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Problem 1 - Discrete numerical operations

a) Derive the uniform mesh formulas and error estimates covered in class (3 point centered):

∂f

∂x

∣∣∣∣
i

=
fi+1 − fi−1

2∆x
+O(∆x2)

∂2f

∂x2

∣∣∣∣
i

=
fi+1 − 2fi + fi−1

(∆x)2
+O(∆x2)

b) Derive the quadrature formulas and error estimates covered in class:

Trapezoidal Rule:

∫ xi+1

xi−1

dxf(x) =
fi−1 + 2fi + fi+1

2
∆x+O(∆x3)

Simpson’s Rule:

∫ xi+1

xi−1

dxf(x) =
fi−1 + 4fi + fi+1

3
∆x+O(∆x5)

Hint: start with a forward approximation for f(x) starting at fi−1 and integrate over the
half-interval xi−1 − xi. The other half interval is analogous.

c) Show that the formulas in b) are consistent with:

Trapezoidal Rule:

∫ xmax

xmin

dxf(x) =

{
1

2
f0 +

nx−1∑
i=1

fi +
1

2
fnx

}
∆x

Simpson’s Rule (nx even):

∫ xmax

xmin

dxf(x) =

{
1

3
f0 +

4

3
f1 +

2

3
f2 +

4

3
f3 +

2

3
f4

+ · · ·+ 2

3
fnx−2 +

4

3
fnx−1 +

1

3
fnx

}
∆x
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Problem 2 - Numerical field solutions 1

In 1D electrostatics, on a uniform grid

the Poisson equation is
∂2

∂x2
φ =

−ρ
ε0
,

where

φ = φ(x)

ρ = ρ(x)

and

xj = xl + ∆x ∗ j, ∆x =
xr − xl
nx

j = 0, 1, 2, · · · , nx, nx + 1 = number of grid points.

In class we defined a discrete Fourier transform for the 1D potential:

φ̃n = ∆x

nx∑
j=0

e
i2πnj
nx+1φj , n = 0, 1, 2, · · · , nx

a) Show that the transform can be inverted exactly with

φj =
1

(nx + 1)∆x

nx∑
n=0

e
−i2πnj
nx+1 φ̃n

b) Define a gridded electric field

Exj =
−(φj+1 − φj−1)

2∆x

and show that
Ẽxn = iκ̂nφ̃n

where

κ̂n = kn

[
sin (kn∆x)

kn∆x

]
and

kn =
2πn

(nx + 1)∆x
.

Here

Ẽxn = ∆x

nx∑
j=0

e
i2πnj
nx+1Exj .
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Problem 3 - Numerical field solutions 2

In 1D electrostatics, on a uniform grid

the Poisson equation is
∂2

∂x2
φ =

−ρ
ε0
,

where

φ = φ(x)

ρ = ρ(x)

and

xj = xl + ∆x ∗ j, ∆x =
xr − xl
nx

j = 0, 1, 2, · · · , nx, nx + 1 = number of grid points.

a) In class we setup an explicit matrix discretization of this problem for Dirichlet boundary
conditions with φ(xl) = Vl and φ(xr) = Vl where source terms were isolated on the right-hand
side of the resulting matrix equation. Repeat this construction using

∂2f(x)

∂x2

∣∣∣∣
j

=
fj+1 − 2fj + fj−1

δx2
+O(∆x2)

for Neumann boundary conditions with

∂φ

∂x

∣∣∣∣
xl

= Gl.

b) Could we also specify
∂φ

∂x

∣∣∣∣
xr

= Gr

and have a solution? Why?

3



Problem 4 - Python script for 1D EM solver in vacuum

In the 1D case and in vacuum (~j = ~0), the discretized Maxwell equations for Ex and By are:

By
n+1/2
k+1/2 −By

n−1/2
k+1/2

∆t
= −

(
Ex

n
k+1 − Ex

n
k

∆z

)
Ex

n+1
k − Ex

n
k

∆t
= −c2

By
n+1/2
k+1/2 −By

n+1/2
k−1/2

∆z


Download the file em_pic_1d.py from:

http://raw.githubusercontent.com/RemiLehe/uspas_exercise/master/em_pic_1d.py

It is an incomplete implementation of a field solver, based on these equations (with periodic
boundaries)

a) Read the code and try to understand it (you are encouraged to run the code to see what it
produces). Answer the following questions:

• What does np.zeros do? What type of object are self.Ex and self.By?

