Structure of neutron-rich Mg isotopes explored by beta-decay of spin-polarized Na isotopes

K. Tajiri, T. Shimoda, K. Kura, M. Kazato, M. Suga, A. Takashima, T. Masue, T. Hori, T. Suzuki, T. Fukuchi, A. Odahara, Y. HirayamaA, N. ImaiA, H. MiyatakeA, C.D.P. LevyB, M. PearsonB, K.P. JacksonB

Osaka Univ., KEKA, TRIUMFB

\beta-\gamma coincidence
\beta-\gamma-\gamma coincidence

polarization

spin-parity assignments

\beta-\gamma coincidence
\beta-\gamma-\gamma coincidence
Systematic measurements for Mg isotopes

^{28}Mg, ^{29}Mg, ^{30}Mg, ^{31}Mg, ^{32}Mg
$N = 16, 17, 18, 19, 20$

β-decay of $^{28,29,30,31,32}\text{Na}$ (polarized)

spin-parity assignments of the levels in $^{28,29,30,31,32}\text{Mg}$

structure of $^{28,29,30,31,32}\text{Mg}$

vanishing of $N=20$ magicity

intruder configurations
Table of Contents

Principle of Measurement
Experiments at TRIUMF
Results with 28Na Beam: 28Mg Structure
Results with 29Na Beam: 29Mg Structure
Comparison with Shell Model Calculations
Summary
Principle of Measurement

Experiments at TRIUMF

Results with ^{28}Na Beam: ^{28}Mg Structure

Results with ^{29}Na Beam: ^{29}Mg Structure

Comparison with Shell Model Calculations

Summary

use of spin-polarized radioactive beam
β-decay from a spin-polarized nucleus

β-decay angular distribution

\[W(\theta) \sim 1 + AP \cos \theta \]

A: asymmetry parameter of allowed β-decay

P: polarization of the parent nucleus

A takes very different values depending on the final state spin.

\[\tau = \frac{C_V \langle 1 \rangle}{C_A \langle \sigma \rangle} \sim 0 \]

\[
A(I_i, I_f) = \begin{cases}
\pm 1 & \text{for } I_f = I_i - 1, \\
\pm 1/(I_i + 1) - 2\tau \sqrt{I_i/(I_i + 1)} & \text{for } I_f = I_i, \\
\mp I_i/(I_i + 1) & \text{for } I_f = I_i + 1.
\end{cases}
\]

<table>
<thead>
<tr>
<th></th>
<th>(I_i)</th>
<th>(I_f)</th>
<th>(A(I_i, I_f))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{28}\text{Na})</td>
<td>1(^+)</td>
<td>1(^+)</td>
<td>-0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0(^+)</td>
<td>-1.0</td>
</tr>
<tr>
<td>(^{29,31}\text{Na})</td>
<td>3/2(^+)</td>
<td>3/2(^+)</td>
<td>-0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2(^+)</td>
<td>-1.0</td>
</tr>
<tr>
<td>(^{30}\text{Na})</td>
<td>2(^+)</td>
<td>3(^+)</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2(^+)</td>
<td>-0.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1(^+)</td>
<td>-1.0</td>
</tr>
<tr>
<td>(^{32}\text{Na})</td>
<td>(4(^-))</td>
<td>5(^-)</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>4(^-)</td>
<td>3(^-)</td>
<td>-1.0</td>
</tr>
<tr>
<td></td>
<td>4(^-)</td>
<td>2(^-)</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>(3(^-))</td>
<td>3(^-)</td>
<td>-0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2(^-)</td>
<td>-1.0</td>
</tr>
</tbody>
</table>
P can be evaluated from AP value for a transition to the known spin state.
In the case of cascade feeding

Deduced A from β-γ coincidence is affected by the feeding from upper levels.

\[
A_1 = A_1^\gamma \times \frac{I_{\gamma_1}}{I_{\beta_1}} - A_2 \times \frac{I_{\gamma_3}}{I_{\beta_1}},
\]

measured from β-γ_1 coincidence

\[
A_1^\gamma = A_2 \times \frac{I_{\gamma_3}}{I_{\gamma_1}} + A_1 \times \frac{I_{\beta_1}}{I_{\gamma_1}},
\]

known

unknown
required statistics in AP measurement

\[
\frac{\Delta (AP)}{AP} = \frac{\sqrt{1 - (AP)^2}}{AP \sqrt{Y_{\beta\gamma}}} \quad Y_{\beta\gamma} : \beta\gamma \text{ total yields}
\]

Large polarization is important

Experimental AP value fluctuates statistically.

