# Probing Equation of State & Bulk Properties Through Heavy-Ion Collisions & Simulations

#### **Pawel Danielewicz**

Facility for Rare Isotope Beams, Michigan State University

Theoretical Justifications and Motivations for Early High-Profile FRIB Experiments FRIB-TA Topical Program East Lansing, Michigan 16-26 May, 2023

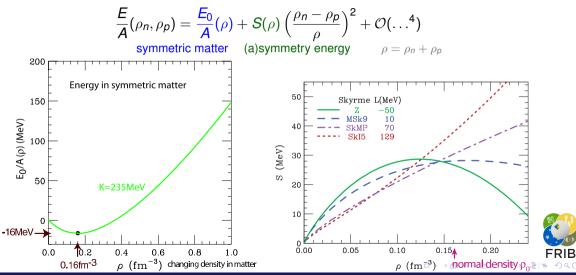


EOS from HIC

# Physics Shopping List for HI Collisions

- Bulk isovector properties of nuclear matter up to  $2\rho_0$ 
  - symmetry energy
  - isovector component of proton and neutron mean fields w/p-dependence or isovector m\*
  - isospin conductance/diffusion
  - uncertainty quantification in conclusions
- Improved constraints on isoscalar properties of nuclear matter and connection to neutron stars
  - pressure as a function of density up to five times the normal density
  - role of momentum dependence of isoscalar mean fields and in-medium cross sections
  - new observables such as triple differential momentum distributions

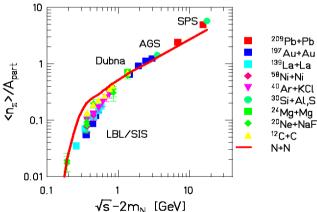



# Physics Shopping List for HI Collisions Cont.

- Refined understanding of bulk properties
  - pressure and energy at finite temperature and connection to neutron-star mergers
  - connection to effective field theory
  - role of off-shellness in in-medium subthreshold production of mesons
  - role of fluctuations and correlations in central-reaction dynamics
- Advances in transport theory
  - implementation of aspects of chiral effective theory
  - structure effects in initial conditions
  - mechanisms of cluster production
  - off-shell transport
  - fully quantal transport applicable down to Coulomb barrier



Danielewicz


## Cold EOS Breakdown



EOS from HIC

# Heavy-Ion Collisions

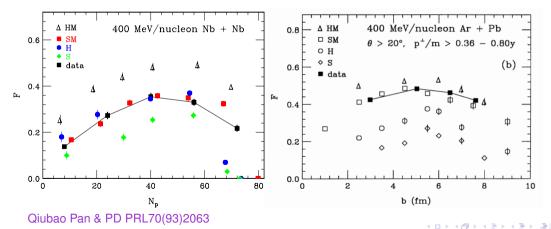
- Measurements very inclusive
- Equilibrium reached only late in collisions, so transport theory needed to simulate collisions and extrapolate to equilibrium
- Collision energy changes densities reached, but also excitation above zero temperature & degrees of freedom
- Parallel data analyses carried over time



## **Transport Theory**

Phase-space characteristics of hadronic degrees of freedom followed in semiclassical transport theory

Besides EOS uncertainties include:


- Dependence of mean fields on density, momentum and nonequilibrium features of phase-space distributions
- In-medium interaction rates
- Space-time nonlocalities in collisions  $\rightarrow$  impact on entropy
- Off-shell effects
- Optimal observables for testing individual uncertainties



Introduction

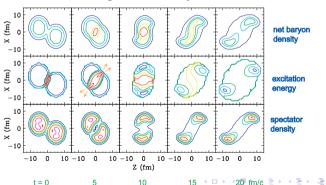
## Example: Mean-Field $\rho$ vs p Dependence

Impact of centrality and momentum bracket on <u>flow</u> may be used to resolve these dependencies:



# EOS and Flow Anisotropies

EOS assessed through reaction plane anisotropies characterizing particle collective motion


Hydro? Euler eq. in  $\vec{v} = 0$  frame:  $m_N \rho \frac{\partial}{\partial t} \vec{v} = -\vec{\nabla} p$ 

where p - pressure From features of v, knowing  $\Delta t$ , we may learn about

 $\rho$  in relation to  $\rho$ 

 $\Delta t$  fixed by spectator motion For high *p*, expansion rapid and much affected by spectators

