ISLA: An Isochronous Spectrometer with Large Acceptances for the re-accelerated radioactive beams of FRIB

D. Bazin

NSCL/FRIB/MSU
NSCL and FRIB re-accelerated beams
NSCL and FRIB re-accelerated beams

- NSCL-driven re-accelerated radioactive beams
NSCL and FRIB re-accelerated beams

- NSCL-driven re-accelerated radioactive beams
- FRIB-driven re-accelerated radioactive beams
Key concepts
Key concepts

- ReA12 re-accelerated radioactive beams

 - Energies from 0.3 MeV/u to 12-20 MeV/u (depending on Q/A)
 - Small emittances (< 6 mm beam spot, ~ 1 ns / 1 keV)
 - Intensities ranging from 1 to 10^8 pps
Key concepts

• **ReA12 re-accelerated radioactive beams**
 - Energies from 0.3 MeV/u to 12-20 MeV/u (depending on Q/A)
 - Small emittances (< 6 mm beam spot, ~ 1 ns / 1 keV)
 - Intensities ranging from 1 to 10^8 pps

• **Requirements for a large acceptance spectrometer**
 - Collect reaction products in large kinematic space
 - Transmit several charge states for high efficiency
 - Identify reaction products with good elemental and mass resolutions
 - Reject unreacted beam
 - Accommodate auxiliary detector array around target
 - Possibly rotate beam around target
Some experiments in need of a spectrometer
Some experiments in need of a spectrometer

- Changes in shell structure
 - Deep-inelastic reactions using neutron-rich beams
 - Fusion-evaporation reactions for spectroscopic studies
 - in-beam γ-ray spectroscopy of high-spin states
Some experiments in need of a spectrometer

- Changes in shell structure
 - Deep-inelastic reactions using neutron-rich beams
 - Fusion-evaporation reactions for spectroscopic studies
 - in-beam γ-ray spectroscopy of high-spin states

- Heavy and super-heavy elements
 - Fusion reactions with neutron-rich beams
 - Study of fission barriers
Some experiments in need of a spectrometer

- Changes in shell structure
 - Deep-inelastic reactions using neutron-rich beams
 - Fusion-evaporation reactions for spectroscopic studies
 - in-beam γ-ray spectroscopy of high-spin states

- Heavy and super-heavy elements
 - Fusion reactions with neutron-rich beams
 - Study of fission barriers

- Astrophysics and decay studies
 - Fusion-evaporation with proton-rich beams
Some experiments in need of a spectrometer

- Changes in shell structure
 - Deep-inelastic reactions using neutron-rich beams
 - Fusion-evaporation reactions for spectroscopic studies
 - In-beam γ-ray spectroscopy of high-spin states

- Heavy and super-heavy elements
 - Fusion reactions with neutron-rich beams
 - Study of fission barriers

- Astrophysics and decay studies
 - Fusion-evaporation with proton-rich beams

...
Special considerations
Special considerations

- Radioactive beams intensities are (relatively) small
 - Inelastic studies of the radioactive species contained in the beam
 - Example: Coulomb excitation at or below Coulomb barrier
 - Experiments using reactions driven by luminosity rather than intensity
 - Higher cross sections mean less background from beam and other channels
 - Deep-inelastic reaction using neutron-rich beams
 - Fusion-evaporation reactions to produce 100Sn from 56Ni+52Cr instead of 58Ni+52Cr (α+6n channel) versus (α+4n channel)
Special considerations

- Radioactive beams intensities are (relatively) small
 - Inelastic studies of the radioactive species contained in the beam
 - Example: Coulomb excitation at or below Coulomb barrier
 - Experiments using reactions driven by luminosity rather than intensity
 - Higher cross sections mean less background from beam and other channels
 - Deep-inelastic reaction using neutron-rich beams
 - Fusion-evaporation reactions to produce ^{100}Sn from $^{56}\text{Ni}+^{52}\text{Cr}$ instead of $^{58}\text{Ni}+^{52}\text{Cr}$ ($\alpha+6\text{n channel}$) versus ($\alpha+4\text{n channel}$)

