The Python interpreter

Remi LEHE

Lawrence Berkeley National Laboratory (LBNL)

US Particle Accelerator School (USPAS) Summer Session
Self-Consistent Simulations of Beam and Plasma Systems
S. M. Lund, J.-L. Vay, R. Lehe & D. Winklehner
Colorado State U, Ft. Collins, CO, 13-17 June, 2016

Python interpreter: Outline

@ Overview of the Python language

© Python, numpy and matplotlib

© Reusing code: functions, modules, classes

@ Faster computation: Forthon

Overview

Overview of the Python programming language

o Interpreted language (i.e. not compiled)
— Interactive, but not optimal for computational speed

@ Readable and non-verbose
No need to declare variables
Indentation is enforced

@ Free and open-source
+ Large community of open-souce packages

@ Well adapted for scientific and data analysis applications
Many excellent packages, esp. numerical computation (numpy),
scientific applications (scipy), plotting (matplotlib), data
analysis (pandas, scikit-learn)

Scripting

@ Code written in a file, with a
text editor (gedit, vi, emacs)

@ Execution via command line
(python + filename)

New Open Recent Print
def geometric_sum{ N, a, b=1 J:
Return the sum of the
b*i**a for 1 from 1 to N
5=0
for i in range(1,N+1):
5 =5+ b*i**a
return{ S 3

51 = geometric_sum(1@, 1, 2 3
5z = geometric_sum{ 8, 2)

=1=== fi _ le.py Top (12,0) Git-master (Py
800 ¢ rlehe — bash — 48x24)
Last login: Wed_May 25 15:A5:1f on ttys]
[rlehegifed ~]$|python functiun_example.py-l

Convenient for long-term code

ive shell

@ Obtained by typing python or
(better) ipython

@ Commands are typed in and
executed one by one

800 4 rlehe — python2.7 — 54x23

[rlehe@ife3 ~1% ipython |

Python 2.7.11 |Anaconda 2.3.0 (xB6_64)| (default, Dec
6 2815, 18:57:58)
Type “"copyright”,
rmation.

“credits" or "license" for more info

IPythun 4.1.2 -- An enhanced Interactive Python.
-= Introduction and overview of IPython's fe

atures.

%Squickref -= Quick reference.

help —= Python's own help system.

object? -» Details about ‘object', use 'object??' fo

r extra details.
In [1]: import numpy as np

In [2]: x = np.arange(108)

In [3]: np.any(x#*2 == 8)
Out[3]: True

Convenient for exploratory work,
debugging, rapid feedback, etc...

Overview

Interfaces to the Python language

@) rlehe — python2.7 — 86x24

pyter notebook 8|
SESORATET Serving notebooks from local directory: /Users/rlehe
tebookApp] 0 active kernels

notebook

F— "
@ Notebook interface7 similar to @ | hups:/ /localhost:9999/notebe | & | (Q Search wla o » =
. @ vl)Gt B mibucker JupytergNersc [NMiogin [mnersc [Zwan »
Mathematica. = JUpyter Euermethod R
uler metho ogout
@ Intermediate between Scripting Fle Edt View Inset Cell Kemel Help | Python 2 ©
and interactive shell, thI‘Ollgh + 5« A B 4 ¥ M B C Coe -] = | cemoolbar
reusable cells Convergent series
- 1 a2
@ Obtained by typing jupyter 27T
notebook, opens in your web In (1) | taport numpy as np
import matplotlib.pyplot as plt
browser tmatplotlib notebook
. In [2]: n 2 n};.irange(l,u)
Convenient for exploratory work, O
scientific analysis and reports Lo
: IR
13 °
2 *
11
10
0.9

Overview

Overview of the Python language

This lecture

Reminder of the main points of the Scipy lecture notes through an
example problem.

