Shell evolution of exotic nuclei around and beyond N=28 described by the universal monopole picture

Yutaka Utsuno

Advanced Science Research Center, Japan Atomic Energy Agency

Collaborators

Takaharu Otsuka (Univ. Tokyo/RIKEN/MSU)

Alex Brown (MSU)

Michio Honma (Aizu Univ.)

Takahiro Mizusaki (Senshu Univ.)

Toshio Suzuki (Nihon Univ.)

Naofumi Tsunoda (Univ. Tokyo)

Koshiroh Tsukiyama (Univ. Tokyo)

Morten Hjorth-Jensen (Univ. Oslo)

Acknowledgment

- NuShellX code V4.0R2 by W. D. M. Rae (http://knollhouse.org/)
- MSHELL by T. Mizusaki

Outline of the talk

- General property of the monopole interaction causing shell evolution and its application to sd-pf shell
- Shell and nuclear structure evolution from N=20 to 28
 - Clear evidence of reduction of the LS splitting by tensor force
- Structure beyond N=28 and shell turning
 - Probed by first forbidden β decay from K isotopes
- Summary

Conventional picture about shell evolution

Question

- How does the shell evolve from light to heavy regions?
- Is there any difference between stable and unstable regions?

Woods-Saxon potential

- gives overall agreement
 with experiment near
 stable nuclei.
- Slow and monotonic evolution

Figure 2-30 Energies of neutron orbits calculated by C. J. Veje (private communication).

A. Bohr and B.R. Mottelson, Nuclear Structure, vol. 1

Two-body picture about shell evolution

- What causes the change of shell gap: difference in mean force between orbits
 - Sometimes gives a sharp evolution
 - Sensitive to the Fermi surface and can be non-monotonic.
- What we want:
 - To detect those features
 - To account for and predict the shell evolution from more basic point of view

Spin dependence and the tensor force

- Origin of the drastic change
 - Spin dependence (T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001).)
- Tensor force

$$(2j_{>}+1)V_{j_{>},j'}^{T}+(2j_{<}+1)V_{j_{<},j'}^{T}=0$$

Attraction between j_> and j'_< Repulsion between j_> and j'_>

Large effect on the LS splitting

T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005).

Simplicity of tensor-subtracted monopole

T. Otsuka, T. Suzuki, M. Honma, Y. Utsuno, N. Tsunoda, K. Tsukiyama, M. Hjorth-Jensen., Phys. Rev. Lett. 104, 012501 (2010).

A simple Gaussian force fits excellently.

Monopole-based universal interaction

- Tensor force
 - Spin and node dependence
 - Spin dependence : direction of j and j' (different sign)
 - Node dependence: strength is larger between orbits with the same node
- Central force
 - Node dependence only

A new interaction for the sd-pf shell

- Components of the interaction
 - sd part + pf part + cross-shell part
 - USD as the sd part (with a slight modification as adopted in SDPF-M: changing magic number from N=16 to 20)
 - GXPF1B as the pf part (with a slight modification in the $f_{7/2}$ pairing and q-pairing matrix elements; improving the 2^+_1 of Si isotopes around N=22)
- A newly constructed interaction for the cross-shell interaction
 - Based on the monopole-based universal interaction picture
 - Consisting of central, LS (fixed to M3Y), and tensor $(\pi+\rho)$ parts
 - Refined central force by including density dependence
 - Parameters of the central force are determined to fit the central monopole of GXPF1: a natural continuation of GXPF1 to the cross shell

Details of the Gaussian

Central force with density (or center-of-mass coordinate) dependence is

$$V_c(r,R) = \sum_{S,T} P^{S,T} D_c(R,S,T) d_c(r,S,T)$$

where R and r are center-of-mass and relative coordinates, respectively.

$$d_c(r,S,T) = f^{S,T} \exp\left(-(r/\mu)^2\right)$$

$$D_c(R,S,T) = D(R) = 1 + A_d F(R)^{B_d}$$
 with
$$F(R) = \{1 + \exp((R - R_0)/a)\}^{-1}$$

Density dependence improves matrix elements of higher nodes.

Free parameters: $f^{S,T}$, μ , and A_d (totally six parameters only)

We take $f^{0,0}$ =-140 MeV, $f^{1,0}$ =0, $f^{0,1}$ =0.6 $f^{0,0}$, $f^{1,1}$ =-0.6 $f^{0,0}$, μ =1.2 fm, and A_d =-0.4.

