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Detailed Outline

Introductory Lectures on Self-Consistent Simulations

Numerical Convergence
A. Overview
B. Resolution: Advance Step
- Courant Conditions
- Applied Field Structures
- Collective Waves
C. Resolution: Spatial Grid
- Beam Edge
- Collective Waves
- Electrostatic Structures on Mesh
D. Statistics
- Debye Screening
- Classes of Particle Simulations
E. Illustrative Examples with the Warp Code
- Weak Space-Charge
- Intermediate Space-Charge
- Strong Space-Charge
- Strong Space-Charge with Instability

SM Lund, USPAS, 2016

Self-Consistent Simulations

2




Numerical Convergence

A: Overview

Numerical simulations must be checked for proper resolution and statistics to be
confident that answers obtained are correct and physical:
Resolution of discretized quantities
+ Time t or axial s step of advance
+ Spatial grid of fieldsolve
+ For direct Vlasov: the phase-space grid
Statistics for PIC
+ Number of macroparticles used to represent Vlasov flow to control noise

— Vlasov flow represented by markers a finite number results in
deviations from continuum model

Increased resolution and statistics generally require more computer resources
(time and memory) to carry out the required simulation. It 1s usually desirable to
carry out simulations with the minimum resources required to achieve correct,
converged results that are being analyzed. Unfortunately, there are no set rules on
adequate resolution and statistics. What is required generally depends on:

*+ What quantity is of interest

* How long an advance is required

*+ What numerical methods are being employed .....
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General Guidance on Numerical Convergence Issues

Although it 1s not possible to give detailed rules on numerical convergence issues,
useful general guidance can be given:

+ Find results from similar problems using similar methods when possible
+ Analyze quantities that are easy to interpret and provide good measures of
convergence for the use of the sitmulation

- Some moments like rms emittances: T=x— <CIJ> N

- - ~ 1/2
er = 4 [(T%) L (%) L — (22')] ] ¥=a' —(a),

can provide relatively sensitive and easy to interpret measures of
relative phase-space variations induced by numerical effects when
plotted as overlaid time (or s) evolution “histories”
+ Compare to simulations of similar problems using similar methods
+ Benchmark code against problems with known analytical solutions
- Apply a variety of numerical methods to judge which applies best
+ Benchmark code against established, well verified simulation tools
- Use different numerical methods expected to be more or less accurate
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*+ Recheck convergence whenever runs differ significantly or when different
quantities are analyzed
- What 1s adequate for one problem/measure may not be for another
- Ex: rms envelope evolution easier to converge than collective modes
+ Although it is common to increase resolution and statistics till quantities do
not vary, it 1s also useful to purposefully analyze poor convergence so
characteristics of unphysical errors can be recognized
- Learn characteristic signature of failures to resolve effects so
subtle onset 1ssues can be recognized more easily
+ Expect to make many setup, debugging, and convergence test runs for each
useful series of simulations carried out
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B: Resolution: Advance Step

Discussion 1s applicable to advancing particles in the axial machine coordinate (s)
or time (t). We will present the discussion in terms of the timestep Ay

Courant Conditions
+ Particles should not move more than one spatial mesh cell in a single timestep

2D xy:  j=Xxy
A, < A ’
Uit = 5 2Drz:  j=rz
3D xyz: j=Xx))z

Essence of condition is that data should have time to propagate to the spatial
range of relevance on which the numerical method is formulated.

+ EM waves should not propagate more than one spatial mesh cell in a single
timestep

UgAt < A]

vy = |wave group velocity|
Condition 1s demanding for fast electromagnetic waves with Vg ~ €
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Resolution of Applied Field Structures
Enough steps should be taken to adequately resolve applied field structures
+ Characteristic axial variation of fringe field entering/exiting optics should be
well resolved by the step size to negligibly small values

— What constitutes small enough depends on problem
— Example: found solenoids needed 10e-4 resolution of peak field to respect
canonical angular momentum conservation to degree needed