For low *p*, expansion sluggish and completes after spectators gone

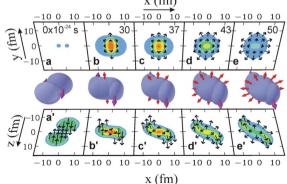


Introduction

FRIB

# EOS and Flow Anisotropies

EOS assessed through reaction plane anisotropies characterizing particle collective motion


Hydro? Euler eq. in  $\vec{v} = 0$  frame:  $m_N \rho \frac{\partial}{\partial t} \vec{v} = -\vec{\nabla} p$ 

where p - pressure From features of v, knowing  $\Delta t$ , we may learn about p in relation to  $\rho$ 

 $\Delta t$  fixed by spectator motion

For high *p*, expansion rapid and much affected by spectators

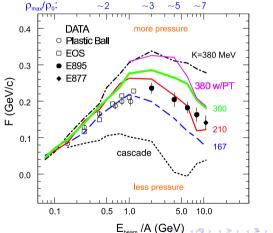
For low *p*, expansion sluggish and completes after spectators gone



Introduction

FRIB

# Sideward Flow Systematics


Deflection of forwards and backwards moving particles away from the beam axis, within the reaction plane  $\rho_{max}/\rho_0$ :  $\sim 2$   $\sim 3$   $\sim 5$   $\sim 7$ 

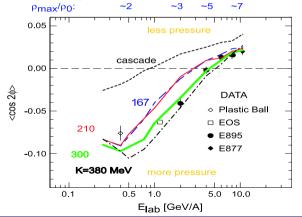
Au + Au Flow Excitation Function

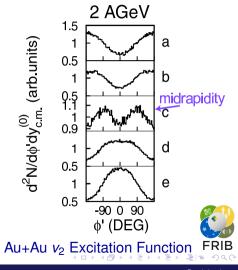
Note: K used as a label

PD, Lacey & Lynch Science298(02)1592

The sideward-flow observable results from dynamics that spans a density range varying with the incident energy



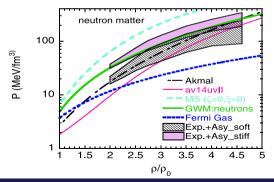


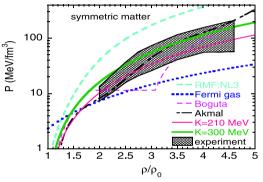


Introduction

FRIR

# 2<sup>nd</sup>-Order or Elliptic Flow

Another anisotropy, studied at midrapidity:  $v_2 = \langle \cos 2\phi \rangle$ , where  $\phi$  is azimuthal angle relative to reaction plane



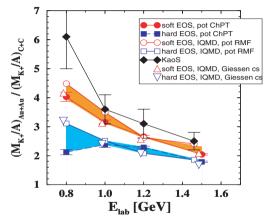

#### 

#### Constraints on EOS

Au+Au flow anisotropies:  $\rho \simeq (2-4.6)\rho_0$ No single EOS yields both flows right Discrepancies: inaccuracy of theory Most extreme models for EOS can be eliminated







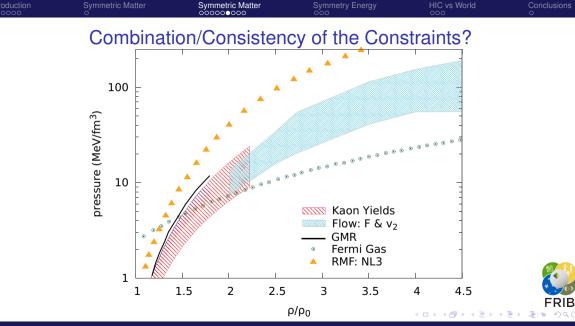



EOS from HIC



## Subthreshold Kaon Production



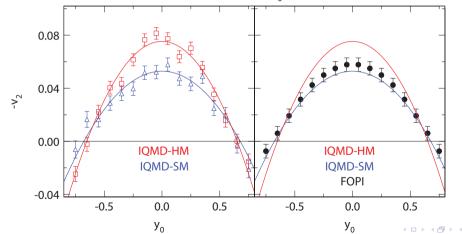

Ratio of kaons per participant nucleon in Au+Au collisions to kaons in C+C collisions vs beam energy filled diamonds: KaoS data open symbols: theory