<table>
<thead>
<tr>
<th>I_i</th>
<th>I_f</th>
<th>$A(I_i, I_f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Na)</td>
<td>(Mg)</td>
</tr>
<tr>
<td>(28\text{Na})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1^+)</td>
<td>(2^+)</td>
<td>+0.5</td>
</tr>
<tr>
<td>(0^+)</td>
<td>(1^+)</td>
<td>-0.5</td>
</tr>
<tr>
<td>(0^+)</td>
<td>(0^+)</td>
<td>-1.0</td>
</tr>
<tr>
<td>(29,31\text{Na})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3/2^+)</td>
<td>(5/2^+)</td>
<td>+0.6</td>
</tr>
<tr>
<td>(3/2^+)</td>
<td>(3/2^+)</td>
<td>-0.4</td>
</tr>
<tr>
<td>(1/2^+)</td>
<td>(1/2^+)</td>
<td>-1.0</td>
</tr>
<tr>
<td>(30\text{Na})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2^+)</td>
<td>(3^+)</td>
<td>+0.67</td>
</tr>
<tr>
<td>(1^+)</td>
<td>(2^+)</td>
<td>-0.33</td>
</tr>
<tr>
<td>(1^+)</td>
<td>(1^+)</td>
<td>-1.0</td>
</tr>
<tr>
<td>(32\text{Na})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((4^-))</td>
<td>(5^-)</td>
<td>+0.8</td>
</tr>
<tr>
<td>(4^-)</td>
<td>(4^-)</td>
<td>-0.2</td>
</tr>
<tr>
<td>(3^-)</td>
<td>(3^-)</td>
<td>-1.0</td>
</tr>
<tr>
<td>(4^-)</td>
<td>(3^-)</td>
<td>+0.75</td>
</tr>
<tr>
<td>(3^-)</td>
<td>(2^-)</td>
<td>-0.25</td>
</tr>
<tr>
<td>(2^-)</td>
<td>(2^-)</td>
<td>-1.0</td>
</tr>
</tbody>
</table>
Monte Carlo simulation

Beta-rays were generated according to

\[W(\theta) \simeq 1 + AP \cos \theta \]
where to perform the experiment?

TRIUMF ISAC in Canada

polarized radioactive beam

world-highest polarization
Principle of Measurement

Experiments at TRIUMF

Results with 28Na Beam: 28Mg Structure

Results with 29Na Beam: 29Mg Structure

Comparison with Shell Model Calculations

Summary
Isotope Separator / ACcelerator

radioactive nuclear beams produced in target fragmentation induced by a 500 MeV 100 μA proton beam

commissioned in Aug. 2001
TRIUMF ISAC Polarized Beam Line

collinear optical pumping

neutralizer

polarized $^{\text{A} \text{Na}^0}$

re-ionizer

polarized $^{\text{A} \text{Na}^+}$

1.9 m

B \rightarrow 10 Gauss

10Gauss

beam velocity tuning

unpolarized $^{\text{A} \text{Na}^+}$

30 keV

Kiefl 80% pol ^8Li: transverse β-NMR condensed matter physics

Shimoda 30–50% pol $^{\text{A} \text{Na}}$: transverse ^7Li: transverse decay spectroscopy

Kiefl 80% pol ^8Li: longitudinal β-NMR condensed matter physics

C.D.P. Levy et al.
Nucl. Instr. and Meth.
B204 (2003) 689

pumping within 2.6μs
pumping the two ground-state hyperfine levels in order to achieve high polarization.

without hyperfine int.

$\vec{F} = \vec{J} + \vec{I}$

atom 1/2 nucleus 3/2

905 MHz

D1 673 nm

$^{11}\text{Li} (I=3/2^-)$
Achieved polarization

Phil Levy @TRIUMF

^8Li: 80%, ^9Li: 56%, ^{11}Li: 55%,

^{20}Na: 57%, ^{21}Na: 56%, ^{26}Na: 55%,
^{27}Na: 51%, ^{28}Na: 45%,

^{28}Na: 28%, ^{29}Na: 36%

Corrected for spin-relaxation

Uncorrected for spin-relaxation
Preset work

Pumping for $^{11}\text{Be}^+$ beam is in progress.
9 HPGe detectors + plastic scintillator telescopes

β- and γ-rays

β-asymmetry: β−γ, β−γ−γ, γ−γ

β energy threshold: eliminates Al contaminants from trigger
β energy: assigns β-decay branch