Example: Periodic

Solenoid Lattice - L,
* Detailed magnet model 4 o[
» Scaled B on-axis vsz -

0.5/
0.0 | . | .
0 2 4 6
z[m] From C.Y. Wong
v, Ar < A A = shortest wavelength

of variation of applied field
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Comment:
+ In addition, if there 1s a local error 1n the field, one must choose an advance
Increment consistent with resolution
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Resolution of collective oscillations (waves)
*+ For a leap-frog mover this requires minimally

T = period of wave component

At<1
T 2

Collective modes can have high harmonic components which evolve rapidly
(at harmonics of the plasma frequency) rending resolution issues difficult. See
USPAS notes on Beam Physics with Intense Space Charge, Transverse Kinetic
Stability

Topic 1s difficult, but very important. Take a digression on space charge
waves to understand demands
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Digression: Space charge waves in beams
Strong space charge and Debye screening takes to make the beam density profile
flat in a linear focusing channel if the beam starts out nonuiform due to nonlinear
errors/aberrations
More Uniform

Nonuniform Initial Beam

Relaxed Beam

. Fomnt
o Relaxation &
- <
= Processes )
> 2
."': «—» ';
5 5
O
- -

Radius, r Radius, r

Reference: High resolution self-consistent PIC simulations shown in class
* Continuous focusing and a more realistic FODO transport lattice
- Relaxation more complete in FODQO lattice due to a richer frequency spectrum
* Relaxations surprisingly rapid: few undepressed betatron wavelengths

observed in simulations
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Digression: Space charge waves in beams

The space-charge profile of intense beams can be born highly nonuniform out of
nonideal (real) injectors or become nonuniform due to a variety of (error)
processes. Also, low-order envelope matching of the beam may be incorrect due
to focusing and/or distribution errors.

How much emittance growth and changes in other characteristic parameters may
be induced by relaxation of characteristic perturbations?

+ Employ Global Conservation Constraints of system to bound possible changes
+ Assume full relaxation to a final, uniform density state for simplicity

What is the mechanism for the assumed relaxation?
+ Collective modes launched by errors will have a broad spectrum

- Phase mixing can smooth nonuniformities — mode frequencies incommensurate
+ Nonlinear interactions, Landau damping, interaction with external errors, ...
+ Certain errors more/less likely to relax:

- Internal wave perturbations expected to relax due to many interactions
- Envelope mismatch will not (coherent mode) unless amplitudes are very large
producing copious halo and nonlinear interactions
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Motivation for rapid phase-mixing mechanism for beams with intense space-
charge: strong spread in distribution of particle oscillation frequencies in the core
of the beam

Distribution of particle oscillation frequences in a smooth beam with nonlinear
space-charge forces (sheet beam model for simple curves to illustrate)

30) Lund, Friedman, and Bazouin, PRSTAB 14, 054201 (2011)

251
20|

Frequency Distribution, £

5
%.O 0.2 0.4 0.6 0.8 1.0
Oscillation Frequency, ks/ ks
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Analyze/simulate an initial nonuniform beam to better understand what
happens

Nonuniform Initial Beam

Density, n(r)

Radius, r
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Initial Nonuniform Beam Parameterization h = hollowing parameter

= afte (2)] osr<n T =0l

e

0, re <1 <1, p = radial index

r. = edge radius

X h+2) 1/2 (p+2)(ph +4)
A= [d?z, n = wghr? [@—] ry = 2(z? = Te
[zn = main? | o P =2 = o Dk 2)
Normalize profiles to compare common rms radius (75 ) and total charge ( A)
Hollowed Initial Density Peaked Initial Density
3.} hollowed 12F peaked
— h=1/4 § h=4
L 25
aé g L.
=~ 2.} X = 0.8} uniform
< uniform = o
2 1s) (h=1) < 06} (a=1)
= .
S / 204}
8 0.5 A 0.2 I
0 0 P Y Y O |

o 02 04 06 08 1 12 14 o 02 04 06 08 L 12 14
Radius, 7'/7'6

Radius.” / Te

+ Analogous definitions are made for the radial temperature profile of the beam
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Example Simulation, Initial Nonuniform Beam
o/og = 0.2 Initial density: h=1/4, p=8 Initial Temp: h = infinity, p=2