• In the method plot_fields, explain why we use:

– self.z in the line
plt.plot( self.z, self.Ex[1:-1],’o-’)

– but self.z+0.5*self.dz in the line
plt.plot( self.z+0.5*self.dz, self.By[1:-1], ’o-’ ).

• With the current version of the code, does the initial pulse propagate with time? Why?

b) Rewrite the above Maxwell equations in the form By
n+1/2
k+1/2 = ... and Ex

n+1
k = .... These are

the update equations that need to be implemented in em_pic_1d.py.

In the code, find the lines that are tagged with the text ASSIGNEMENT and write the correct
update equations, using Python syntax. Note that, as explained in the text of the code, at a

given iteration n, the element Ex[k] represents Ex
n
k and the element By[k] represents By

n−1/2
k+1/2

(thus be mindful of using the correct indices for the array Ex and By).

c) In order to validate your implementation, check that the pulse propagates to the right. At
what speed should it propagate physically? From the images, can you evaluate at which speed
it propagated?

d) (Extra Credit) Rewrite the for loops by using numpy vector syntax.
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Problem 5 - Warp: parallel plates and Child-Langmuir law

Let us assume two parallel conducting plates separated by the distance d, and with a constant
potential difference V between the two plates.

Figure 1: Two parallel conducting plates separated by the distance d and powered by a voltage
difference V will, for a proper value of V , accelerate charged particle initially at rest at one of the
plates.

Charged particles injected with initial velocity v = 0 will be accelerated toward the opposite
plate when the sign of the voltage difference is set appropriately.

a) Run a parallel plate example in warp:

• Open the input script “Parallel plate injection.py”.

• Run the script: “python -i Parallel plates injection.py”.

• Observe the injection of particles in window 0, and of the current, charge density, electric
field and potential in window 1. You may run additional steps by using the command
“step(n)” where n is the number of time steps to run.

• In the same terminal, after exiting the run, or in another terminal window, open the out-
put file created by window(0) with the command “gist Parallel plates injection.000.cgm”.
At the gist prompt, type ’help’ for the help menu. Select the graphic window and type
“f” multiple times, followed by “g” multiple times. Refer to the help menu for additional
options. You may also explore the graphics produced in window(1) by opening the file
with “gist current.cgm”.

• Look at the input script line-by-line until the end, trying to understand the meaning of
each command.

• Search for the line ”diode current = 1.”. Augment the diode current up to 6A, by
increment of 1, rerunning the script each time. What do you observe?

b) Let us examine why the emitted current does not seem to exceed a certain limit in steady-
steady state mode.
Assuming a steady state flow, the current will be constant (J = ρv) and the energy of a
particle at a given position is given by 1/2mv2 = −qφ(z) where q, m, v and z are respectively
the charge, mass, velocity and position of the particle. Using Poisson’s equation (d2φ/dz2 =
−ρ/ε0), and posing Φ = −qφ show that

d2Φ

dz2
=
qJ
√
m/2

ε0
Φ−1/2. (1)
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Multiply each side by dΦ/dz and integrate to find(
dΦ

dz

)2

=
4qJ
√
m/2

ε0
Φ1/2 + C. (2)

Considering now the special case dΦ/dz = 0 at z = 0, we get C = 0, integrate again to find

4

3
Φ3/4 = 2

√
qJ

ε0

(m
2

)1/4
z. (3)

Using φ(d) = V , find that

J =
4

9
ε0

√
2

m

(−qV )3/2

qd2
, (4)

and

φ(z) = V
(z
d

)4/3
. (5)

The expression

J =
4

9
ε0

√
2|q|
m

|V |3/2

d2
, (6)

is known as the Child’s Law or Child-Langmuir Law and gives the maximum current that can
be extracted for a given voltage and plate separation.

c) Compare the theoretical Child-Langmuir limit with the steady state values in warp.

• Find the command “plzprofiles(l CL=False)” and replace by “plzprofiles(l CL=True)”.

• The input script will now fail at execution. Fix the input script by replacing the expres-
sions for Child-Langmuir Law and the potential dependency at the appropriate locations.

• At the end of the simulation, the simulation printed ”Maximum current from Child-
Langmuir law = ***”. Replace the input value for the current by this value, restart the
simulation and verify that the emitted current, charge density, electric field and potential
profiles converge when steady-state is reached, toward the ones predicted at the Child-
Langmuir limit.
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