysis of the 
continuous limit of the KV theory):

Allows more classic “plasma physics” like analysis 
Illuminates physics of intense space charge 
Lack of continuous focusing in the laboratory will prevent over generalization 
of results obtained

A 1D analog to the KV distribution called the “Neuffer Distribution” is useful in 
longitudinal physics

Based on linear forces with a “g-factor” model
Distribution not singular in 1D and is fully stable in continuous focusing
See: USPAS lectures on Longitudinal Physics 

In spite of idealizations, the KV distribution is very useful in simulations

Provides basis with rms equivalency for understanding beam matching 
Useful for simulation benchmarking

 



SM Lund, USPAS,  2016 38Self-Consistent Simulations

C: Beam Envelope Matching
An rms matched beam has correct flow symmetry in a periodic transport 
lattice to repeat every lattice period when modeled in an rms equivalent 
beam sense by the KV envelope equations.  Almost all accelerator lattices 
are periodic focusing. Typical setup of initial simulation distributions will 
involve finding envelope matching conditions for the lattice.

Matched beam most compact (min excursions) for efficient transport
– Makes best use of focusing strength

Matching suppresses potential for instabilities to the extent possible
– Less “free energy” to drive waves, instabilities, and halo production 

Terminology: A beam not rms matched to a periodic focusing lattice is 
called “Mismatched”

An extensive review paper contains much information on envelope 
matching and properties and instabilities of mismatch oscillations

Lund and Bukh, PRSTAB 7, Stability properties of the 
transverse envelope equations describing intense ion beam transport, 
 024801 (2004) 
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Matched Envelope Constraints

Matching involves finding specific initial conditions for the envelope to 
have the periodicity of the lattice:

Neglect acceleration                            or use transformed variables:

Find Values of: Such That: (periodic)

Typically constructed with numerical root finding from estimated/guessed values
- Can be surprisingly difficult for complicated lattices (high      ) with strong space-charge

Iterative technique developed to numerically calculate without root finding;
Lund, Chilton and Lee, PRSTAB 9, 064201 (2006)

      - Method exploits Courant-Snyder invariants of depressed orbits within the beam



SM Lund, USPAS,  2016 40Self-Consistent Simulations

Typical Matched vs Mismatched solution for FODO channel:

Matched Mismatched

The matched beam is the most radially compact solution to the envelope 
equations rendering it highly important for beam transport

Matching uses optics most efficiently to maintain radial beam confinement
Mismatch provides extra “free energy” to drive instabilities/halo
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Solenoidal Focusing FODO Quadrupole Focusing

The matched solution to the KV envelope equations reflects the symmetry of the 
focusing lattice and must, in general, be calculated numerically

Envelope equation very nonlinear
Parameters

Perveance Q iterated to 
obtain matched solution 
with this tune depression
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Iterative Numerical Matching Code implemented in Mathematica provided
Lund, Chilton, and Lee, PRSTAB 9, 064201 (2006)

IM (Iterated Matching) Method
IM Method uses fail-safe numerical iteration technique without root finding to 
construct matched envelope solutions in periodic focusing lattices 
- Based on projections of Courant-Snyder invariants of depressed orbits in beam
- Applies to arbitrarily complicated lattices (with user input focusing functions) 
- Works even where matched envelope is unstable 
 Can find matched solutions under a variety of parameterizations:

Case 0:  (standard)
Case 1: 
Case 2: 

 Mathematica code on github: 
% git clone https://github.com/smlund/iterative_match

 Included as a warp package: Match() function in envmatch_Kvinvariant.py
 Optional features in Mathematica version include additional information:

  - Characteristic particle orbits in beam 
  - Matched envelope stability properties 

To Run Mathematica code: see readme.txt file with source code for details 
1) Place “im_*.m” program files in directory and set parameters (text editor) in “im_inputs.m”
2) Open Mathematica Notebook in directory 
3) Run in notebook by typing:   << im_solver.m  [shift-return]
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Example Run:    sinusoidally varying quadrupole lattice with  
See “examples/user” subdirectory in source code distribution   (other examples also)

Output: 1st Output: 2ndt

im_solver_w1.png im_solver_w2.png
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Output: 3rd Output: 4th

+ More on particle orbits and 
   matched envelope stability

im_solver_w3.png
im_solver_w4.png
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D: Semi-Gaussian Beam
It is not necessary to load an equilibrium distribution to get a reasonably 
quiescent initial condition:

For high space-charge intensity, expect Debye screening to lead to a beam 
more or less uniform out to an edge where the density drops rapidly to low 
values
If beam is injected off a uniform temperature source or has relaxed, expect 
(roughly) spatially uniform thermal velocity spread across the core of the 
beam

See USPAS course notes, Beam Physics with Intense Space-Charge

These properties suggest the so-called semi-Gaussian load:  
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uniform 
density n

Uniform Density  within an elliptical beam envelope

Macroparticle x,y uniformly 
distributed within 

Spatially uniform Gaussian Distributed Angles
Can achieve this by taking macroparticle angles