- Existing spectrometers
 - Well adapted to high intensity beams
 - Have either large acceptances or high rejection
Existing spectrometers
Existing spectrometers

- High intensity stable beams
 - Need very good rejection of primary beam ($\sim 10^{-12}$) ☹
 - Small acceptances ☹, small aberrations ☺, small focal plane ☺
 - Example: FMA, Wien filters
Existing spectrometers

- High intensity stable beams
 - Need very good rejection of primary beam ($\sim 10^{-12}$)
 - Small acceptances ☹, small aberrations ☀, small focal plane ☀
 - Example: FMA, Wien filters

- Low intensity radioactive beams
 - Beam rejection much less critical ($\sim 10^{-8}$)
 - Large acceptances ☀, large aberrations ☹, large focal plane ☹
 - Example: VAMOS
Existing spectrometers

- **High intensity stable beams**
 - Need very good rejection of primary beam ($\sim 10^{-12}$) ☹
 - Small acceptances ☹, small aberrations ☻, small focal plane ☻
 - Example: FMA, Wien filters

- **Low intensity radioactive beams**
 - Beam rejection much less critical ($\sim 10^{-8}$) ☻
 - Large acceptances ☻, large aberrations ☹, large focal plane ☹
 - Example: VAMOS

- **Gas-filled spectrometers**
 - Large charge state acceptance ☻, poor resolution ☻
The best of both worlds?
The best of both worlds?

- **Time-of-flight spectrometer**
 - Most spectrometers map separation to position in focal plane
 - Isochronous spectrometer maps separation to TOF
 - Focal plane remains small even with large acceptances
The best of both worlds?

- **Time-of-flight spectrometer**
 - Most spectrometers map separation to position in focal plane
 - Isochronous spectrometer maps separation to TOF
 - Focal plane remains small even with large acceptances

- **ISLA concept**
 - Isochronous spectrometer with filtering based on $B\rho$ selection from dipole field
 - Large-gap iron-free dipoles for large acceptances
 - Quadrupole-free design to reduce aberrations
 - Isochronous/dispersive focal plane at mid-point
 - M/Q resolution depends on TOF resolution and quality of optics
Inspired from TOFI
Inspired from TOFI

- TOFI spectrometer at LANL
 - Designed to measure masses of exotic nuclei
 - Small acceptances (2.8 msr, ± 2% ΔP/P)
 - Resolution in M/Q = 1/2000
 - J. M. Wouters et al., NIM A240 (1985) 77
Inspired from TOFI

- TOFI spectrometer at LANL
 - Designed to measure masses of exotic nuclei
 - Small acceptances (2.8 msr, ± 2% ΔP/P)
 - Resolution in M/Q = 1/2000
 - J. M. Wouters et al., NIM A240 (1985) 77

- ISLA concept
 - Large acceptances (32 msr, ± 5% ΔP/P)
 - Use iron-free magnets
 - Track particles at dispersive & focal planes
 - Allow rotation of incoming beam

D. Bazin, Heavy Ion Discussion, ANL Oct. 30, 2009
Advantages of the ISLA concept
Advantages of the ISLA concept

- **Large acceptances**
 - High transmission efficiency
 - large transverse momentum space
 - many charge states can be transmitted
Advantages of the ISLA concept

- **Large acceptances**
 - High transmission efficiency
 - Large transverse momentum space
 - Many charge states can be transmitted

- **Controlled aberrations**
 - Small beam spot at focal plane
 - Small detectors
 - Implantation/decay experiments
Advantages of the ISLA concept

- Large acceptances
 - High transmission efficiency
 - Large transverse momentum space
 - Many charge states can be transmitted

- Controlled aberrations
 - Small beam spot at focal plane
 - Small detectors
 - Implantation/decay experiments
Advantages of the ISLA concept

- **Large acceptances**
 - High transmission efficiency
 - Large transverse momentum space
 - Many charge states can be transmitted

- **Simple optics**
 - Point-to-point imaging
 - Direct measure of momentum at dispersive focal plane
 - Direct measure of scattering angle at final focal plane

- **Controlled aberrations**
 - Small beam spot at focal plane
 - Small detectors
 - Implantation/decay experiments
Advantages of the ISLA concept

