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Detailed Outline
Introductory Lectures on Self-Consistent Simulations

 Numerical Convergence
A. Overview
B. Resolution: Advance Step

- Courant Conditions
- Applied Field Structures
- Collective Waves 

C. Resolution: Spatial Grid
- Beam Edge 
- Collective Waves
- Electrostatic Structures on Mesh

D. Statistics
- Debye Screening 
- Classes of Particle Simulations

E. Illustrative Examples with the Warp Code
- Weak Space-Charge
- Intermediate Space-Charge 
- Strong Space-Charge 
- Strong Space-Charge with Instability
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Numerical Convergence
A: Overview
Numerical simulations must be checked for proper resolution and statistics to be 
confident that answers obtained are correct and physical:

Resolution of discretized quantities
Time t or axial s step of advance
Spatial grid of fieldsolve
For direct Vlasov: the phase-space grid

Statistics for PIC
Number of macroparticles used to represent Vlasov flow to control noise
– Vlasov flow represented by markers a finite number results in
    deviations from continuum model

Increased resolution and statistics generally require more computer resources 
(time and memory) to carry out the required simulation.  It is usually desirable to 
carry out simulations with the minimum resources required to achieve correct, 
converged results that are being analyzed.  Unfortunately, there are no set rules on 
adequate resolution and statistics.   What is required generally depends on:

What quantity is of interest
How long an advance is required 
What numerical methods are being employed   .....
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General Guidance on Numerical Convergence Issues
Although it is not possible to give detailed rules on numerical convergence issues, 
useful general guidance can be given:

Find results from similar problems using similar methods when possible
Analyze quantities that are easy to interpret and provide good measures of 
convergence for the use of the simulation 

- Some moments like rms emittances:

   can provide relatively sensitive and easy to interpret measures of
   relative phase-space variations induced by numerical effects when
   plotted as overlaid time (or s) evolution “histories”

Compare to simulations of similar problems using similar methods
Benchmark code against problems with known analytical solutions

- Apply a variety of numerical methods to judge which applies best
Benchmark code against established, well verified simulation tools

- Use different numerical methods expected to be more or less accurate
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Recheck convergence whenever runs differ significantly or when different 
quantities are analyzed

- What is adequate for one problem/measure may not be for another
- Ex: rms envelope evolution easier to converge than collective modes

Although it is common to increase resolution and statistics till quantities do 
not vary, it is also useful to purposefully analyze poor convergence so 
characteristics of unphysical errors can be recognized

- Learn characteristic signature of failures to resolve effects so 
             subtle onset issues can be recognized more easily 

Expect to make many setup, debugging, and convergence test runs for each 
useful series of simulations carried out
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B:  Resolution:  Advance Step
Discussion is applicable to advancing particles in the axial machine coordinate (s) 
or time (t).  We will present the discussion in terms of the timestep  

Courant Conditions
Particles should not move more than one spatial mesh cell in a single timestep 

Essence of condition is that data should have time to propagate to the spatial 
range of relevance on which the numerical method is formulated.   

EM waves should not propagate more than one spatial mesh cell in a single 
timestep 

Condition is demanding for fast electromagnetic waves with

2D xy: j = x,y 
2D rz: j = r,z
3D xyz: j = x,y,z
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Resolution of Applied Field Structures
Enough steps should be taken to adequately resolve applied field structures 

Characteristic axial variation of fringe field entering/exiting optics should be 
well resolved by the step size to negligibly small values
– What constitutes small enough depends on problem
– Example: found solenoids needed 10e-4 resolution of peak field to respect
   canonical angular momentum conservation to degree needed

 

Example: Periodic 
Solenoid Lattice

Detailed magnet model
Scaled        on-axis  vs z

From C.Y. Wong
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Comment:
In addition, if there is a local error in the field, one must choose an advance 
increment consistent with resolution
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Resolution of collective oscillations (waves)
For a leap-frog mover this requires minimally

Collective modes can have high harmonic components which evolve rapidly 
(at harmonics of the plasma frequency) rending resolution issues difficult.  See 
USPAS notes on Beam Physics with Intense Space Charge, Transverse Kinetic 
Stability

Topic is difficult, but very important.  Take a digression on space charge 
waves to understand demands
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Digression: Space charge waves in beams

Nonuniform Initial Beam More Uniform 
Relaxed Beam

Relaxation
Processes

Reference:  High resolution self-consistent PIC simulations shown in class
 Continuous focusing and a more realistic FODO transport lattice

- Relaxation more complete in FODO lattice due to a richer frequency spectrum
 Relaxations surprisingly rapid:  few undepressed betatron wavelengths

   observed in simulations 

Strong space charge and Debye screening takes to make the beam density profile 
flat in a linear focusing channel if the beam starts out nonuiform due to nonlinear 
errors/aberrations
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Digression: Space charge waves in beams

The space-charge profile of intense beams can be born highly nonuniform out of 
nonideal (real) injectors or become nonuniform due to a variety of (error) 
processes.  Also, low-order envelope matching of the beam may be incorrect due 
to focusing and/or distribution errors. 