Coherent 
Flow

Thermal 
Spread

Gaussian dist
random numbers
(unit variance)

 Coherent term for envelope angle
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Simulation of an initial semi-Gaussian load:

Interactively examine results from Warp script xy-quad-mag-mg.py 
for a periodic quadrupole lattice

Initial 10 Lattice Periods
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Comments:
Note quiescent equilibrium but not bad: unphysical features of 
distribution appear to rapidly relax with little growth in rms phase space 
area in spite of an initial spectrum of waves launched
Shows you can take reasonable approximate initial states to roughly 
represent physical beams in well behaved situations where there is not 
pronounced instability
– Part of reason why real machines work: there can be a 
   relative insensitivity to details
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Simple psudo-equilibrium initial distribution:
1) Use rms equivalent measures to specify the beam

- Natural set of parameters for accelerator applications
2) Map rms equivalent beam to a smooth, continuous focused matched beam

- Use smooth core models that are stable in continuous focusing:
  Waterbag Equilibrium
  Parabolic Equilibrium 

   Thermal Equilibrium 

3) Transform continuous focused beam for rms equivalency with original beam   
    specification

- Use KV transforms to preserve uniform beam Courant-Snyder invariants

Procedure will apply to any s-varying focusing channel
Focusing channel need not be periodic
Beam can be initially rms equivalent matched or mismatched if launched in a 
periodic transport channel
Can apply to both 2D transverse and 3D beams: illustrate for 2D transverse

See USPAS Beam Physics with Intense Space Charge
notes on: Transverse Equilibrium Distributions

E: Initial PseudoEquilbrium Distributions 
     Based on Continuous Focusing Equilibria
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4-Step Procedure for Initial Distribution Specification
[Lund, Kikuchi, Davidson, PRSTAB 12, 114801 (2009)]

Step 1:
For each particle (3D) or slice (2D) specify 2nd order rms properties at axial 
coordinate s 

Assume focusing lattice is given:

specified

Envelope coordinates/angles:  (specify beam envelope)

RMS Emittances:   (specify phase-space area)

Perveance:  (specify space-charge intensity)

Strength usually set by specifying 
undperessed phase advances 
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Procedure for Initial Distribution Specification (2)

If the beam is rms matched, we take: 

Not necessary even for periodic lattices 
- Procedure applies to mismatched beams
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Procedure for Initial Distribution Specification (3)

Step 2:
Define an rms matched, continuously focused beam in each transverse s-slice: 

Continuous s-Varying

Envelope Radius

Emittance

Perveance

Define a (local) matched beam focusing strength in continuous focusing consistent 
with the rms beam envelope:

0
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Procedure for Initial Distribution Specification (4)

Step 3:
Specify an rms matched continuously focused equilibrium consistent with step 2: 
Specify an equilibrium function:

and constrain parameters used to define the equilibrium function                with:

Line Charge <--> Perveance 

rms edge radius 

rms edge emittance

This can be rms equivalence with a smooth distribution NOT a KV distribution!
Constraint equations are generally highly nonlinear and must be solved numerically

- Allows specification of beam with natural accelerations variables
-  Procedures to implement this can be involved (research problem)
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Procedure for Initial Distribution Specification (5)
Step 4:
Transform the continuous focused beam coordinates to rms equivalency in the 
system with s-varying focusing:

Here, are coordinates of the continuous equilibrium 

Transform reflects structure of linear field Courant-Snyder invariants but 
applied to the nonuniform beam

- Approximation effectively treats Hamiltonian as Courant-Snyder invariant
- Properties of beam nonuniform distribution retained in transform 
- Expect errors to be largest near beam radial “edge” 
  at high space-charge intensity

 If applied to simulations using macroparticles (e.g., PIC codes), then details of 
transforms must be derived to weight macroparticles

- Details in: Lund, Kikuchi, Davidson, PRSTAB 12, 114801 (2009)
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Procedure for Initial Distribution Specification (6)

Load N particles in x,y,x',y' phase space consistent with continuous focusing 
equilibrium distribution
Step A (set particle coordinates):
Calculate beam radial number density n(r) by (generally numerically) solving the 
Poisson/stream equation and load particle x,y coordinates:

- Radial coordinates r: Set by transforming uniform deviates consistent with n(r)
- Azimuthal angles q: Distribute randomly or space for low noise 

Step B (set particle angles):
Evaluate     with        at the particle x, y coordinates loaded in 
step A to calculate the angle probability distribution function and load  x', y' coordinates:  

- Radial coordinate U: Set by transforming uniform deviates consistent with 
- Azimuthal coordinate x: Distribute randomly or space for low noise
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Broad range of choices of continuous focusing equilibrium distributions to 
apply procedure too: want smooth for physical 
Common choices for  analyzed in the literature:
1) KV (already covered)

2) Waterbag 
[see USPAS + M. Reiser, Charged Particle Beams, (1994, 2008)]

3) Thermal 
[see USPAS + M. Reiser; Davidson, Nonneutral Plasmas,  1990]

Infinity of choices can be made!
 Fortunately, range of behavior can be understood with a few reasonable choices
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When relative space-charge is strong, all smooth equilibrium distributions 
expected to look similar out to far edge

Waterbag Distribution Thermal Distribution

Edge shape varies with distribution choice, but cores similar when            small 

Constant charge and focusing: 
Vary relative space-charge strength: 
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Thermal distribution contours at fixed line charge and focusing strength

Particles will move approximately force-free till approaching the edge where it is 
rapidly bent back: Highly nonlinear particle orbits.