28,29,30,31,32Na decay at TRIUMF

total efficiency 1.7% @1333keV

28Na and 29Na in Nov. 2007

plastic scintillators (1.5 mm)

β-asymmetry, 60%

L: β−asymmetry, 60%

Na beam 30.4 keV

β−γ, 60%

40%

60%

45%

30%

60%

Pt stopper

LEPS

polarization

B~85mT

50%

R: β−asymmetry, 60%

30.4 keV

28,29,30,31,32Na decay at TRIUMF

total efficiency 1.7% @1333keV

28Na and 29Na in Nov. 2007

plastic scintillators (1.5 mm)

β- and γ-rays

β-asymmetry: β−γ, β−γ−γ, γ−γ

β energy threshold: eliminates Al contaminants from trigger
β energy: assigns β-decay branch

28,29,30,31,32Na decay at TRIUMF

total efficiency 1.7% @1333keV

28Na and 29Na in Nov. 2007

plastic scintillators (1.5 mm)

β- and γ-rays

β-asymmetry: β−γ, β−γ−γ, γ−γ

β energy threshold: eliminates Al contaminants from trigger
β energy: assigns β-decay branch
Principle of Measurement
Experiments at TRIUMF

Results with 28Na Beam: 28Mg Structure

Results with 29Na Beam: 29Mg Structure

Comparison with Shell Model Calculations

Summary
system check with polarized 28Na beam and search for something new

800 particles per sec
New transition?

$^{28}\text{Na} \rightarrow ^{28}\text{Mg}$

2389.2 keV

B.G. 2614

3083.4 keV
3087.4 keV
Single escape

γ-ray spectrum with all Ge detectors
New level in ^{28}Mg

1473 keV

gated by 2907 keV γ-ray

3083 keV

new 7461 keV

5269 keV

g.s.

2192 keV

gated by 5269 keV γ-ray

^{28}Mg

2907 keV

2192 keV

1473 keV

4557 keV

5269 keV
polarization of ^{28}Na

Select ground-state transition.

$AP = -0.283(5)$

$1^+ \rightarrow 0^+ : A = -1.0$

$\Rightarrow P = 0.283(5)$

uncorrected for spin-relaxation
Spin assignments of the levels in 28Mg

<table>
<thead>
<tr>
<th>I_i^π (Na)</th>
<th>I_f^π (Mg)</th>
<th>$A(I_i, I_f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+</td>
<td>+0.5</td>
<td></td>
</tr>
<tr>
<td>1+</td>
<td>-0.5</td>
<td></td>
</tr>
<tr>
<td>0+</td>
<td>-1.0</td>
<td></td>
</tr>
</tbody>
</table>

2389 keV γ-ray peaks (3862 \rightarrow 1473) coincident with β-rays

$AP = -0.25 \pm 0.01 \Rightarrow A = -0.89 \pm 0.05 \Rightarrow I^\pi = 0^+$

Successful assignments
spin assignment of new level at 7.461 MeV

2192 keV γ-rays was too weak to determine $A_{7.461}$

A_{5269}^{γ} is affected by the β-decay
Asymmetry to the 7.461 MeV level

$$A_{5269}^{\gamma} = A_{5.269} \times \frac{I_{5269}^{\beta}}{I_{5269}^{\gamma}} + A_{7.461} \times \frac{I_{2192}^{\gamma}}{I_{5269}^{\gamma}}.$$

+0.5 or -0.5 or -1.0

7.464 MeV level \rightarrow 2+

<table>
<thead>
<tr>
<th></th>
<th>I_i^π (Na)</th>
<th>I_f^π (Mg)</th>
<th>$A(I_i, I_f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{28}Na</td>
<td>1$^+$</td>
<td>1$^+$</td>
<td>-0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.0</td>
</tr>
</tbody>
</table>

^{28}Mg
Revised Decay Scheme of 28Na and New Levels in 28Mg

Levels and gamma rays
- Red: newly observed ones
- Blue: previously observed in (t, p) reaction and newly observed in 28Na β decay

Spins and parities
- Red: newly assigned
- Green: previously reported, and confirmed by present work
- Black: previously reported

Diagram showing the decay scheme with levels and energies for 28Na and 28Mg, along with log ft and I_β values.
Principle of Measurement
Experiments at TRIUMF
Results with 28Na Beam: 28Mg Structure
Results with 29Na Beam: 29Mg Structure
Comparison with Shell Model Calculations
Summary
29Na decay
spin-parity assignments of
29Mg levels

200 particles per sec
first observation of β-decay to the 1st excited state (0.055 MeV)

- $T_{1/2} = 44.9$ ms, $3/2^+$
- $Q_β = 13280(90)$ keV

Excluded gate for β-ray energy spectrum

Energy loss was estimated by using GEANT4

γ rays coincidence with the β ray

54.6 keV
Polarization of 29Na

The ground state of 29Mg (3/2+) is the only spin-known state.