- **Large acceptances**
 - High transmission efficiency
 - Large transverse momentum space
 - Many charge states can be transmitted

- **Controlled aberrations**
 - Small beam spot at focal plane
 - Small detectors
 - Implantation/decay experiments

- **Simple optics**
 - Point-to-point imaging
 - Direct measure of momentum at dispersive focal plane
 - Direct measure of scattering angle at final focal plane

- **Isochronous design**
 - Superior M/Q resolution of spectrometer (only depends on TOF resolution)
 - No M/Q range limitation other than $\Delta P/P$ acceptance
Isochronous condition
Isochronous condition

- **Time-of-flight of particles**
 - Should be independent of longitudinal and transversal momenta (velocity and angle)
 - First order derivation of isochronous condition:
 - Time = Length / Velocity = $L \times V^{-1}$
 - $\Delta T = \Delta L \times V^{-1} - \Delta V \times L \times V^{-2} = 0$ therefore $\Delta L = L \times \Delta V / V = L \times \Delta P / P$
 - Length dispersion coefficient (L/d) = R(5,6) = $\Delta L / (\Delta P / P) = L$ (-L in TRANSPORT and COSY?)
Isochronous condition

- Time-of-flight of particles
 - Should be independent of longitudinal and transversal momenta (velocity and angle)
 - First order derivation of isochronous condition:
 - Time = Length / Velocity = L × V⁻¹
 - \(\Delta T = \Delta L \times V^{-1} - \Delta V \times L \times V^{-2} = 0 \) therefore \(\Delta L = L \times \Delta V / V = L \times \Delta P / P \)
 - Length dispersion coefficient \((L/d) = R(5,6) = \Delta L / (\Delta P / P) = L \) (- L in TRANSPORT and COSY ?)

- COSY vs TRANSPORT units
 - COSY: \(r_5 \) is defined as \(- (t - t_0) \times v_0 \times \gamma / (\gamma + 1) \) but not conserved with energy (?)!
 - TRANSPORT: \(R(5,6) \) conserved but program cannot fit to variable parameter
 - Use “Dynamical TRANSPORT” program…

D. Bazin, Heavy Ion Discussion, ANL Oct. 30, 2009
ISLA design parameters

- **Important considerations**
 - Minimize aberrations using highly symmetric configuration
 - Spectrometer composed of 4 identical Drift-Dipole-Drift cells
 - Horizontal focussing realized with entrance and exit pole angles

- **3 fitting parameters**
 - Drift length, dipole bending angle, entrance (= exit) pole angle

- **5 fitting conditions**
 - Isochronous, x & y focussing, doubly achromatic image (position and angle) at final focal plane
 - Possible thanks to the symmetry of the design
 - Demo…
ISLA first order optics

- First order fitting results

 - Input emittance: ± 100 mrad Horizontal, ± 80 mrad Vertical, ± 5 % \(\Delta P/P \)

 - Dipoles: radius = 1.1 m, gap = 40 cm, bend = 78.7°, poles = 25.3°

 - Drift: 1.24 m

 - Total length: 16 m

 - Results depend on fringe field shape

 - Correction coils needed to fine tune optics and correct aberrations
ISLA first order optics

- First order fitting results
 - Input emittance: ± 100 mrad Horizontal, ± 80 mrad Vertical, ± 5% $\Delta P/P$
 - Dipoles: radius = 1.1 m, gap = 40 cm, bend = 78.7°, poles = 25.3°
 - Drift: 1.24 m
 - Total length: 16 m
 - Results depend on fringe field shape
 - Correction coils needed to fine tune optics and correct aberrations

D. Bazin, Heavy Ion Discussion, ANL Oct. 30, 2009
ISLA first order optics

- First order fitting results
 - Input emittance: ± 100 mrad Horizontal, ± 80 mrad Vertical, ± 5% \(\Delta P/P\)
 - Dipoles: radius = 1.1 m, gap = 40 cm, bend = 78.7°, poles = 25.3°
 - Drift: 1.24 m
 - Total length: 16 m
 - Results depend on fringe field shape
 - Correction coils needed to fine tune optics and correct aberrations
Geometrical aberrations