Radial 
scales 
change
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Carry out numerical Vlasov simulations of the initial 
Pseudoequlibrium distributions to check how procedure works 

Use the Warp (PIC) Vlasov code to advance an initial pseudoequilibrium 
distribution  in a periodic FODO lattice to check how significant transient 
evolutions are period by period: 

Little evolution => suggests near relaxed equilibrium structure 
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Warp PIC Simulation (see S9) Results – Pseudo Thermal Equilibrium
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Transient evolution of initial pseudo-equilibrium distributions
with thermal core form in a FODO quadrupole focusing lattice  
 Density profiles along x and y axes
 Snapshots at lattice period intervals over 5 periods

 x  y  x  y

 x  y  x  y
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Transient evolution of initial pseudo-equilibrium distributions
with waterbag core form in a FODO quadrupole focusing lattice 

 Density profiles along x and y axes
 Snapshots at lattice period intervals over 5 periods

 x  y  x  y

 x  y  x  y
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The beam phase-space area (rms emittance measure) changes 
little during the evolutions indicating near equilibrium form  

Waterbag Form Gaussian/Thermal Form

Max Ranges 0.1 % Variation!!
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Compare pseudo-equilibrium loads with other accelerator loads  
 Comparison distribution from linear-field Courant-Snyder invariants
   Batygin, Nuc. Inst. Meth. A 539, 455 (2005)
 Thermal/Gaussian forms with weak space-charge

 x  y  x  y

 x  y  x  y

Linear-Field Courant-Snyder: Pseudo-Equilibrium



SM Lund, USPAS,  2016 65Self-Consistent Simulations

Compare pseudo-equilibrium loads with other accelerator loads  
 Comparison distribution from linear-field Courant-Snyder invariants
   Batygin, Nuc. Inst. Meth. A 539, 455 (2005)
 Thermal/Gaussian forms with strong space-charge

 x  y  x  y

 x  y  x  y

Linear-Field Courant-Snyder: Pseudo-Equilibrium
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Warp PIC Simulation (see S9) Results – Semi-Gaussian (for contrast)
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Summary:  Results suggest near equilibrium structure with good quiescent 
transport can be obtained for a broad range of beam parameters with a 
smooth distribution core loaded using the pseudoequilibrium construction

Find:
Works well for quadrupole transport for  

- Should not work where beam is unstable and all distributions are expected to 
   become unstable for see lectures on Transverse Kinetic Stability: 

Works better when matched envelope has less “flutter”:
- Solenoids: larger lattice occupancy 
- Quadrupoles: smaller  
- Not surprising since less flutter” corresponds to being closer to
  continuous focusing

Experiment:  Tiefenback, Ph.D. Thesis, U.C. Berkeley (1986)
Theory: Lund and Chawla, Proc. 2005 Part. Accel. Conf. 
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Applies to both 2D transverse and 3D beams
Easy to generalize procedure for beams with centroid offsets
Generates a charge distribution with elliptical symmetry

- Sacherer's results on rms equivalency apply
- Distribution will reflect self-consistent Debye screening

Equilibria are only pseudo-equilibria since transforms are not exact
- Nonuniform space-charge results in errors 
- Transform consistent with preserved Courant-Snyder invariants for 
   uniform density beams
- Errors largest near the beam edge - expect only small errors for 
  very strong space charge where Debye screening leads to a flat density
   profile with rapid fall-off at beam edge

Many researchers have presented or employed aspects of the improved loading 
prescription presented here, including:

I. Hofmann, GSI M. Reiser, U. Maryland K. Sonnadi, KEK
E. Startsev, PPPL Y. Batygin, SLAC Y. Struckmeir, GSI

Comments on Procedure for Initial Distribution Specification
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F: Injection of Distribution off a Source

Sorry, no time.  To be added in future versions

mid-pulse_diode.png

Source
Pierce

Electrode Aperture
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Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future 
editions of US Particle Accelerator School (USPAS) and Michigan State 
University (MSU) courses.  Contact:

Prof. Steven M. Lund 
Facility for Rare Isotope Beams 
Michigan State University 
640 South Shaw Lane  
East Lansing, MI 48824

lund@frib.msu.edu 
(517) 908 – 7291 office 
(510) 459 -  4045  mobile

Please provide corrections with respect to the present archived version at: 
 
https://people.nscl.msu.edu/~lund/uspas/scs_2016

Redistributions of class material welcome.  Please do not remove author credits.

mailto:lund@frib.msu.edu
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