Decay of the 1+ Isomer in 24Al

Toshi-Aki Shibata, Jun Imazato, Toshimitsu Yamazaki and B. A. Brown[†]

Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo

† Cyclotron Laboratory, Michigan State University, East Lansing, Michigan, and Nuclear Physics Laboratory, University of Oxford, Keble Road, Oxford

(Received February 15, 1979)

The 1⁺ isomer in ²⁴Al is found to be located at 426 keV slightly different from the previous assignment. The 1⁺ isomer decays by β transitions with branching ratio of $22\pm3\%$ and by emission of a 426-keV γ ray with $78\pm3\%$. The $\log(fi)$ value of the β transition from ^{24m}Al(1⁺) to the 9962-kVe level in ²⁴Mg is obtained to be 3.5 ± 0.1 , indicating a super-allowed transition. The reduced transition probability B(M3) of the $1^+\rightarrow4^+$ γ transition is deduced to be 264 ± 13 $(e\hbar/2\text{Mc})^2\text{fm}^4$. Correction for spin magnetic moments in M3 moments are discussed.

[RADIOACTIVITY 24 mAl [from 24 Mg(p, n)]; measured I_{γ} , E_{γ} , $T_{1/2}$, Excitation functions, β - and γ -branchings; deduced log (ft), B(M3).

§1. Introduction

Isospin symmetry can be used to study the nuclear structure of 0d-1s shell nuclei. As for the A=24 isobars the 4^+ ground states in ²⁴Al and ²⁴Na and the 4⁺ state at 9515 keV in 24 Mg constitute T=1 isospin triplet. The first-excited 1⁺ isomer in 24 Al ($T_{1/2}$ =128 msec) and in ²⁴Na $(T_{1/2}=20 \text{ msec})$ are also two members of isospin triplet, ¹⁾ and the other member should be located at around 9.94 MeV in 24 Mg. This state is to be observed in the β decay of 24mAl(1+). The weak 9962-keV y ray with a half-life of 228 ± 90 msec has been observed in the delayed-γ-ray study after the ²⁴Mg(p, n)²⁴Al reaction,³⁾ and the 9962-keV level has been proposed to be $1^+(T=1)$. To confirm this assignment from the log (ft) value the branching ratio of ²⁴Al(1⁺) to the 9962keV level should be measured.

The reduced transition probability of the $1^+ \rightarrow 4^+$ M3 γ transition in 24 Al can be deduced from the lifetime and the γ decay branching ratio of the 1^+ isomer. The M3 transition probabilities in 24 Al and 24 Na will provide information on the nuclear structure of the A=24 nuclei.

At the first stage of the present work we found that the 1⁺ isomer in ²⁴Al is located at 426 keV, not at 439 keV as assigned previously.¹⁾ We then remeasured the β - and γ -decay branching ratios of ^{24m}Al(1⁺).

§2. Experimental Procedure

The experiment was performed by using 26-MeV proton beam from the IMS (The Institute of Medical Science, University of Tokyo) cyclotron. ^{24m}Al was produced by the ²⁴Mg(p, n)²⁴Al reaction. The target was ²⁴MgO powder enveloped by a 2- μ m thick mylar foil. The enrichment was more than 99%. Carbon contamination was carefully eliminated at and around the target position so that the short-lived β emitter ¹²N may not be produced by the ¹²C(p, n)¹²N reaction. Gamma rays were detected with a 40-cc Ge(Li) detector which had the energy resolution of 2.7 keV at 1330 keV. Beta rays were detected by a counter telescope of plastic scintillators described later.

To determine the energy level of the 1^+ isomer in 24 Al 1) time spectra and 2) excitation functions of the delayed γ rays were measured. The β - and γ -decay branching ratios were determined by comparing the yield of the $T_{1/2} = 128$ msec component of the β rays with the yield of the 426-keV γ ray in the time spectra. High-energy delayed γ rays were measured to study the β -decay branch of 24m Al(1^+) to its anologue state in 24 Mg.

2.1 Time spectra

The cyclotron beam was pulsed macroscopically by an external beam pulsing system.⁴⁾ The proton beam passed through the pulsing

system for only 50 msec out of 1 sec and was deflected away for the succeeding 950 msec. A saw-tooth generator was triggered synchronously with the macroscopic beam pulse and its pulse height was sampled when a signal from the detectors was fed to the linear gate. The energy of the γ rays were selected by the digital gate mode of PDP-11/40 computer.