Fuchs et al. ProgPartNuclPhy 53(04)113

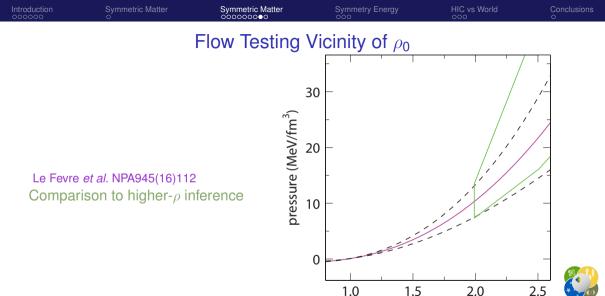
Kaon yield sensitive to EOS as multiple interactions needed for production, testing density

The data suggest a relatively soft EOS In-medium threshold effects?? (Dan Cozma)






## Introduction Symmetric Matter Symmetric Matter Conclusions

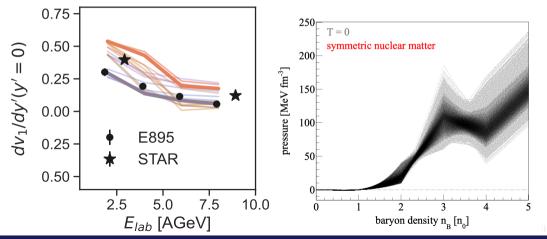

# Flow Probing Vicinity of $\rho_0$

Le Fevre et al. NPA945(16)112 Elliptic flow in Au + Au between 0.4 and 1.5 GeV/u

Au+Au 1.2A GeV 0.25<body>6.45 protons



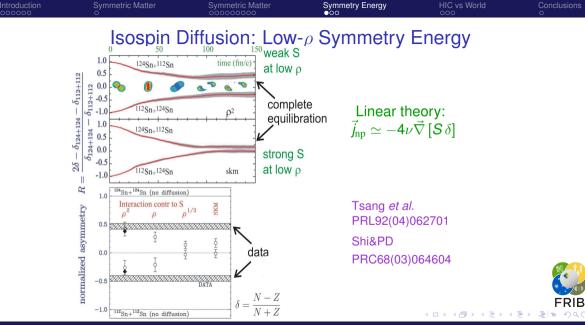





ph

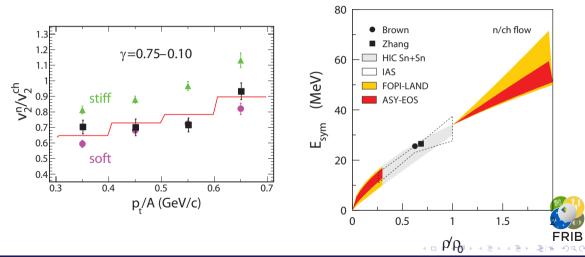
FRIB

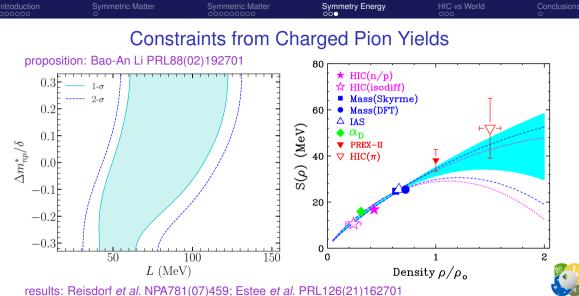
### Flow in SMASH


Oliinychenko, Sorensen *et al.* arXiv:2208.11996 Changing speed of sound in density intervals and comparing to flow data



EOS from HIC


Danielewicz


FRIB



## Supranormal Densities: Baryon Differential Flow

Russotto et al. PRC94(16)034608 Au+Au @ 400MeV/u, neutron measurements w/LAND





Liu *et al.* PRC103(21)014616; Lynch&Tsang PLB830(22)137098

FRIB

### Combined Inferences: HIC + Structure + Astrophysics

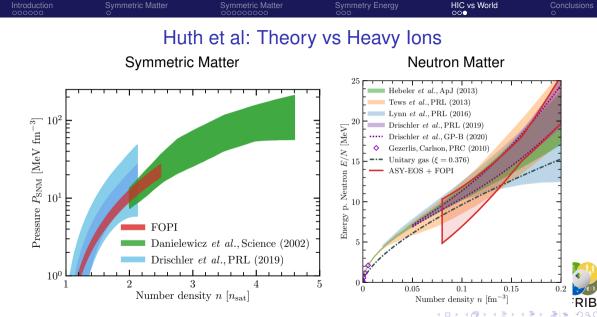
Different probed densities



EOS from HIC

From Betty Tsang

**HIC and Astro combined:** 


# Analysis by Huth et al.

#### Constraining neutron-star matter with microscopic and macroscopic collisions Bayesian combinations Huth, Pang *et al.* Nature 606(22)276