T T T T T T T T T
_W\b: Max Value (Theory Limit)
' Fluctuation Max

1.051 Fluctuation Min

RMS Emittances Growth

a: Initial

1.00—'/

\} / . Relaxation Distance
|
. T . L v I L |

E Average "Relaxed” Value |

0 2 4 6 8

Undpressed Betatron Periods

Show movie of evolution

[Lund, Grote, and Davidson, Nuc. Instr. Meth. A 544, 472 (2005)]
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Hollowed beam simulation/theory results for strong space-charge
*+ Peaked beam shows very small emittance growth

Initial beam Relaxed and transient beam
a;/ag Density Temperature Emittance growth Undep. betatron periods to relax
h p h P Theory Simulation
0.1 0.25 4 1 arb. 1.57 1.42 {1.57. 1.31-1.52) 3.5
00 2 1.45 {1.57. 1.38-1.52) 3.0
0.5 1.41 {1.57. 1.30-1.52) 3.0
0.25 8 1 arb. 1.43 1.33 (1.43, 1.28-1.38) 3.5
00 2 1.35 {1.43, 1.30-1.40) 4.5
0.5 1.32 {1.43. 1.26-1.38) 4.0
0.20 0.25 4 1 arb. 1.17 LI1{1.16. 1.09-1.13) 4.5
00 2 112 {1.16. 1.10-1.13) 3.0
0.5 LI1{1.16. 1.09-1.13) 4.0
0.25 8 1 arb. 1.12 108 {1.12. 1.06-1.09) 5.5
00 2 108 (1.12. 1.07-1.09) 4.0
0.5 108 {1.12. 1.06-1.09) 4.5

Theory results based on conservation of system charge and energy used to calculate the
change in rms edge radius between initial (i) and final (f) matched beam states

(rog /i) =1 p(0 =h)[A+p+ (3 +p)hl \/(p +2)(ph +4) ?“bf] _ 0

— In

1—(oi/o0)* = (p+2)(p+4)(2+ph)? (p +4)(ph +2)
Ratios of final to initial emittance are then obtainable from the matched envelope eqns:
Exf _ Thf \/(rbf/m>2 — [1 - (01/00)?]

Exi T'bi (Ui/00)2
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Higher-order Collective (internal) Mode Stability
* Perturbations will generally drive nonlinear space-charge forces
+ Evolution of such perturbations can change the beam rms emittance
* Many possible internal modes of oscillation should be possible
- Frequencies can differ significantly from envelope modes
- Creates more possibilities for resonant exchanges with a periodic focusing

lattice and various beam characteristic responses opening
possibilities for system destabilization

KV Envelope Mode Higher Order Mode
(breathing)
n(r) A n(r) A
A\ = const A\ = const
/\_/\/
' > ' >
Ty b0 T b  Tho T
SM Lund, USPAS, 2016 Self-Consistent Simulations
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Results of normal mode analysis based on a fully analytic fluid theory:
Mode eigenfunctions: [S. Lund and R. Davidson, Physics of Plasmas §, 3028 (1998)]

Exactly the same as derived under kinetic theory!

. . 2
Potential Density ( 6nn, =eV1ddn/q )

= T T T ' T T 3 T . T
= 10 ‘»
g 5
2 (]

a5 —
- o
T 2
f 05 I ! I I E

[=]
[=]
L=
e
B
o
[«.]
[=]
[

1.0

r/ry, Radius
Mode dispersion relation:

k o \” DY L,
[ — . 2
¢2+2(%) oz 1)

A = mode wavelength
n=1, 2,3, ---

+ Agrees well with the stable high frequency branch in KV kinetic theory without
spurious unphysical instabilities of KV kinetic model
Results show should expect many collective modes internal to beam seeded by

intiail large gerturbations
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End of digression on space-charge Waves

Resolution of space-charge collective oscillations (waves)
+ For a leap-frog mover this requires minimally