How much emittance growth and changes in other characteristic parameters may 
be induced by relaxation of characteristic perturbations?
 Employ Global Conservation Constraints of system to bound possible changes
 Assume full relaxation to a final, uniform density state for simplicity

What is the mechanism for the assumed relaxation?
 Collective modes launched by errors will have a broad spectrum

- Phase mixing can smooth nonuniformities – mode frequencies incommensurate
 Nonlinear interactions, Landau damping, interaction with external errors, ...
 Certain errors more/less likely to relax:

- Internal wave perturbations expected to relax due to many interactions
- Envelope mismatch will not (coherent mode) unless amplitudes are very large 
  producing copious halo and nonlinear interactions



SM Lund, USPAS,  2016 12Self-Consistent Simulations

Motivation for rapid phase-mixing mechanism for beams with intense space-
charge: strong spread in distribution of particle oscillation frequencies in the core 
of the beam
Distribution of particle oscillation frequences in a smooth beam with nonlinear 
space-charge forces (sheet beam model for simple curves to illustrate)

Lund, Friedman, and Bazouin, PRSTAB 14, 054201 (2011)
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Analyze/simulate an initial nonuniform beam to better understand what 
happens

Nonuniform Initial Beam
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Hollowed Initial Density Peaked Initial Density

Analogous definitions are made for the radial temperature profile of the beam

Initial Nonuniform Beam Parameterization hollowing parameter

Normalize profiles to compare common rms radius (     ) and total charge (    )



SM Lund, USPAS,  2016 15Self-Consistent Simulations

Example Simulation, Initial Nonuniform Beam

[Lund, Grote, and Davidson, Nuc. Instr. Meth. A 544, 472 (2005)]

Initial density: h=1/4, p=8   Initial Temp: h = infinity, p=2 

Show movie of evolution
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Hollowed beam simulation/theory results for strong space-charge
Peaked beam shows very small emittance growth

Theory results based on conservation of system charge and energy used to calculate the 
change in rms edge radius between initial (i) and final (f) matched beam states 

Ratios of final to initial emittance are then obtainable from the matched envelope eqns:
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Higher-order Collective (internal) Mode Stability
 Perturbations will generally drive nonlinear space-charge forces
 Evolution of such perturbations can change the beam rms emittance
 Many possible internal modes of oscillation should be possible

- Frequencies can differ significantly from envelope modes 
- Creates more possibilities for resonant exchanges with a periodic focusing 
  lattice and various beam characteristic responses opening 

            possibilities for system destabilization
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Mode eigenfunctions:
Exactly the same as derived under kinetic theory!

 Agrees well with the stable high frequency branch in KV kinetic theory without 
spurious unphysical instabilities of KV kinetic model

Results show should expect many collective modes internal to beam seeded by 
intiail large perturbations

Results of normal mode analysis based on a fully analytic fluid theory:  

Mode dispersion relation:

Potential Density

[S. Lund and R. Davidson, Physics of Plasmas 5, 3028 (1998)]
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Resolution of space-charge collective oscillations (waves)
For a leap-frog mover this requires minimally

End of digression on space-charge Waves

Potential Density
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C: Resolution: Spatial Grid
The spatial grid should resolve both space-charge variations of the beam 
associated with both the bulk structure of the of the finite radial extent beam and 
collective waves
Beam Edge

Screening leads to a flat core in linear focusing for strong space-charge
Estimate from equilibrium beam properties with the edge falloff being on the 
scale of the characteristic thermal Debye length.

Estimate from known:

+ species and kinetic energy 

Obtain:
 Know species, need 
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For a smooth, thermal equilbrium core scaled theory shows that
See USPAS notes, Beam Physics with Intense Space Charge   

Debye Lengths

Density always falls off 
in a few Debye lengths 
regardless of huge range 
of space-charge!