It is not possible to exclude the transition to the 55-keV level by setting a gate on β-ray energy.

![Beta-ray energy spectrum graph](image)
Ratio of AP values

\[\frac{A_1^\gamma P}{A_2^\gamma P} = \frac{A_1^\gamma}{A_2^\gamma} \]
Spins and parities of the 2.615 MeV & 3.224 MeV levels

Select the β rays in coincidence with each γ rays

\[\frac{A_{2560}^\gamma P}{A_{1586}^\gamma P} = \frac{A_{2560}^\gamma}{A_{1586}^\gamma} = 2.19 \pm 0.59 \]
In allowed transition …

\[
\begin{array}{c|c|c}
\hline
I^\pi_{29\text{Na}} & I^\pi_{29\text{Mg}} & A(I^\pi_{29\text{Na}}, I^\pi_{29\text{Mg}}) \\
\hline
\frac{3}{2}^+ & \frac{3}{2}^+ & +0.6 \\
\frac{3}{2}^+ & \frac{5}{2}^+ & -0.4 \\
\frac{5}{2}^+ & \frac{5}{2}^+ & -1.0 \\
\hline
\end{array}
\]

\[\frac{A_{2560}^\gamma P}{A_{1586}^\gamma P} = \frac{A_{2560}^\gamma}{A_{1586}^\gamma} = 2.19 \pm 0.59\]

\[A\] ratio takes \(3 \times 3\) patterns

\[
\begin{array}{cccc}
A_{2560} & +0.6 & -0.4 & -1.0 \\
A_{1586} & (l_f = 5/2^+) & (l_f = 3/2^+) & (l_f = 1/2^+) \\
\hline
+0.6 & 1 & -0.67 & -0.6 \\
-0.4 & -1.5 & 1 & \text{2.5} \\
-1.0 & -0.6 & -0.4 & 1 \\
\hline
\end{array}
\]

Exp. result
Polarization of 29Na

\[A_\gamma^{1586} = -0.4 \ (I_f^\pi : 3/2^+), \ A_\gamma^{2560} = +0.6 \ (I_f^\pi : 1/2^+) \]

\[P_{1586} = \frac{A_\gamma^{1586} P}{A_\gamma^{1586}} = 0.40 \pm 0.11 \]

\[P_{2560} = \frac{A_\gamma^{2560} P}{A_\gamma^{2560}} = 0.35 \pm 0.02 \]

\[P = 0.36 \pm 0.11 \]

Polarization of 29Na \ldots 36\pm11\%
Spin-parity of 3.227 -MeV Level
Spin-parity of 3.227 -MeV Level

\[
A_{\text{doublet}} P = A_{3223.6} P \times \frac{I_{3223.6}}{I_{3223.6} + I_{3227.4}} + A_{3227.4} P \times \frac{I_{3227.4}}{I_{3223.6} + I_{3227.4}}
\]

\[
A_{3227.4} = 0.27 \pm 0.68
\]

Similarly

\[
A_{2132.8} = 1.03 \pm 1.89
\]
Relative intensity of γ-rays from 3.224 MeV and 3.227 MeV levels

\[
\begin{array}{c|c|c|c|c|c}
\text{Level} & I^\pi & E & \text{Exp.} & \text{USD} \\
\hline
3/2^+ & 3/2^+ & 0.055 & 3223 & 3/2^+ & 0.039 \\
1/2^+ & 3/2^+ & 0.055 & 3223 & 1/2^+ & 0 \\
(5/2^+) & 1/2^+ & 2.614 & 3223 & 3/2^+ & 0 \\
& 3/2^+ & 2.614 & 3223 & 5/2^+ & 2.438 \\
(5/2^+) & 1/2^+ & 2.614 & 3223 & 3/2^+ & 2.192 \\
& 3/2^+ & 2.614 & 3223 & 7/2^+ & 2.107 \\
5/2^+ & 3/2^+ & 3.227 & 3196 & 5/2+ & 3.039 \\
& 1/2^+ & 3.227 & 3196 & 1/2^+ & 2.438 \\
& 3/2^+ & 3.227 & 3196 & 3/2^+ & 2.192 \\
& 5/2+ & 3.227 & 3196 & 5/2+ & 2.107 \\
& 1/2^+ & 3.227 & 3196 & 1/2^+ & 2.438 \\
& 3/2^+ & 3.227 & 3196 & 3/2^+ & 2.192 \\
& 5/2+ & 3.227 & 3196 & 5/2+ & 2.107 \\
\end{array}
\]
Revised Decay Scheme of 29Na and Spin-Parity Assignments of 29Mg Levels I

