
PHY321 Homework Set 10

1. [5 pts] A small block of mass m slides with-
out friction down a wedge-shaped block of
mass M and of opening angle α. The triangu-
lar block itself slides along a horizontal floor,
without friction. Your ultimate goal will be to
find the horizontal acceleration Ẍ of the tri-
angular block, following the second and third
Newton’s laws. The cartesian coordinates for
m are x (horizontal) and y (vertical).
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(a) Consider the forces acting on the mass m and the wedge block. Express the compo-
nents of the acceleration ẍ and ÿ for m and Ẍ for M in terms of the force components.

(b) The system of equations you wrote cannot be closed without introducing an equation
of constraint between x, y and X. Express the equation of constraint in terms of
the angle α. Differentiate the equation to get an equation of constraint between the
acceleration components.

(c) Solve the system of equations for the acceleration components, to arrive at Ẍ.

2. [10 pts] Now solve the preceding problem following the Lagrangian method and using X
and distance s traveled by m down the wedge as generalized coordinates.

(a) Express the total potential energy U of the block system in terms of the cartesian coor-
dinates. Reexpress that energy in terms of the generalized coordinates. An arbitrary
reference constant in the potential energy is of no relevance.

(b) Express the total kinetic energy T of m and M in terms of the cartesian coordinates.
Reexpress that energy in terms of the generalized coordinates.

(c) Derive the Lagrange equations for the system. Manipulate them to obtain Ẍ. Does
your result agree with that from the preceding problem?

(d) Given that there is no external horizontal force component acting on the block system,
the center of mass of that system should not accelerate in the horizontal direction.
Demonstrate that the lack of acceleration for the center of mass follows from your
Lagrange equations.

3. [10 pts] A particle of mass m is constrained to move on the cylin-
drical surface described in cylindrical coordinates (ρ,φ, z) by the
constraint equation ρ = R. The only force acting on the particle is
the central force directed towards the origin, $F = −k $r. Your task
will be to obtain and solve the Lagrangian equations for the particle,
with and without an explicit reference to the constraint equation.



(a) At first introduce the constraint inherently and express the Lagrangian for the par-
ticle only in terms of the generalized coordinates z and φ, and associated velocities,
excluding the possibility of the particle leaving the cylindrical surface.

(b) Obtain and solve the Lagrange equations associated with the coordinates z and φ.
Describe in words the motion that the particle executes.

(c) Now restart the problem from scratch and construct the Lagrangian in terms of the
coordinates ρ, φ and z, allowing at this stage for the possibility of the particle moving
outside of the cylindrical surface.

(d) Obtain the Lagrange equations associated with the coordinates ρ, φ and z, incorpo-
rating explicitly the constraint equation with the accompanying, yet undetermined,
multiplier λ.

(e) Solve the Lagrange equations. Arrive at the dependence of the multiplier λ on time,
following from the requirement of the particle remaining on the cylindrical surface.

(f) What conclusion can you draw from the Lagrange equations on the normal force that
the constraint surface exerts on the particle?

4. [5 pts] (adapted from a graduate qualifying exam) A bead of
mass m can slide without friction on a vertical hoop of radius R.
The hoop is rotating at constant angular speed ω about a ver-
tical axis passing through the hoop’s center.

(a) Determine the Lagrangian for the bead, using the indicated
angle θ as the generalized coordinate, and including the
effects of gravity.

(b) Obtain an equation of motion for the bead in terms of the
angle θ.

(c) Determine any equilibrium angles θeq(ω) where the bead
would remain if there initially at θ̇ = 0.

5. [10 pts] Consider the central-force problem for a potential U(r) = −k/r2 and a reduced
mass µ. Here, k is a positive constant.

(a) Sketch the effective potential for large and small values of angular momentum |(|. Is
there a difference in the sign of the potential? Use your graph and energy conservation
and show that for large ( the orbits extend from some minimal value of radius rmin

up to infinity. Obtain rmin as a function of energy E. Show that for small ( the orbits
reach r = 0, but can either extend up to a finite rmax or up to infinity, depending
on E. What value of |(| = (s separates the low and high value regions of (, with
different types of orbits? Obtain rmax as a function of E.

(b) Turn to the orbit equation and find general analytic solutions r(θ) for high and low
values of |(|. (Note that, ( = ±(s requires a separate solution, but you are not asked
to investigate it here.)

(c) As an example, adjust the arbitrary constants in the solution r(θ) for high |(|, so that
the orbit is symmetric about the axis θ = 0 and that the orbit extends from rmin on.



Note that at rmin,
d
dθ

1
r
= 0. Sketch the orbit in the plane of motion. What are the

asymptotic directions at r → ∞, in terms of angle, for the orbit?

(d) As another example, adjust the arbitrary constants in the solution r(θ) for low |(|,
so that the orbit is symmetric about the axis θ = 0 and that it extends up to rmax.
Again, at rmax,

d
dθ

1
r
= 0. Sketch the trajectory in the plane of motion for θ > 0.

6. [5 pts] Consider objects of mass m moving under the influence of a central gravitational
force characterized by potential energy U = −k/r.

(a) Demonstrate that when two orbits, circular and parabolic, have the same net angular
momentum, the parabolic orbit has a perihelion that is half the radius of the circular
orbit.

(b) The speed of a particle at any point of a parabolic orbit is larger by a factor of
√
2

than the speed of particle on a circular orbit passing through the same point.

7. [5 pts] At perihelion, a particle of mass m in an elliptical orbit in a gravitational 1/r
potential receives an impulse m∆v in the radial direction. Find the semi-major axis anew
and eccentricity εnew of the new elliptical orbit in terms of the old ellipse’s parameters aold
and εold. Are these parameters increasing or decreasing in effect of the impulse. Does the
direction of the impulse, inward or outward, matter for those specific parameters?


