GXPF1 vs. Gaussian for central

- Extracting the central of GXPF1
 - Spin-tensor decomposition
- Comparison with MK (Millerner-Kurath): Yukawa
 - T=0 f-f: weaker due to the difference of range
 - T=0 p-p: stronger due to the lack of density dependence
 - T=1 overall: stronger due to different S=0 and S=1 ratio

Monopole centroids for the central force

Shell evolution from N=20 to 28

- The effect of the cross-shell interaction
 - $-\pi$ (sd) orbits are of interest.
- Neutron: f_{7/2}
 - $V^{m}(f_{7/2}, sd)$
- To be discussed
 - 1. Z=16 gap: single hole states in ₁₉K isotopes
 - 2. Effects on collectivity: deformation in ⁴²Si₂₈
 - Reduction of the LS splitting: distribution of the spectroscopic factor

Monopole interaction in K levels

- $\pi 0d_{3/2}$ vs. $\pi 1s_{1/2}$ from N=20 to 28 = $V^{m}(0f_{7/2}, 0d_{3/2})$ vs. $V^{m}(0f_{7/2}, 1s_{1/2})$
- Central vs. tensor
 - Both the central and the tensor contribute almost to the same extent.
 - ➡ Sharp change of the gap

p-n monopole centroid (in MeV)

		d _{3/2}	s _{1/2}	difference
f _{7/2}	central	-1.10	-0.88	-0.22
	tensor	-0.21	0	-0.21

strength scaled at A=42

Evolution of $\pi d_{3/2}$ - $s_{1/2}$ gap in K isotopes

Energy levels

- Significance of the tensor force is clear.
- Directly reflect the gap between $\pi(d_{3/2})$ and $\pi(s_{1/2})$ at N=20 and 28
- $1/2^+_1$ has a large mixing with $\pi(d_{3/2})$ $\otimes \nu(2^+)$ in N=22, 24, and 26.

Unnatural parity states: probing Z=20 gap

- Correlation energy: large but similar among interactions
- Effective shell gap: crucial for the level

Collectivity of Si isotopes: N=28 magicity

- Energy levels N≤26
 - -2_1^+ is dominated by $v(f_{7/2})^2$
 - Pairing and q-pairing in f_{7/2}
 are more sensitive.
- Large difference at N=28
 - Disappearance of the magic number

Exp.) ⁴⁰Si: C.M. Campbell et al., Phys. Rev. Lett. 97, 112501 (2006).

⁴²Si: B. Bastin et al. Phys. Rev. Lett. 99, 022503 (2007).

Comparison of the effective SPE

 Coherent quenching of proton and neutron shell gaps which increase toward the j-j closure

Potential energy surface (PES) for ⁴²Si

- PES: constrained (Q₀) Hartree-Fock calculation in the shell model space
 - Successful in the shape coexistence in ⁵⁶Ni (T. Mizusaki et al., Phys. Rev. C 59, R1846 (1999).)
- Effect of the tensor force: large
- Oblate deformed g.s. caused by the tensor
 - Consistent with calculated Q
 moment of the 2⁺₁: +23 e²fm⁴

Sulfur isotopes

2⁺₁ energy

	Exp. (MeV)	Cal. (MeV)
22	1.292	1.264
24	0.900	0.794
26	0.890	0.943
28	1.315	1.248

Difference between tensor and central

- Both tensor and central affect the reduction of the Z=16 gap.
- Almost only tensor contributes to the reduction of the LS splitting.

Spectroscopic factor for 1p removal from ⁴⁸Ca

- $\pi d_{5/2}$ hole state
 - Ex.: high
 - Fragments into many states
- Spectroscopic factor
 - The centroid gives the single particle energy.
- Comparison between experiment and calculation
 - Quenching factor 0.7 is needed.
 - Very good : both position and strength

Present interaction (w/ tensor)

(e,e'p): G.J. Kramer et al., Nucl. Phys. A 679, 267 (2001).

What happens without the tensor force?

- $d_{3/2}$
 - The position of the single-hole state shifts to the left.
- d_{5/2}
 - 5/2+ levels exist from around 3
 MeV, but the strength shifts to higher excitation energy.

w/o tensor in the cross shell int.

Shell evolution beyond N=28

 $E(1/2^{\dagger}_{1})$

20

22

24

26

28

30

32

- Fermi surface: v1p_{3/2}
 - $V^{m}(1p_{3/2}, 0d_{3/2}) \text{ vs. } V^{m}(1p_{3/2}, 1s_{1/2})$

		d _{3/2}	s _{1/2}	difference
f _{7/2}	central	-1.10	-0.88	-0.22
	tensor	-0.21	0	-0.21
p _{3/2}	central	-0.68	-1.15	+0.47
	tensor	-0.05	0	-0.05

The 1/2+ level is predicted to turn.