Levels and gamma rays
- **Red**: newly observed
- **Blue**: previously observed in 30Na β-n decay and transfer reactions; newly observed in 29Na β decay

29Na

- $3/2^+ \quad 0.0 \quad 44.9$ ms
- $Q_\beta = 13.28 (9)$ MeV

- $5.8 (1) \quad 0.76 (18) \quad (1/2 \text{ to } 3/2^+)$
- $5.5 (1) \quad 2.5 (5) \quad (5/2^+)$
- $4.9 (1) \quad 11 (2)$

- $4.5 (1) \quad 36 (6) \quad 1/2^+$

- $> 6.1 \quad < 1.5 \quad ?$
- $7.3 (2) \quad 0.10 (5)$
- $> 6.5 \quad < 0.65 \quad ?$

29Mg

- $\log f_t \quad I_\beta \quad \frac{1}{2} \pi$
- $3/2^+$
- $E_x [\text{MeV}]$

- $1.638 \quad 1.430 \quad 1.095 \quad 0.555 \quad 0.0$
Finding of the 1583 keV γ-ray for the first time

Relative intensity is the clue to spin assignment.
0.055 MeV and 1.638 MeV levels are suggested to be 1/2+ and 5/2+, respectively.
Revised Decay Scheme of 29Na and Spin-Parity Assignments of 29Mg Levels II

Levels and gamma rays
- **Red**: newly observed
- **Blue**: previously observed in 30Na β-n decay and transfer reactions; newly observed in 29Na β decay

Spins and parities
- **Red**: newly assigned
- **Green**: assigned tentatively by γ ray transition probability

Graph showing energy levels and transitions between 29Na and 29Mg levels with spin and parity assignments.
Systematics (Exp.)
Z=12

Systematics (Exp.)
N=17

\begin{align*}
27\text{Ne} & (3/2^+) \\
29\text{Mg} & 3/2^+ \\
31\text{Si} & 3/2^+ \\
33\text{S} & 3/2^+ \\
35\text{Ar} & 3/2^+
\end{align*}
Either one reproduces the experimental intensity ratio, if the above hindrance factors are assumed.
Revised Decay Scheme of 29Na and Spin-Parity Assignments of 29Mg Levels III

Levels and gamma rays
- Red: newly observed
- Blue: previously observed in 30Na β-n decay, and transfer reactions; newly observed in 29Na β decay

Spins and parities
- Red: newly assigned
- Green: assigned tentatively by γ ray transition probability

$log f/t$ I_β J^π β^- Q_β E_x [MeV]

- 2^{+}
- $3/2^-$
- $5/2^-$
- $7/2^-$

29Na $Q_\beta = 13.28 (9)$ MeV

29Mg E_x [MeV]

- 3.985
- 3.674
- 3.227
- 3.224
- 2.614
- 1.638
- 1.430
- 1.095
- 0.055
Principle of Measurement

Experiments at TRIUMF

Results with 28Na Beam: 28Mg Structure

Results with 29Na Beam: 29Mg Structure

Comparison with Shell Model Calculations

Summary
Comparison with Shell Model Calculation

29Mg

Not predicted by USD interaction
Comparison with USD calculation

Energy Level [MeV]

Log-\(ft \)

\(\Delta \text{log-}ft \) (calc-exp)

\(\log-ft \)

\(^{29}\text{Mg} \)
Comparison with Shell Model Calculation 2
(Monte Carlo Shell Model by Utsuno et al.)