2.2 Excitation functions

Only delayed γ rays were measured because the delayed component of the 426-keV and the 439-keV γ rays were of current interest and the prompt events of the 439-keV γ rays which came from the $5/2^+ \rightarrow 3/2^+$ transition in 23 Na must be omitted. The yields of the γ rays were measured at proton incident energies 17, 20, 23 and 26 MeV. Aluminum foils were used to degrade the primary proton energy. The yields of the γ rays in each run were normalized by integrating the proton beam current.

2.3 β - and γ -decay branching ratios

For the β -ray detection a counter telescope of two plastic scintillators was used. The first plastic scintillator was of 2-mm thickness with 7×7 cm² area and the second one was of 3-mm thickness with a 2.5 cm radius.

The β -ray detection efficiency of the telescope was defined by the solid angle of the second counter. The efficiency of the Ge(Li) detector at 426 keV was determined by measuring the γ rays from the γ -ray sources ¹³³Ba and ¹⁵²Eu. The β counter and the Ge(Li) detector were placed at 90° to the beam in the oposite sides of the target at the distance of 10.5 cm and 14.1 cm, respectively, from the target position. The relative efficiency of the β -ray and the γ -ray detectors were also checked by measuring the β ray and the γ ray from the radioisotope ¹⁹⁸Au.

The time spectrum of the β rays with all energy was measured and was divided into the $T_{1/2}=2.07$ sec component and the $T_{1/2}=128$ msec component. The time spectrum of the 426-keV γ ray was measured at the same time. The yield of the β ray with $T_{1/2}=128$ msec and the yield of the 426-keV γ ray provide, after the normalization of the detector efficiencies, the β - and γ -decay branching ratio of the 1⁺ state in 24 Al.

2.4 High-energy delayed y rays

The most feasible way to determine the decay branch of the 1 + isomer to its analogue state is to measure the high-energy delayed y rays. Delayed y rays up to 14 MeV were measured by the Ge(Li) detector. The y rays from the radioisotope 152Eu and the 6143 keV prompt γ rays of the 3⁻ \rightarrow 0⁺ transition in ¹⁶O accompanying the ¹⁶O(p, p')¹⁶O reaction were used for the energy calibration. The present data on the energies of the y lines in ²⁴Mg succeeding the B decay of the ground state of ²⁴Al coincided with the previous data¹⁾ within errors of ±3 keV. Gamma-ray detection efficiency up to 2 MeV of the Ge(Li) detector was obtained by measuring the y rays from ¹³³Ba and ¹⁵²Eu and was extrapolated to the higher-energy part. The known y decay branches of the 9515 keV and the 8436 keV levels in ²⁴Mg¹⁾ were used to check the efficiency of the detector. The differences between the present data and the previous ones on these decay branches were less than 8%.

§3. Experimental Results

3.1 Energy level of the 1⁺ isomer in ²⁴Al

It has been reported that the 1^+ isomer in 24 Al is located at 439 keV and its half-life is $129\pm \mathrm{msec.^{1}}$) However, care must be taken since the 439-keV delayed γ ray comes also from 23 Na which is fed through β decay of 23 Mg produced by the 24 Mg(p, pn) 23 Mg reaction. In the delayed- γ -ray spectrum there is a peak at 426 keV as well as at 439 keV (see Fig. 1). The time spectrum of the 426-keV γ ray showed an exponential decay with a half-life of 128 ± 6 msec while that of the 439-keV γ ray was flat. The latter seems to come solely from the β decay of 23 Mg with $T_{1/2}=12$ sec.

To ascertain that the 426-keV γ ray belongs to ²⁴Al, the excitation functions were measured (see Fig. 2). The excitation functions of the delayed γ rays in ²⁴Mg reflect the yields of ²⁴Al and ^{24m}Al with the reaction Q-values of -14.6 MeV and -15.0 MeV, respectively. The excitation function of the 426-keV γ ray showed the same feature as those of the γ transitions in ²⁴Mg, and therefore the 426-keV γ ray accompanies the (p, n) reaction. On the other hand the yield of the 439-keV γ ray becomes maximum at E_p =24.5 MeV which is about 3 MeV higher than the other γ rays, reflecting

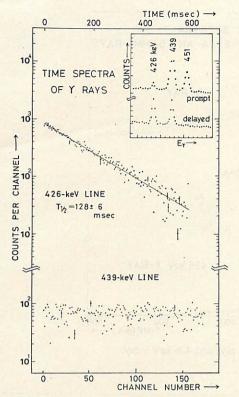


Fig. 1. Time spectra of the 426-keV and 439-keV γ rays.