This suggests that to reasonably resolve the beam edge that the spatial mesh 
increments should satisfy Typical beams with low emittance and space-charge 

dominated flow have 

Resolving this can be demanding: particularly in 3D 
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Potential Density

Spatial variation of collective space-charge waves
Space charge waves not only constrain the time advance, but they also require 
radial variations to be resolved

Usually resolution of beam edge more demanding on choice of  
– High orders can be demanding
Modes usually have more variation near the edge of the beam
– n'th order mode has n-1 radial nodes
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Electrostatic Structures on Mesh 
If applied fields are calculated with biased conductors on the mesh, then the mesh 
should resolve structures

Only “features” that impact multipole field components within the aperture 
where the beam particles are need need be resolved

Example: Puller electrodes from 
ECR ion source at Michigan State University 

(Source: Daniel Winklehner)

gap

aperture

Choose:

R = smallest radius
curvature that 
“matters” to beam

 
Mesh refinement can 
relax overall zones but 
need to check more 
carefully

Electrostatic Structures on Mesh 
If applied fields are calculated with biased conductors on the mesh, then the mesh 
should resolve structures

Only “features” that impact multipole field components within the aperture 
where the beam particles are need need be resolved
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D:  Statistics 
Collective effects require having a significant number of particles within the 
“volume” bounded by the characteristic shielding distance

Shielding distance given by the Debye length:

“Volume” bounded by shielding distance will depend on the dimension of the 
simulation being carried out.  For simulations with N macro-particles require 
number of macro particles in Debye screening length to be large:

See following discussion to 
motivate screening length

circle and sphere have radius of Debye length
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Debye screened potential for a test charge inserted in a thermal 
equilibrium beam essentially the same in 1D, 2D, and 3D 

References for Calculation:
1D: Lund, Friedman, Bazouin, PRSTAB 14, 054201 (2011)
2D: USPAS lecture notes on Beam Physics with Intense Space Charge
3D: Davidson, Theory of Nonneutral Plasmas, Addison-Wesley 1989

Test Charge:
1D:

Sheet Charge Density:
2D:

Line Charge Density:
3D: (physical case)

Point Charge:

All Cases:
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In all these cases: 1D, 2D, and 3D, the screened interaction potential 
has approximately the form:

Bare Screen

r = distance measure
      in each dimension case

Comments
If a lower dimensional models produce the same screened interaction as in 
physical 3D, then the lower dimensional model can produce essentially the 
same collective interaction as in 3D.  This is why lower dimensional models 
can give right answers!
– This is important and seems to be poorly realized by newer generations
   of scientists who run big codes routinely
– Parameters can be returned for optimal equivalency with 3D
In 1D the bare Coulomb interaction is infinite range (sheet charges) but the 
screened interaction is still the same as in physical 3D
– Paper [Lund, Friedman, Bazouin, PRSTAB 14, 054201 (2011)] shows how to
   exploit this with optimal equivalences to model space-charge effects in 

beams: sheet beam model simpler to analyze
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Comments Continued
In 2D the screened form is approximately the same as in physical 3D in spite 
of the radically different Coulomb forces 
 – Equivalence, ironically, a little more approximate than for 1D
It is MUCH easier to get good convergance in statistics in lower dimensional 
models.  This can be exploited to guide setting of numerical parameters in 3D 
codes. 
– Results sometimes sobering: can be difficult!
– Recommend strongly testing models in 2D to gain insight 
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E:  Illustrative Examples with the Warp Code 

Sorry ran out of time.  Have large series of computer runs to illustrate
but need a week of work to distill and make proper summaries. I will try to 
post an updated version here after the course and extend for future 
versions. 

The intent will be to show examples on the influence of resolution and 
statistics with the xy Warp transverse slice simulation (x,x',y,y') of an 
alternating gradient focused beam in a linear hard-edge periodic transport 
lattice using the script 

xy-quad-mag-mg.py

Cases to be covered (common lattice):
- Weak Space-Charge
- Intermediate Space-Charge 
- Strong Space-Charge 
- Strong Space-Charge with Instability
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Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future 
editions of US Particle Accelerator School (USPAS) and Michigan State 
University (MSU) courses.  Contact:

Prof. Steven M. Lund 
Facility for Rare Isotope Beams 
Michigan State University 
640 South Shaw Lane  
East Lansing, MI 48824

lund@frib.msu.edu 
(517) 908 – 7291 office 
(510) 459 -  4045  mobile

Please provide corrections with respect to the present archived version at: 
 
https://people.nscl.msu.edu/~lund/uspas/scs_2016

Redistributions of class material welcome.  Please do not remove author credits.

mailto:lund@frib.msu.edu
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