- COSY calculation to 3rd order
 - Same input emittance: ± 100 mrad Horizontal, ± 80 mrad Vertical, ± 5 % ΔP/P
 - Dispersive focal plane: (x/aa)=-2.7 cm, (x/bb)=-1.7 cm, (y/ab)=-4.2 cm, (y/bbb)=-2.5 cm
 - Final focal plane: (x/xyy)=-1 cm, (y/bbb)=4.9 cm, (y/aab)=-1.3 cm
 - Small detectors can be used at final focal plane
Time-of-flight aberrations

- **Dispersive focal plane**
 - Vertical are the largest: \((L/bb)=0.26 \text{ cm} \), \((L/bbd)=-0.17 \text{ cm} \)

- **Final focal plane**
 - Vertical also largest and cumulative: \((L/bb)=0.52 \text{ cm} \), \((L/bbd)=0.36 \text{ cm} \)

- **M/Q resolution from aberrations**
 - Total length of 16 meters
 - Acceptances fully filled (± 100 mrad Horizontal, ± 80 mrad Vertical, ± 5 % \(\Delta P/P \))
 - \((L/bb)\) aberration corresponds to M/Q resolution of 1/3000
 - \((L/bbd)\) aberration corresponds to M/Q resolution of 1/4400
TOF measurement & M/Q resolution (1)

- TOF ranges from ~ 300 ns to 2 µs
- Using RF signal from accelerator
 - RF bunches of ReA12: 80 MHz, 1 ns FWHM, possible to reduce using bunching
 - Corresponding M/Q resolution ranging from 1/300 to 1/2000
 - Requires “bunch tagging” to determine which bunch made the transmitted nucleus
 - Automatically provided if high efficiency γ-ray array around target
 - Otherwise, close geometry fast scintillators can be used
 - Only need moderate time resolution (12.5 ns) to resolve bunches
 - Other thoughts: macro bunching from extraction of charge breeder, followed by bunch compression (under investigation)
TOF measurement & M/Q resolution (2)

- Using SED detector in dispersive focal plane as start
 - ISLA is isochronous between dispersive and final focal planes
 - SED (Secondary Electron Detector) timing resolution of 300 ps
 - Flight path of 8 m: M/Q resolution ranging from 1/500 to 1/3300 from timing
 - \((L/a) = R(5, 2) = -5.14 \text{ mm/mrad} \) at dispersive focal plane
 - Requires dispersive angle measurement at final focal plane
 - 1 mrad resolution corresponds to M/Q resolution of 1/1500
 - Possible losses due to charge state changes from foil
 - SED detector used in VAMOS for very low energy reaction products
Secondary Electron Detector (SED)

- 45° tilted, 250 µg/cm² aluminized mylar foil emits electrons
- Electrons are guided towards a gaseous electron detector via electric and magnetic fields
- Position-sensitive electron detector records (x,y) position and time
- Large area (10 x 40 cm²), 1.4 mm position resolution, 300 ps time resolution
- Efficiency: 100% for Z>30, 75% for 12C
- A. Drouart et al., NIM A 579 (2007) 1090
Focal plane detectors

- Timing and position detectors for TOF and tracking
 - MCP and/or PPAC about 1 m apart for good angular resolution (1 mm / 1 mrad)

- Energy loss detector for elemental identification
 - Segmented ion chamber

- Residual energy detector
 - Silicon or CsI(Na) crystal

- Small sizes
 - Thanks to spectrometer design, all detector sizes are 5 x 5 cm\(^2\) maximum
Particle identification

- Without B_ρ measurement from SED at dispersive plane
 - M/Q directly obtained from TOF
 - $\Delta E-E$ spectra gated on M/Q peaks can resolve isobars with the same charge state

- With B_ρ measurement from SED at dispersive plane
 - Correct B_ρ measurement from aberrations using angles at focal plane
 - Correct E and ΔE measurements from corrected B_ρ
 - Full PID including charge state Q
Example of simulation