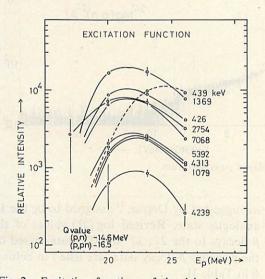


Fig. 2. Excitation functions of the delayed γ rays.

the reaction Q-value of $-16.5 \,\text{MeV}$ of the $^{24}\text{Mg}(p, pn)^{23}\text{Al}$ reaction. The 1^+ isomer in ^{24}Al was therefore assigned to be located at 426 keV, not at 439 keV. Its half-life is 128 ± 6 msec, in good agreement with the previous value.

3.2 β- and γ-decay branching ratios

The β -ray time spectrum was fitted to a function

$$A_1 \exp(-0.693 \times t/T_1)$$

 $+A_2 \exp(-0.693 \times t/T_2) + A_3$, (1)

where $T_1 = 128$ msec and $T_2 = 2.07$ sec (see Fig. 3). From the yield of the β ray with $T_{1/2} = 128$ msec and that of the 426-keV γ ray the β - and γ -decay branching ratios of the 1⁺ isomer were obtained to be $N_{\beta} = 22 \pm 3 \%$ and $N_{\gamma} = 78 \pm 3 \%$. The error is mainly the systematic one arising from low-energy β rays stopped in the first plastic scintillator.

3.3 High-energy delayed y rays

The energy spectrum of the high-energy delayed γ rays is shown in Fig. 4. Intensities of the γ rays are listed in Table I. (see also Fig. 5). Candidate for the analogue state of the 1⁺ isomer in ²⁴Al was looked for at around 9.94 MeV, and the only peak observed was located at 9962 \pm 4 keV, which was the same peak as

Table I. High-energy delayed γ rays.

E_{γ} (keV)	Location	Intensity		
		Present	ref. 1	
1079	4 ₄ →4 ₃	13.9±0.3	16.6±1.6	
1117		10.7 ± 0.3		
1172		7.6 ± 0.2		
1298		5.4±0.2		
1340		8.2 ± 0.2		
1369	$2_1 \rightarrow 0$	100.0 ± 1.0	100.0 ± 0.5	
1468		22.1 ± 0.4		
1633		3.2±0.2		
1771	$4_2 \rightarrow 2_2$	0.2 ± 0.2		
2222		1.6 ± 0.1		
2630		4.9 ± 0.3		
2754	$4_1 \rightarrow 2_1$	39.2 ± 0.6	45 ±4	
2870	$2_2 \rightarrow 2_1$	1.7±0.3	1.5±0.4	
3200	$4_3 \rightarrow 3$	4.1 ± 0.3	3.7±0.5	
3505	$4_4 \rightarrow 4_2$	1.9 ± 0.2	2.4±0.4	
3867	$3_1 \rightarrow 2_1$	5.3±0.2	5.8±0.6	
4197	$4_3 \rightarrow 2_2$	3.2 ± 0.2	4.6±0.5	
4239	$2_2 \rightarrow 0$	2.7 ± 0.3	3.7 ± 0.4	
4313	$4_3 \rightarrow 4_1$	13.2 ± 0.6	15.6±1.6	
4641	$4_2 \rightarrow 2_1$	2.4 ± 0.2	3.7 ± 0.7	
5392	$4_4 \rightarrow 4_1$	14.1 ± 0.9	21 ±2	
6128		1.9 ± 0.2		
7068	$4_3 \rightarrow 2_1$	49.5±4.0	42 ±4	
7629	ed b trans	1.0 ± 0.2		
7648		0.9 ± 0.2		
7850		0.8 ± 0.2	A8 only bea	
9962	1 →0	0.39 ± 0.1		



Fig. 3. Time spectra of the β rays and 426-keV γ ray.

