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Problem 1 - Derivatives on a non-uniform mesh.

In class, we discretized a first derivative on a uniform grid

as:
∂f

∂x

∣∣∣∣
i

=
fi+1 − fi−1

2∆x
+O(∆x2)

whereas a second derivative is discretized as

∂2f

∂x2

∣∣∣∣
i

=
fi+1 − 2fi + fi−1

(∆x)2
+O(∆x2)

Similarly, discretize the first and second derivative for a non-uniform grid

i.e. find:

∂f

∂x

∣∣∣∣
i

= · · ·+O(∆x2+,−)

∂2f

∂x2

∣∣∣∣
i

= · · ·+O(∆x+,−)

Notice that we find an O(∆x+,−) error term for the second derivative instead of an O(∆x2) term
as we did for the uniform grid. Establish the order of error with your answer!
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Problem 2 - Moment formulation of the K-V distribution

The equations of motion for a particle evolving within a K-V beam

with

x̃ = x−X X = 〈x〉⊥
ỹ = y −Y Y = 〈y〉⊥

are

d

ds
x′ + κx(s)x− 2Q(x−X)

rx(rx + ry)
= 0

d

ds
y′ + κy(s)y −

2Q(y −Y)

ry(rx + ry)
= 0

when (
x̃

rx

)2

+

(
ỹ

ry

)2

≤ 1.

Here

Q =
qλ

2πε0mγ3bβ
2
b c

2
.

a) Show that

rx = 2〈x̃2〉1/2⊥
ry = 2〈ỹ2〉1/2⊥

Hint: This is easier if you take∫
ellipse

dx̃

∫
dỹ · · · = rxry

∫ 1

0
dρρ

∫ π

−π
dθ · · ·
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x̃ = rxρ cos θ

ỹ = ryρ sin θ

with
ρ ∈ [0, 1], θ ∈ [−π, π], and dx̃dỹ = rxryρdρdθ.

b) Derive the equations of motion summarized in class as:

d

ds


〈x〉⊥
〈x′〉⊥
〈y〉⊥
〈y′〉⊥

 =


〈x′〉⊥

−κx(s)〈x〉⊥
〈y′〉⊥

−κy(s)〈y〉⊥



d

ds



〈x̃2〉⊥
〈x̃x̃′〉⊥
〈x̃′2〉⊥
〈ỹ2〉⊥
〈ỹỹ′〉⊥
〈ỹ′2〉⊥

 =



2〈x̃x̃′〉⊥
〈x̃′2〉⊥ − κx(s)〈x̃2〉⊥ +

Q〈x̃2〉1/2⊥
2[〈x̃2〉1/2⊥ +〈ỹ2〉1/2⊥ ]

−2κx(s)〈x̃x̃′〉⊥ + Q〈x̃x̃′〉⊥
〈x̃2〉1/2⊥ [〈x̃2〉1/2⊥ +〈ỹ2〉1/2⊥ ]

2〈ỹỹ′〉⊥
〈ỹ′2〉⊥ − κy(s)〈ỹ2〉⊥ +

Q〈ỹ2〉1/2⊥
2[〈x̃2〉1/2⊥ +〈ỹ2〉1/2⊥ ]

−2κy(s)〈ỹỹ′〉⊥ + Q〈ỹỹ′〉⊥
〈ỹ2〉1/2⊥ [〈x̃2〉1/2⊥ +〈ỹ2〉1/2⊥ ]


Moments not shown are zero. 〈x̃ỹ〉 = 0 is obvious and 〈x̃ỹ′〉 = 〈x̃′ỹ〉 = 0 follows from the
kinetic distribution.

c) Show from the results in part b) that

εx = const. with εx = 4[〈x̃2〉⊥〈x̃′2〉⊥ − 〈x̃x̃′〉2⊥]
1/2

d) Show from the results in part b) and c) that

d2

ds2
rx + κx(s)rx −

2Q

rx + ry
− ε2x
r3x

= 0

This is the “standard” form of the K-V envelope equation.

Problem 3 - Moment equations and conservation constraints

The non-relativistic Vlasov-equation is:{
∂

∂t
+ ~v · ∂

∂~x
+

q

m

[
~E + ~v × ~B

]
· ∂
∂~v

}
f(~x,~v, t) = 0

Define a fluid density n and a fluid flow velocity ~V by

n(~x, t) =

∫
d3v f(~x,~v, t)

n(~x, t)~V(~x, t) =

∫
d3v ~v f(~x,~v, t)
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a) Operate on the Vlasov equation with ∫
d3v · · ·

to derive the continuity equation:

∂

∂t
n(~x, t) +

∂

∂~x
·
[
n(~x, t)~V(~x, t)

]
= 0

b) Can the continuity equation be solved by itself if you specify the intial density field n(~x, t = 0)?
Why?

c) Operate on the Vlasov equation with ∫
d3v ~v · · ·

to derive the fluid force equation.

∂

∂t

(
n~V
)

+∇ · (n〈~v~v〉v) =
q

m
n
(
~E + ~V × ~B

)
with 〈~v~v〉v ≡

∫
d3v ~v~vf∫
d3v f

Defining a pressure tensor as

P = m

∫
d3v (~v − ~V)(~v − ~V)f(~x,~v, t)

= mn〈~v~v〉v −mn~V~V,

the fluid force equation can be expressed as

∂

∂t
~V + ~V · ∂

∂~x
~V =

q

m

(
~E + ~V × ~B

)
− 1

mn

∂

∂~x
· P.

This form is often used in fluid/plasma analysis.

d) If the continuity and force equation derived in parts a) and c) are analyzed, can they be solved
in principle if you specify the initial density field n(~x, t = 0) and the velocity field ~V(~x, t = 0)?
Why? Does the answer change if we assume a cold initial beam with P = 0? Why?

e) Let G(f) be some smooth, differentiable function of f, satisfying G(f → 0) = 0. Show that∫
d3x

∫
d3v G(f) = const.

This so-called “generalized entropy” measure with G specified can be used to check Vlasov
simulations. For example:

G(f) = f :

∫
d3x

∫
d3v f = const.→ charge conservation

G(f) = f2 :

∫
d3x

∫
d3v f2 = const.→ “enstropy” conservation

G(f) = f ln f :

∫
d3x

∫
d3v f ln f = const.→ entropy conservation
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Problem 4 - Python program for Runge-Kutta order 2

We wish to integrate the differential equation

d x(t)

dt
= x(t) cos(t) x(0) = 1

with Euler’s method and the Runge-Kutta method (order 2), and compare the results.

a) Download the file euler.py from:

http://raw.githubusercontent.com/RemiLehe/uspas_exercise/master/euler.py.

Copy it to a new name rungekutta.py and modify it to implement the Runge-Kutta method,
order 2. In particular:

• Change the name of the class from EulerSolver to RKSolver

• Change the name of the euler_integration method to rk_integration, and implement
the Runge-Kutta method, order 2 (see the presentation Overview of Basic Numerical
Methods)

b) In ipython, import classes EulerSolver from euler.py and RKSolver from runge_kutta.py.
Evaluate the results of both methods for N=100 ; what is the RMS error in both cases?
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