<table>
<thead>
<tr>
<th>State</th>
<th>MCSM</th>
<th>exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1/2 to 5/2)^+</td>
<td>3.985</td>
<td>5.8 (1)</td>
</tr>
<tr>
<td>(1/2 to 5/2)^+</td>
<td>3.674</td>
<td>5.8 (1)</td>
</tr>
<tr>
<td>(5/2)^+</td>
<td>3.227</td>
<td>5.5 (1)</td>
</tr>
<tr>
<td>(5/2)^+</td>
<td>3.224</td>
<td>4.9 (1)</td>
</tr>
<tr>
<td>1/2^+</td>
<td>2.615</td>
<td>4.5 (1)</td>
</tr>
<tr>
<td></td>
<td>2.500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.266</td>
<td></td>
</tr>
<tr>
<td>(5/2^-)</td>
<td>1.638</td>
<td>> 6.1</td>
</tr>
<tr>
<td></td>
<td>1.430</td>
<td>7.3 (2)</td>
</tr>
<tr>
<td></td>
<td>1.095</td>
<td>> 6.5</td>
</tr>
</tbody>
</table>

- exp: Experimental values
- MCSM: Monte Carlo Shell Model values

Updated

- **1/2^+**
 - MCSM: 0.055
 - exp: 5.4 (3)
- **3/2^+**
 - MCSM: 0.06
 - exp: 5.13
- **1/2^-**
 - MCSM: 0.06
 - exp: 6.13
- **3/2^-**
 - MCSM: 0.06
 - exp: 5.29
- **2/^-**
 - MCSM: 0.06
 - exp: 6.13

Revised

- **1/2^-**
 - MCSM: 0.055
 - exp: 5.4 (3)
- **3/2^-**
 - MCSM: 0.06
 - exp: 5.13
- **1/2^-**
 - MCSM: 0.06
 - exp: 6.13
- **3/2^-**
 - MCSM: 0.06
 - exp: 5.29
- **2/^-**
 - MCSM: 0.06
 - exp: 6.13

Conclusion

The comparison between the experimental (exp) and Monte Carlo Shell Model (MCSM) values shows slight discrepancies in some states, particularly in the 1/2^+ and 3/2^- states. The MCSM values generally match the experimental data, with deviations likely due to the complexity of the shell model and the limitations of the experimental measurements.
Summary

◆ The decay spectroscopy with spin-polarized 28,29Na was successfully carried out at TRIUMF.

◆ The decay schemes of 28,29Na were revised drastically.
 - In 28Mg, 13 γ rays and 9 levels were newly found in the β decay of 28Na. Spins and parities of the 4 levels were newly proposed.
 - In 29Mg, the 336 keV, 1793 keV, and 1583 keV γ rays were newly found in the β decay of 29Na. Spins and parities of the 5 levels were newly proposed.

◆ The level structures of 28,29Mg were discussed by comparing with the shell model calculation (NuShell).
 - The level energies and $\log ft$ values of the levels in 28,29Mg were reasonably reproduced by the shell model calculation using USD interaction.
 - For the 29Mg, the 1.095 MeV and 1.431 MeV levels, the small β transition suggests negative parity of these levels, being in good agreement with the MCSM calculation.
Summary

◆ The decay spectroscopy with spin-polarized 28,29Na was successfully carried out at TRIUMF.

◆ The decay schemes of 28,29Na were revised drastically.

 ❖ In 28Mg, 13 γ rays and 9 levels were newly found in the β decay of 28Na. Spins and parities of the 4 levels were newly proposed.

 ❖ In 29Mg, the 336 keV, 1793 keV, and 1583 keV γ rays were newly found in the β decay of 29Na. Spins and parities of the 5 levels were newly proposed.

◆ The level structures of 28,29Mg were discussed by comparing with the shell model calculation (NuShell).

 ❖ The level energies and logft values of the levels in 28,29Mg were reasonably reproduced by the shell model calculation using USD interaction.

 ❖ For the 29Mg, the 1.095 MeV and 1.431 MeV levels, the small β transition suggests negative parity of these levels, being in good agreement with the MCSM calculation.
Summary

◆ The decay spectroscopy with spin-polarized 28,29Na was successfully carried out at TRIUMF.

◆ The decay schemes of 28,29Na were revised drastically.

 ❖ In 28Mg, 13 γ rays and 9 levels were newly found in the β decay of 28Na. Spins and parities of the 4 levels were newly proposed.

 ❖ In 29Mg, the 336 keV, 1793 keV, and 1583 keV γ rays were newly found in the β decay of 29Na. Spins and parities of the 5 levels were newly proposed.

◆ The level structures of 28,29Mg were discussed by comparing with the shell model calculation (NuShell).

 ❖ The level energies and logft values of the levels in 28,29Mg were reasonably reproduced by the shell model calculation using USD interaction.

 ❖ For the 29Mg, the 1.095 MeV and 1.431 MeV levels, the small β transition suggests negative parity of these levels, being in good agreement with the MCSM calculation.