Example problem: Euler’s method

Use Euler’s method to numerically integrate, between ¢ = 0 and 10:

d x(t)
dt

= x(t) cos(t) with z(0) =1

Compare it with the exact solution: z(t) = (")

Reminder: In this case, Euler’s method gives:
ti = iAt
Ti=xi—1 + At X Ti_1 COS(tifl)

I I I I I I I I I I
T T T T T T T

N A N A N A N A At

Python interpreter: Outline

@ Overview of the Python language

© Python, numpy and matplotlib

© Reusing code: functions, modules, classes

@ Faster computation: Forthon

Scientific Python

Example problem: Structure of the code

Storage in memory:

t to tq to t3 ty ts te t7 ts tg

X i) T i) I3 Ty Is Te X7 xs L9
T T T T T T T T T T t
N A N AN AN A At
For loop:

Repeatedly apply: z; = x;_1 + At X x;_7 cos(t;—1)

Scientific Python

Numpy arrays

Provide efficient memory storage and computation,
for large number of elements of the same type.

o Standard import: import numpy as np

@ Creation of numpy arrays:
np.arange, np.zeros, np.random.rand, np.empty, etc...
(In ipython, use e.g. np.arange? to read the documentation)

@ Individual elements are accessed with square brackets:
x[i] (1D array), y[i,j,k] (3D array)
For an array with N elements, the indices start at 0
(included) and end at N-1 (included)

@ Subsets of the array are accessed using slicing syntax:
x[start index : end index : step] ; in particular:
o x[start index : end index] : slicing with step 1 by default
o x[: end index] : slicing with start index 0 by default
o x[start index: -11 : slicing up to the last-but-one element ©

Scientific Python

For loops

Repeatedly perform a given operation
(e.g. apply the same operation to every element of a numpy array)

Syntax:
for i in range(start index , end index , step):

Perform some operation that depends on i

@ Indentation and the use of column (:) are key.

@ The range function can be used with 1, 2 or 3 arguments:

o range(N): loop from index 0 to index N-1 (included)
o range(i,N): loop from index i to index N-1 (included)
o range(i,N,k): loop from index i to index N-1 with step k

@ In the above, range can also be replaced by a list or any iterable.

10

Scientific Python

Numpy and for loops: task

In a text editor, write a python script (named euler.py) which:

@ Sets the number of integration steps to N = 200,
and the timestep to dt = 10./N

o Initializes the array t (with N elements) using np.arange so that
t; = iAt

o Initializes the array x (with N elements) using np.empty and
setting the initial point x[0] to 1.

@ Loops through the array x and applies Euler’s method:
(Here, the loop should start at ¢ = 1, not i = 0)

T; = Ti—1 + At X ;1 COS(tl‘,l)

Run the script (python euler.py), to check that there is no error.

Scientific Python

Comparison with the exact solution

x_exact esin(to) 6sin(tl) esin(tz) esin(tg) esin(t4) esin(t5) esin(tﬁ) esin(t7) esin(tg) esin(tg)

We wish to compare the two results by:

@ Calculating the RMS error:

1 N-1
— 2
€ERMS = T § (171 - xemact.i)
N ’
=0

@ Plotting x and xezqct versus t.

Scientific Python

Numpy arrays: element-wise operations

Operation that is repeated for each element of an array
and does not depend on previous/next elements.

¢-8: Lexact,i — esin(ti) Vi € [0, N — 1]

@ Could be done with a for loop:

for i in range(N):
x_exact[i] = np.exp(np.sin(t[i]))

@ But is computationally faster with numpy vector syntax:
x_exact = np.exp(np.sin(t))

Numpy vector syntax also works for the element-wise operations:
+, =, %, /, %% (power), np.sqrt (square-root), np.log, etc...

Scientific Python

Numpy arrays: reduction operations

Reduction operation
Operation that extracts a single scalar from a full array

e.g. N-1

@ Again, could be done with a for loop:

S =0
for i in range(N):
S =8 + y[i]

@ But is computationally faster with numpy reduction methods
S = np.sum(y)
Other reduction operations:

np.product, np.max, np.mean, etc... (for real or integer arrays)
np.any, np.all, etc... (for boolean arrays)

14

Scientific Python

Plotting package: matplotlib

Other Python plotting packages: pygist, bokeh, seaborn, bgplot, ...

@ Publication-quality figures @ Slow
@ Extremely versatile and customizable @ Sometimes verbose
@ Standard plotting package in the @ Limited interactivity

Python community

Standard import: import matplotlib.pyplot as plt

Basic plotting commands:
plt.plot(t, x) (plots ldarray x as a function of ldarray t)

Show the image to the screen:
plt.show() (unneeded when using ipython --matplotlib)

Save the figure to a file:
plt.savefig(file name)

Scientific Python

Numpy and matplotlib: task

In a text editor, add the following features to euler.py:

o Create the array x_exact so that egqet,i = esin(ti)

@ Calculate the RMS error, without using any for loop:

N-1
€ERMS =

2=

(Iz’ - l‘exact,i)Q
1=0

Use the print statement, to show the value of the RMS error

@ Plot z and Zezqet as a function of ¢ on the same figure,
and show it to the screen. (Use plot(t, x_exact, ’--’) to
show the exact solution with dashed lines.)