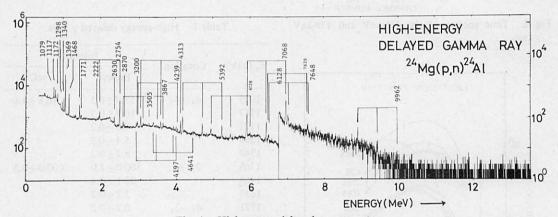
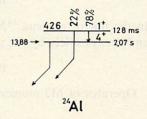


Fig. 4. High-energy delayed γ -ray spectrum.

reported by Détraz.³⁾ The β decay branch of 24m Al(1⁺) is 22% and the branch to the 9962-keV level amounts to 1.2±0.3% out of 22%.

§4. Discussions


4.1 \(\beta\) decay of the 1⁺ isomer in ²⁴ Al

The log (ft) value of the $1^+ \rightarrow 9962$ keV β transition is 3.5 ± 0.1 , indicating a superallowed transition (see Table I). The log (ft) values of the super-allowed β transitions from the ground state of 24 Al to the 9515-keV level and the 8436-keV level are 3.48 and 3.99, 1) respectively. The 9962-keV level is, therefore,

as suggested by Détraz,³⁾ assigned to be the 1⁺ analogue state. Revised $\log (ft)$ values of the β decays to the 2_2^+ , 2_1^+ and 0^+ state, based on the previous β -decay data, are listed in column 6 in Table II.

4.2 The M3 transition in 24 Al

From the lifetime and the γ -decay branch the γ -decay partial half-life of the 1⁺ isomer in ²⁴Al was deduced to be 164 ± 7 msec. The reduced transition probability B(M3) obtained is

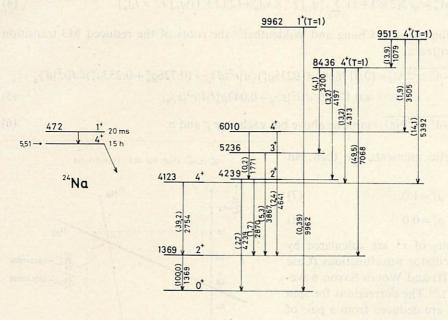


Fig. 5. Decay scheme of ²⁴Al and ^{24m}Al.

Table II. Decay branch of 24mAl.

		Decay branch (%)		log ft		
		Present	ref. 1	Present	ref. 1	Revised ¹⁾ value
γ decay	days to a same	78 ±3	93 ±2	JI-CHOND DIA	THE PARTIES OF THE PA	
β decay		22 ±3	7 ±2	Demanda Transport		
Daug	hter level					
(keV)	I^{π}		(%) Institution			
9962	$1^{+}(T=1)$	1.2±0.3		3.5 ± 0.1		
4239	2+	3.1 ± 2.0^{2}	0.7±0.2		6.07 ± 0.15	5.60±0.15
1369	2+	5.9 ±4.0 ²⁾	1.9±0.5		6.18 ± 0.15	5.71±0.15
0	0+	11.8 ± 6.3^{3}	4.4±1.2		6.01 ± 0.15	5.54±0.15

The log (ft) values in ref. 1 have been revised by using the present results; $E_x(1^+)=426$ keV, $T_{1/2}=128$ msec, $N_{\beta}(\text{total})=22\pm3\%$ and $N_{\beta}(1^+\to9962\text{ keV})=1.2\pm0.3\%$.

The β yield has been determined as the difference between the γ yields from and to the level.

³⁾ Remaining 11.8% has been assumed to feed the ground state.

B(M3:
$$1^+ \rightarrow 4^+$$
: ²⁴Al) = 264±13 (eħ/2Mc)² fm⁴. (2)

In the mirror nucleus 24 Na the 1^+ isomer with $T_{1/2} = 20.12 \pm 0.11$ msec¹⁾ is located at 472 keV and decays solely by the γ transition. The reduced M3 transition probability in 24 Na is

B(M3:
$$1^+ \rightarrow 4^+$$
: ²⁴Na) = $1046 \pm 6 (e\hbar/2Mc)^2 \text{ fm}^4$. (3)

Operator of M3 moment is expressed as

$$\mathbf{M}_{\mu}^{3} = \sqrt{3(2 \times 3 + 1)} \sum_{i=1}^{A} \{ g_{s_{i}} [Y^{2} \times s_{i}]_{\mu}^{3} + (2/(3 + 1)) g_{l_{i}} [Y^{2} \times l_{i}]_{\mu}^{3} \}. \tag{4}$$