#### HIC experiments:

#### Prior $10^{2}$ Prior $10^{2}$ $[Mev fm^{-3}]$ HIC $[\mathrm{Mev}\ \mathrm{fm}^{-3}]$ Astro+HIC HIC Data $10^{1}$ Pressure PPressure $10^{1}$ $10^{0}$ $0.{\overline{5}}$ 2.0 2.53.0 1.01.53.0 $0.{\overline{5}}$ 1.0 1.5 2.0 2.5 Number density $n [n_{\text{sat}}]$ Number density $n [n_{sat}]$ FRIB

Astrophysical observations narrow constraints above  $2\rho_0$ 



EOS from HIC

| Introduction | Symmetric Matter | Symmetric Matter | Symmetry Energy | HIC vs World | Conclusions |
|--------------|------------------|------------------|-----------------|--------------|-------------|
|              |                  |                  |                 |              |             |

### Conclusions

- Heavy-ion collisions allow to dial densities for studying EOS, by changing beam energy
- Window in the energy that addresses the densities around  $2\rho_0$ , where the collisions are particularly called for, is actually easier from the standpoint of transport than either significantly lower or significantly higher energies
- FRIB should deliver a wider range of exotic projectiles, at intensities needed for heavy-ion experiments focussed on EOS, than any other accelerator in the world in the foreseeable future
- More refined observables are needed for more stringent EOS constraints (PD 3D: need beam separation from products)

Supported by US Department of Energy under Grant US DE-SC0019209



#### Paradigm: Triple-Differential Yields from Data Distributions for *Fixed Direction of Reaction Plane* from Theory and Experiment





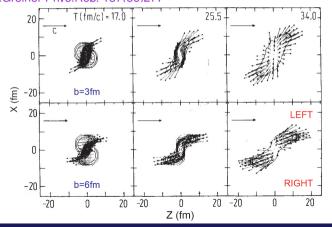




no control over plane

full control,  $\frac{d^3N}{dp^3}$ 




Claim: You can go from center to right panel through deblurring

EOS from HIC

Danielewicz

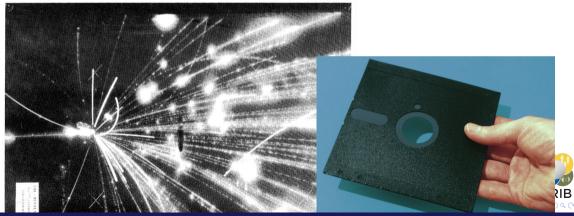
# Side Splash in Hydrodynamic Calculations

Matter dispersed in the final stage, but most likely direction of motion away from the beam, e.g., in the calculations by Buchwald for Nb + Nb at 400 MeV/nucl Stöcker&Greiner Phys.Rep. 137(86)277

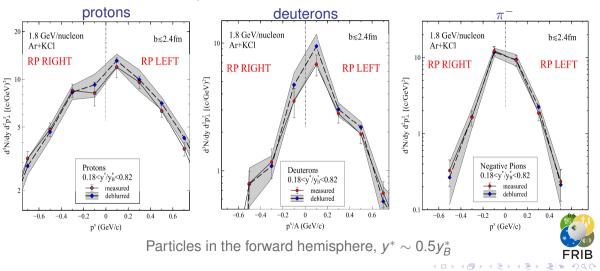


Can this be seen experimentally??

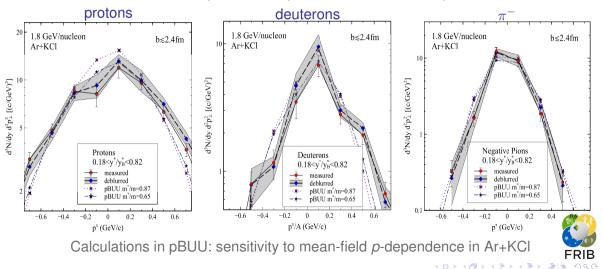



EOS from HIC

## Ar + KCl @ 1.8 GeV/nucl


#### Ströbele PRC 27(83)1349

#### 495 events from Streamer Chamber, $b \lesssim$ 2.4 fm


PD&Odyniec PLB 157(85)146



#### Side-Splash in Ar + KCl 1.8 GeV/nucl



#### Side-Splash: Experiment vs Theory