- **Fusion-evaporation reaction to produce ^{100}Sn**
 - 3.7 MeV/u ^{56}Ni radioactive beam at 10^8 pps on 0.5 mg/cm2 ^{50}Cr target (α+2n evaporation channel)
 - Cross section = 1.1×10^{-2} mb (LisFus model v.4), ^{100}Sn energy = 0.9 MeV/u
 - Spectrometer set on most abundant charge state of ^{100}Sn: 24+ (M/Q = 4.17)
 - 9 charge states transmitted through the spectrometer
 - Total transmission: ~ 40%
 - Time-of-flight: 1200 ns, M/Q resolution is 1/1200 with 1 ns wide bunch from ReA12
 - Expected rate: 2.7×10^{-3} pps (10 per hour)
 - Total rate at focal plane: ~ 63 pps
 - Implantation/decay experiment possible in DSSD
- Charge state and momentum transmissions
- ΔP/P acceptance: 10%
- Angular acceptance transmission: ~ 75%
- Other reactions channels
 - Several other reaction products can be studied simultaneously (cocktail beam)
 - In average 8 to 9 charge states for each isotope
- **M/Q spectrum**

 - Each M/Q peak contains contaminants that can be resolved from ΔE-E measurements
M/Q spectrum

- Each M/Q peak contains contaminants that can be resolved from ΔE-E measurements
M/Q spectrum

- Each M/Q peak contains contaminants that can be resolved from ∆E-E measurements.
- ΔE-E spectrum for products in M/Q = 4.17 peak
 - All charge states cumulated because LISE++ does not calculate separate Q (yet!)
- Isobar separation from energy loss and TKE
- $\Delta E-E$ spectrum for products in $M/Q = 4$ peak
- Contaminant ^{104}Sb is much weaker than ^{100}Sn
- M/Q gated spectrum would separate charge states
ΔE-E spectrum for products in M/Q = 4 peak with B_ρ corrections

B_ρ resolution assumed: 0.5%
Transmission with SED inserted at dispersive focal plane

- Mylar foil thickness: 250 $\mu g/cm^2$, thinner is possible (down to $< 100 \mu g/cm^2$)
- 100Sn transmission reduced by ~ 4 (11% compared to 40%), due to charge state changes in foil
- Possible improvements using thicknesses below equilibrium
Magnet design

- Iron-free superconducting dipoles
 - Preliminary calculation of 40 cm gap dipole
 - Study of fringe fields: fit by “modified Enge function” to take into account negative field outside of magnet

Coefficient values ± one standard deviation:

- $w_0 = 0.034203 \pm 0.0105$
- $w_1 = 2.684 \pm 0.0433$
- $w_2 = 0.90437 \pm 0.0329$
- $w_3 = 0.16963 \pm 0.00891$
- $w_4 = 0 \pm 0$
- $w_5 = 0 \pm 0$
- $w_6 = -1.0314 \pm 0.0238$
- $w_7 = -2.2195 \pm 0.00793$
- $w_8 = 10.901 \pm 18.9$
- $w_9 = 114.29 \pm 68.3$
COSY & ray-tracing calculations

- Aberration evaluation
 - No significant change using realistic Enge function for fringe fields
 - Final parameters (bend, pole rotation) to achieve optics depend on field shape
Other magnet design

- **Double-helix solenoids**
 - Can create virtually any field configuration
 - Multipoles components can be realized as well
 - Main issues: curved magnet, large gap
ISLA collaboration (present)

- **NSCL/MSU**
 - D. Bazin, W. Mittig, B. Sherrill, A. Stolz

- **Florida State University**
 - I. Wiedenhöver

- **ANL**
 - J. Nolen, S. Manikonda

- **LBNL**
 - P. Fallon

- **LNS, Italy**
 - F. Cappuzzello, A. Cunsolo, M. Cavallaro
ISLA web site

- https://groups.frib.msu.edu/group/isla

Purpose

- Allow interested parties to join collaboration
- Facilitate information flow towards members of collaborations and future users
- Get feedback on various ideas and options
- Follow progress on various sub projects
ISLA sub projects

- Optics studies (aberrations, corrections)
- Magnet design and studies (technology, simulation)
- Detector design (specifications, performance)
- Beam swinger (options, range)
- Infrastructure (space allocation, auxiliary detectors)