Example of non-monotonic change

Comparison to Woods-Saxon potential

- Woods-Saxon
 - Very slow and monotonic change
 - Very small reduction of LS splitting from N=20 to 28

Independent of parameters used

How to probe the change?

- No direct measurement of the spin/parity in the g.s. of K isotopes beyond N=28
- The only experimental data available: β decay to Ca isotopes
 - Parity of low-lying states: different between K and Ca
 - → first forbidden decay
- First forbidden decay as a probe of the ground state of K: promising
 - Structure of daughter: Ca isotopes (semi-magic)
 - Simple: ambiguity is small
 - Very low level density: one-to-one correspondence to experiment

First forbidden β decay

- Somewhat complicated (for accuracy of electron w.f.)
- We follow the formalism given by Warburton et al. E.K. Warburton et al., Ann. Phys. 187, 471 (1988).
- Operator: [(polar vector) \times (axial vector or scalar)]^(0, 1, or 2)t⁻
 parity change no parity change
 - Rank 0 (two operators)

$$[rC^{(1)} \otimes \sigma]^{(0)} t^{-} \rightarrow M_0^{S} \qquad [\sigma \otimes \nabla]^{(0)} t^{-} \rightarrow M_0^{T}$$

Rank 1 (three operators)

$$rC^{(1)}t^{-} \to x \qquad [rC^{(1)} \otimes \sigma]^{(1)}t^{-} \to u \qquad \nabla t^{-} \to \xi' y$$

Rank 2 (one operator): unique first forbidden decay

$$[rC^{(1)} \otimes \sigma]^{(2)} t^{-} \rightarrow z$$

Decay rate: incoherent sum of R0, R1, and R2

Some remarks on first forbidden decay

- The number of independent matrix elements
 - R0: one $(M_0^T = -E_{osc}M_0^S \text{ for H.O. basis})$
 - R1: two ($\xi'y=E_{\gamma}x$ from CVC theory and isospin symmetry)
 - R2: one
- Systematic study
 - R0 and R2 are studied rather extensively.
 - Effective operator: correction of meson enhancement (M_0^T) and small model space
 - R1: less expensively
 - Ambiguity to extract the R1 matrix element from experiment
 - Cancellation of x and u sometimes makes predictive power worse.
 - We use the bare operator following Warburton et al.

⁵¹K: 1/2+ or 3/2+?

β decay of ⁵¹K: end of $\nu p_{3/2}$

Ground state assumed: 3/2+

F. Perrot et al., Phys. Rev. C 74, 014313 (2006).

Exp.

Calc.

β decay of ⁵¹K: end of $\nu p_{3/2}$

Ground state assumed: 1/2+

⁴⁹K: 1/2+ or 3/2+?

β decay of ⁴⁹K

Ground state assumed: 3/2+

β decay of ⁴⁹K

Ground state assumed: 1/2+

Summary of the proton shell evolution

- From N=20 to 28
 - Level inversion at N=28 due to central and tensor
- Beyond N=28: from first forbidden β decay
 - $d_{3/2}$ is again the highest at N=32.
 - 1/2+ g.s. at N=30 accounts for experimental data better.

Calc.: 3/2+ is slightly (~0.2 MeV) lower

Two-body LS force and shell evolution

Two-body LS

- Order of 10 keV for f-sd channel: much smaller than ~1 MeV of central and ~100 keV of tensor
- Negligible up to N=28 where f_{7/2} is occupied
- p-sd channel: large
- Different sign between $p_{3/2}$ - $d_{3/2}$ and $p_{3/2}$ - $s_{1/2}$
 - Makes $s_{1/2}$ more stable by $^{\circ}600 \text{ keV}$ (2*300 keV) at ^{51}K

Determining 1/2+-3/2+ spacing at ⁵¹K would provide a good measure about the LS strength.

Summary

- The shell structure described by the two-body (monopole) force can evolve in a unique way: sharp and non-monotonic behavior
- The strength of monopole interaction is well described by the universal tensor force and a simple Gaussian central force.
- It was demonstrated that an interaction based on this picture works quite well and gives the characteristics above.
 - From N=20 to 28: $\pi d_{3/2}$ moves very sharply to be lower than $\pi s_{1/2}$ at N=28
 - Beyond N=28: $\pi d_{3/2}$ is again the highest suggested by first forbidden β decay.