T = period of wave component

A1 A o\ .,

— S — — =24+ 2| — 2n — 1

T 2 Bbc k50 + (JO) ( )

n=1,23, -
Potential Density ( 67, = «V1d6n/q )

= T ' | T T ' T T ] 3 3 T I T T . T T | :
.E E 2- =1 ///
E 8 1 / /P’I=2 8
i ‘il-é l:l_n=3
s % A- n=

r/ry, Radius
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C: Resolution: Spatial Grid

The spatial grid should resolve both space-charge variations of the beam
associated with both the bulk structure of the of the finite radial extent beam and
collective waves
Beam Edge
* Screening leads to a flat core in linear focusing for strong space-charge
+ Estimate from equilibrium beam properties with the edge falloff being on the
scale of the characteristic thermal Debye length.

v; = thermal velocity

A — vy (€0T> 1/2 w, = plasma frequency
Wp q*n T = kinetic temp (energy units)
* Know species, need 7, T’ n = characteristic density
Estimate from known: Obtain:
A = line charge 7~ A

— qmreTy
T 4e ey

Y
2
Yem B c? Ty

ry = 2(#2)1/? = beam edge

ex =4 (%) 1 (T%) L — (27")7 ] Y2 _ emittance

+ species and kinetic energy <> m, Vs, Bp
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For a smooth, thermal equilbrium core scaled theory shows that
*+ See USPAS notes, Beam Physics with Intense Space Charge

A = Scaled space-charge parameter

< 10 A _qos| Density always falls off
v g | | in a few Debye lengths
g regardless of huge range
~ 0.6 V
= of space-charge!
T 04 |
_é; oo | gedge ™~ 5)\D
% | Regardless of A value
A 00 L — - — N
0 5 10 15 20 25 characterizing
Radius, p = r/(7Ap) fi = exp(—H,/T)
Debye Lengths
This suggests that to reasonably resolve the beam edge that the spatial mesh
increments should satisty + Typical beams with low emittance and space-charge
< dominated flow have
Ag, Ay S AD beam radius ~ /r;7, ~ 50 — 100’s Ap

+ Resolving this can be demanding: particularly in 3D
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Spatial variation of collective space-charge waves
Space charge waves not only constrain the time advance, but they also require
radial variations to be resolved
* Usually resolution of beam edge more demanding on choice of A, A,
— High orders can be demanding

* Modes usually have more variation near the edge of the beam
—n'th order mode has n-1 radial nodes

Potential Density ( on, = e V2 66n/q
T : T T ' T T 3 T T T . T T T .
S 2
o ]
[«
oy 5
i !
h g::
3 <
0 02 0.4 0.6 0.8 1.0
r/ry, Radius
1 \/TxTy :
\ Jr.r, ~ edge radius beam
Aaza Ay 5 5— vy S
n
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Electrostatic Structures on Mesh
If applied fields are calculated with biased conductors on the mesh, then the mesh

should resolve structures

+ Only “features” that impact multipole field components within the aperture

where the beam particles are need need be resolved

Example: Puller electrodes from
ECR 10n source at Michigan State University

- § T
(
5
o }
&
EUELELERTRELRALY

? D IR A AR
( 3 J.‘m‘.‘:.".f.‘/?‘f[?}"r.r.
e pre- .
8B

b

2R

aperture

e ¥ e
LN .

%‘mnu\\\u

—

W
==t P;ng,},\}},,; N zrrrrrs

-1to -5 kV

Source: D. Winklehner, LBNL ECRIS2010

(Source: Daniel Winklehner)
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Choose:

A, AySJg

R = smallest radius
curvature that
“matters” to beam

+ Mesh refinement can
relax overall zones but
need to check more
carefully
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D: Statistics

Collective effects require having a significant number of particles within the
“volume” bounded by the characteristic shielding distance
+ Shielding distance given by the Debye length:

—-Ei (EQkB]1

qn

>1/2

See following discussion to
motivate screening length

+ “Volume” bounded by shielding distance will depend on the dimension of the
simulation being carried out. For simulations with N macro-particles require
number of macro particles in Debye screening length to be large:

oD : ND_Z/

ircle

3D : ND_Z/

dxé(x — )0y —y;) > 1

dxé(x — x)0(y —y;)0(2 —z;) > 1

here

circle and sphere have radius of Debye length
x; = macro particle coordinate

SM Lund, USPAS, 2016
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Debye screened potential for a test charge inserted in a thermal
equilibrium beam essentially the same in 1D, 2D, and 3D

Test Charge:
1D:
Sheet Charge Density: >;
2D:
Line Charge Density:  A;
3D: (physical case)
Point Charge: qt

All Cases:

(60T)1/2
Ap = | 5=
Q>

Dimension Distance Measure

Test Charge Density

Screened Potential

P = 0p =~
1D || %,6(x) 2203 o~ al/(1Ap)
— 2 2 w >\t 1 —r >\D
2D r=+°+Yy At T SN \/me /(7o ), ro>> fyb)\D
3D r=va2+y2+22  q8(x)d(y)d(2) g _o—r/(mAp)

4megr

References for Calculation:

1D: Lund, Friedman, Bazouin, PRSTAB 14, 054201 (2011)

2D: USPAS lecture notes on Beam Physics with Intense Space Charge
3D: Davidson, Theory of Nonneutral Plasmas, Addison-Wesley 1989

SM Lund, USPAS, 2016
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In all these cases: 1D, 2D, and 3D, the screened interaction potential d¢
has approximately the form:

(qu — ¢(T)6_T/AD r = distance measure
T T in each dimension case

Bare Screen
Comments

+ If a lower dimensional models produce the same screened interaction as in
physical 3D, then the lower dimensional model can produce essentially the
same collective interaction as in 3D. This 1s why lower dimensional models
can give right answers!

— This 1s important and seems to be poorly realized by newer generations
of scientists who run big codes routinely
— Parameters can be returned for optimal equivalency with 3D

+ In 1D the bare Coulomb interaction is infinite range (sheet charges) but the
screened interaction is still the same as in physical 3D
— Paper [Lund, Friedman, Bazouin, PRSTAB 14, 054201 (2011)] shows how to

exploit this with optimal equivalences to model space-charge effects in
beams: sheet beam model simpler to analyze
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Comments Continued

+ In 2D the screened form is approximately the same as in physical 3D in spite
of the radically different Coulomb forces
— Equivalence, 1ronically, a little more approximate than for 1D

+ It 1s MUCH easier to get good convergance in statistics in lower dimensional
models. This can be exploited to guide setting of numerical parameters in 3D
codes.
— Results sometimes sobering: can be difficult!
— Recommend strongly testing models in 2D to gain insight
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E: Illustrative Examples with the Warp Code

Sorry ran out of time. Have large series of computer runs to illustrate

but need a week of work to distill and make proper summaries. I will try to
post an updated version here after the course and extend for future
versions.

The 1ntent will be to show examples on the influence of resolution and
statistics with the xy Warp transverse slice simulation (x,x',y,y') of an
alternating gradient focused beam in a linear hard-edge periodic transport
lattice using the script

Xxy-quad-mag-mg.py

Cases to be covered (common lattice):

- Weak Space-Charge

- Intermediate Space-Charge

- Strong Space-Charge

- Strong Space-Charge with Instability
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Corrections and suggestions for improvements welcome!

These notes will be corrected and expanded for reference and for use in future

editions of US Particle Accelerator School (USPAS) and Michigan State
University (MSU) courses. Contact:

Prof. Steven M. Lund

Facility for Rare Isotope Beams
Michigan State University

640 South Shaw Lane

East Lansing, MI 48824

lund @frib.msu.edu
(517) 908 — 7291 office
(510) 459 - 4045 mobile

Please provide corrections with respect to the present archived version at:
https://people.nscl.msu.edu/~lund/uspas/scs_2016

Redistributions of class material welcome. Please do not remove author credits.
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