Run the script (python euler.py), to check that it works.

Python interpreter: Outline

@ Overview of the Python language

© Python, numpy and matplotlib

© Reusing code: functions, modules, classes

@ Faster computation: Forthon

Reusing code

Reusing code for the example problem

Example problem

Compare the results of Euler’s method for different values of N
(and thus of dt) on the same plot.

— Not possible with the code from task 2
(unless we copy and paste a lot of code)

We need to make the code more abstract and reusable:

@ Define functions that depend on N and initialize the arrays,
perform Euler integration, and plot the results.

@ Place these functions inside a module so that they can be
imported and used elsewhere.

18

Functions

Example for function definition o Key syntax: def, () and :,
the body is indented

def geometric_sum{ M, a, b=1):

@ The “docstring” is optional.
Return the sum of the Users can see it in ipython

* 5 Ak £, i F . .

b*1**a for 1 from 1 to N with geometric_sum? or

o help(geometric_sum)

5=0

for 1 in range(l,N+1): @ Here, b has a default value,
5 =5 + b*i**a which is used when only 2

returnC 5 J arguments are given

@ Functions can also return
several objects
(e.g. return(x, a, b))
or nothing
(no return statement)

51
52

geometric_sum(18, 1, 2)
geometric_sum 8, Z)

@ Similarly, functions can be

defined with no arguments

Modules

Defines variables to be imported
by other Python sessions.

@ Any Python script can be
treated as a module.
numpy is a set of modules.

@ The section
if _name__ == ’_main__’:
is executed if the script is run
(e.g. python geometric.py)
but not when it is imported
(import geometric as gm)

Example module

In file geometric.py:
def geometric_sum{ N, a, b=1 J:
5=0
for 1 in range(1,N+1):
5 =5 + b*i**a
return §)

if __name__ == "__main__":
51 = geometric_sum{ 1@, 1, 2)
52 = geometric_sum{ &, 2)

Example import and use

In e.g. ipython:
import geometric as gm
S = gm.geometric_sum(8, 2)

Reusing code

Importing modules

Different import styles:

@ import geometric
— S = geometric.geometric_sum(8,2)

@ import geometric as gm
— S = gm.geometric_sum(8,2)

@ from geometric import geometric_sum
or from geometric import * (imports all variables)
— S = geometric_sum(8,2)

The source file of the module needs to be:
@ in the same directory

@ or in the default Python path
(case of installed packages like numpy, matplotlib or even warp)

Reusing code

Functions and modules: task

Reorganize the script euler.py so as to make it a reusable module:
@ Start with the import statements (numpy and matplotlib)

o Write a function with signature initialize arrays(N, T=10.)
which sets dt = T/N, initializes t and x, and returns t, x, dt

@ Write a function euler_integration(t, x, dt, N), which
fills the array x (this function does not return anything)

@ Write a function evaluate _result(t, x, N), which computes
the exact result, prints the RMS error, and plots the arrays

@ Finally, create a section if __name__ == ’_main__’:, in which
you set N = 200, and call the 3 functions successively

Type python euler.py to check that the final section runs.

N
¥]

Reusing code

Functions and modules: task

Use the module that you wrote, inside ipython

@ In the shell, type ipython --matplotlib
@ Then, inside ipython, type from euler import *

@ Then set N1 = 100, N2 = 200 and create the corresponding
variables t1,x1,dt1 and t2,x2,dt2 with initialize_ array.

@ Then call euler_integration and evaluate result on each set
of arrays and values. Compare the results.

(NB: Do not hesitate to use tab completion in ipython)

Although the code works, note that it is tedious to:
@ create 4 different variables with a suffix 1 or 2
@ pass these variables as arguments to the different functions

This is solved by object-oriented programming and classes.

Reusing code

Classes: initialization and attributes

Example of class definition

class EulerSolver(object):

def __init__(self, N):
"Initialize attributes”
X = np.empty(N)

x[@] =1
self.N = N
self.x = x

Example of use

solverl = EulerSolver(108)
solver? = EulerSolver{208)
print solwverl.N
print solverZ.N
print solverl.x

Classes are “containers”:
Variables are encapsulated
together as attributes of an
instance of the class.