By using the wavefunctions of Chung and Wildenthal⁵⁾ the roots of the reduced M3 transition probabilities are written as

$$\sqrt{\mathbf{B}(\mathbf{M3}: 1^{+} \rightarrow 4^{+}: {}^{24}\mathbf{A1})} = (0.0176g_{s}^{p} + 0.0235g_{l}^{p})\langle d|r^{2}|d\rangle_{p} + (0.726g_{s}^{n} + 0.253g_{l}^{n})\langle d|r^{2}|d\rangle_{n} + 0.176g_{s}^{p}\langle d|r^{2}|s\rangle_{p} - 0.043g_{s}^{n}\langle d|r^{2}|s\rangle_{n},$$
(5)

$$\sqrt{B(M3: 1^+ \rightarrow 4^+: {}^{24}Na)}$$
 = same as above but exchange p and n . (6)

The orbital magnetic moments are then put to be bare values;

$$g_1^p = 1.0,$$
 (7)

$$g_1^n = 0.0.$$
 (8)

The matrix elements of r^2 are calculated by using harmonic oscillator wavefunctions (Case I and II in Table III) and Woods-Saxon wavefunctions (Case III).⁶⁾ The corrections for spin magnetic moments are deduced from a pair of experimental data on B(M3) and eqs. (5)–(8). The isoscalar and isovector spin magnetic moments are reduced to $65\sim74\%$ and $79\sim86\%$, respectively (see Table III and Fig. 6). The core polarization theory explains well these reductions.⁷⁾ This has been previously pointed out by Arima et al.⁸⁾ for M3 form factor of 17 O.

Acknowledgement

Authors wish to thank Professors A. Arima, Y. Shida and Mr. T. Suzuki for the discussions.

9 vs. 9 Plot for M3 Transitions

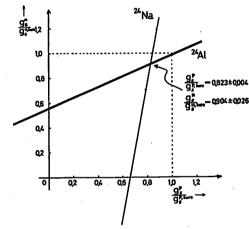


Fig. 6. g_1^p vs g_2^n plot for the M3 transitions in ²⁴Al and ²⁴Na. Case III in Table III corresponds to this figure.

They are grateful to Messrs. T. Kobayashi, K. Tsubaki, S. Konaka, T. Kurosawa and N. Kodama with whom the first stage of this

Table III. Corrections for spin magnetic moments in the M3 transitions in ²⁴Al and ²⁴Na.

	Experiment (%)			Theory ¹⁾ (%)
	Case I ²⁾	Case II ³⁾	Case III ⁴⁾	
$\delta g_s^0/g_s^0$, bare	-30.6 ± 2.1	-25.7 ± 2.3	-35.2 ± 2.0	-31.4
$\delta g_s^1/g_s^1$, bare	-21.0 ± 0.7	-16.4 ± 0.7	-14.4 ± 0.7	-20.6

¹⁾ ref. 7.

²⁾ Harmonic oscillator wavefunctions are used. Experimental charge radius $\langle r^2 \rangle^{1/2} = 3.035$ fm is adopted. $\hbar w = 12.00$ MeV.

³⁾ Harmonic oscillator wavefunctions are used. Experimental point radius $\langle r^2 \rangle^{1/2}$ =2.956 fm is adopted. Protonand neutron-finite size and center of mass motion are corrected. $\hbar w$ =12.65 MeV.

Woods-Saxon wavefunctions are used.

experiment was performed.

References

- P. M. Endt and C. van der Leun: Nucl. Phys. 214 (1973) 1.
- A. J. Armini, J. W. Sunier, R. M. Polichar and J. R. Richardson: Phys. Lett. 21 (1966) 335; A. J. Armini, J. W. Sunier and J. R. Richardson: Phys. Rev. 165 (1968) 1194.
- 3) C. Détraz: Nucl. Phys. A188 (1972) 513.

- Y. Yoshida, H. Nakayama, K. Nakai and T. Yamazaki: Nucl. Instrum. & Methods 138 (1976) 579.
- W. Chung and B. H. Wildenthal: private communication and in preparation.
- B. A. Brown, S. Massen and P. F. Hodyson: submitted to J. Phys.
- 7) B. A. Brown, T. A. Shibata, W. Chung and B. H. Wildenthal: in preparation.
- A. Arima, Y. Horikawa, H. Hyuga and T. Suzuki: Phys. Rev. Lett. 40 (1978) 1001.