Creation of an instance
(e.g. EulerSolver (100))
executes the code in __init__.

Accessing attributes
replace self by the name of
the instance.

Predefined syntax:

Use the keywords class,
(object): and __init__

Note that __init__ takes self
as first argument when

defined, but this is skipped
when creating an instance. 24

Classes: methods

s definition

Example of ¢

class EulerSolver(object):

def __init__({self, N):
X = np.empty(N)

x[@] =1
self.N =N
self.x = x

def euler_integration(self, dt):
for 1 in range(l,self.NJ:
self.®x[1] = self.x[i-1] +
dt * self.x[i-1] * N
np.cos{ (i-1)*dt D

Example of use

solverl = EulerSolver(1@@)
solverl.euler_integration{ @.1)

Methods are functions
which can access the
attributes of a class.

— The attributes do not
need to be passed as
arguments.

Syntax for definition
Pass self as first
arguments, then use
self. to access attributes

Syntax for calling
Prefix with name of the
instance, then skip self
in arguments

N
ot

Reusing code

Classes: task

Rewrite euler.py so as to define a class EulerSolver

@ Replace the function initialize arrays by a corresponding
method __init__(self, N, T=10.) This method should define
N, x, t, dt as attributes.

@ Replace the functions euler_integration and evaluate_result
by methods with the same name respectively. These methods
should take no argument (besides self), but should use the
attributes through the self. syntax.

@ In the section if _name__ == ’_main_’:, type the code:
solver = EulerSolver(200)
solver.euler_integration()
solver.evaluate_result ()

Execute the file (python euler.py) to check that it works.
Then in ipython, compare again N=100 and N=200.

Python interpreter: Outline

@ Overview of the Python language

© Python, numpy and matplotlib

© Reusing code: functions, modules, classes

@ Faster computation: Forthon

Forthon

Faster computation

Large for loops are slow in Python.

Example:
In [2]: solver = EulerSolver{ 1B@%*6)

In [3]: %time solver.euler_integration()
CPU times: user 2.16 s, sys: 276 ms, total: 2.43 s
Wall time: 2.24 s

@ If the operation is of type element-wise or reduction:
Use numpy syntax

@ Otherwise, rewrite the for loop in a compiled language
(e.g. Fortran, C) and link it to the rest of the Python code

— High-level control with Python (modularity, interactivity)

— Low-level number-crunching with e.g. Fortran or C (efficiency)
28

Forthon

Faster computation: Forthon

@ Generates links between Fortran and Python

@ Open-source, created by D. P. Grote (LLNL)
https://github.com/dpgrote/Forthon

@ Heavily used in Warp for low-level number crunching

On the user side:
@ Write Fortran subroutines and modules in a .F file
@ Write a .v file to tell which variables to link to Python
@ Compile with Forthon — produces a Python module

@ Import the module in Python and use the linked variables

NB: Other similar solutions exist: £2py (links Fortran code), Cython
(generates and links C code), Numba (compiles Python code), etc...

https://github.com/dpgrote/Forthon

Forthon

Faster computation: task

Task 6

Download and decompress the code from
http://github.com/Remilehe/uspas_exercise/raw/master/Forthon _task.tgz
The files acc_euler.F and acc_euler.v are the files needed by
Forthon, while euler.py is the code from task 5.

@ The Fortran file acc_euler.F contains an error in the line that
starts with x(i) = . Spot it and correct it.

@ Compile the code with Forthon by typing make in the shell.
A new file acc_eulerpy.so should be created.

@ At the beginning of the file euler.py, add
from acc_eulerpy import forthon_integration then create a
new method acc_euler_integration(self), which calls
forthon_integration (see acc_euler.F for its signature).

In ipython, create an instance with N=10**6, and compare the
runtime of euler_integration and acc_euler_integration

30

http://github.com/RemiLehe/uspas_exercise/raw/master/Forthon_task.tgz

Forthon

References

Scipy lecture notes:
http://www.scipy-lectures.org/ (G. Varoquaux et al., 2015)

Python tutorial:
https://docs.python.org/3/tutorial/ (Python Software
foundation, 2016)

Forthon:
https://github.com/dpgrote/Forthon (D. Grote et al., 2016)

http://www.scipy-lectures.org/
https://docs.python.org/3/tutorial/
https://github.com/dpgrote/Forthon

	Overview of the Python language
	Python, numpy and matplotlib
	Reusing code: functions, modules, classes
	Faster computation: Forthon

