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The 1* isomer in **Al is found to be located at 426 keV slightly different from
the previous assignment. The 1* isomer decays by f transitions with branching
ratio of 22+39% and by emission of a 426-keV y ray with 78--3%. The log (/1)
value of the § transition from 24™Al(1+) to the 9962-kVe level in 2*Mg is obtained
to be 3.5+0.1, indicating a super-allowed transition. The reduced transition
probability B(M3) of the 1*—4* jy transition is deduced to be 264--13
(efi/2Mc)*fm*. Correction for spin magnetic moments in M3 moments are

discussed.

[

Introduction

§1.

Isospin symmetry can be used to study the
nuclear structure of 0d-1s shell nuclei. As for
the 4=24 isobars the 4" ground states in
2*Al and 2*Na and the 4" state at 9515 keV
in **Mg constitute T=1 isospin triplet.!’ The
first-excited 17 isomer in **Al (7, =128 msec)
and in **Na (7,,=20 msec) are also two
members of isospin triplet,!” and the other
member should be located at around 9.94 MeV
in **Mg. This state is to be observed in the f8
decay of 2*™Al(1"). The weak 9962-keV 7y ray
with a half-life of 228490 msec has been
observed in the delayed-y-ray study after the
24Mg(p, n)**Al reaction,® and the 9962-keV
level has been proposed to be 17(7T=1). To
confirm this assignment from the log (/) value
the branching ratio of **Al(1™) to the 9962-
keV level should be measured.

The reduced transition probability of the
17 >4 M3y transition in 2*Al can be deduced
from the lifetime and the y decay branching
ratio of the 1* isomer. The M3 transition
probabilities in 2*Al and ?*Na will provide
information on the nuclear structure of the
A =24 nuclei.

At the first stage of the present work we
found that the 1% isomer in 2*Al is located at
426 keV, not at 439 keV as assigned pre-
viously.!” We then remeasured the f- and
y-decay branching ratios of 2*™Al(11).

RADIOACTIVITY 24mAl [from 2*Mg(p, n)]; measured I,, E, T,
Excitation functions, f- and y-branchings; deduced log (f), B(M3).
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§2. Experimental Procedure

The experiment was performed by using
26-MeV proton beam from the IMS (The
Institute of Medical Science, University of
Tokyo) cyclotron. *™Al was produced by the
24Mg(p, n)?*Al reaction. The target was **MgO
powder enveloped by a 2-um thick mylar foil.
The enrichment was more than 999%,. Carbon
contamination was carefully eliminated at and
around the target position so that the short-
lived  emitter '*N may not be produced by the
2C(p, n)'*N reaction. Gamma rays were
detected with a 40-cc Ge(Li) detector which
had the energy resolution of 2.7 keV at 1330
keV. Beta rays were detected by a counter
telescope of plastic scintillators described later.

To determine the energy level of the 17
isomer in 2*Al 1) time spectra and 2) excitation
functions of the delayed y rays were measured.
The f- and y-decay branching ratios were
determined by comparing the yield of the
T, =128 msec component of the fi rays with
the yield of the 426-keV y ray in the time
spectra. High-energy delayed 7y rays were
measured to study the f-decay branch of
Z4mA](17%) to its anologue state in **Mag.

2.1 Time spectra

The cyclotron beam was pulsed macroscopi-
cally by an external beam pulsing system.*
The proton beam passed through the pulsing
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system for only 50 msec out of 1 sec and was
deflected away for the succeeding 950 msec. A
saw-tooth generator was triggered synchro-
nously with the macroscopic beam pulse and its
pulse height was sampled when a signal from
the detectors was fed to the linear gate. The
energy of the y rays were selected by the
digital gate mode of PDP-11/40 computer. .

2.2 Excitation functions

Only delayed y rays were measured because
the delayed component of the 426-keV and the
439-keV. y rays were of current interest and
the prompt events of the 439-keV y rays which
came from the 5/2*—3/2* transition in ?*Na
must be omitted. The yields of the y rays were
measured at proton incident energies 17, 20, 23
and 26 MeV. Aluminum foils were used to
degrade the primary proton energy. The yields
of the y rays in each run were normalized by
integrating the proton beam current.

2.3 - and y-decay branching ratios

For the f-ray detection a counter telescope
of two plastic scintillators was used. The first
plastic scintillator was of 2-mm thickness with
7x7cm? area and the second one was of
3-mm thickness with a 2.5 cm radius.

The B-ray detection efficiency of the telescope
was defined by the solid angle of the second
counter. The efficiency of the Ge(Li) detector
at 426 keV was determined by measuring the
y rays from the y-ray sources !33Ba and !*2Eu.
The B counter and the Ge(Li) detector were
placed at 90° to the beam in the oposite sides
of the target at the distance of 10.5cm and
14.1 cm, respectively, from the target position.
The relative efficiency of the f-ray and the
y-ray detectors were also checked by measuring
the B ray and the y ray from the radioisotope
19870 A

‘The time spectrum of the g rays with all
energy was measured and was divided into the
T,;,=2.07 sec component and the T,,,=128
msec component. The time.spectrum of the
426-keV y ray was measured at the same
time. The yield of the B ray with T;,,=128
msec and the yield of the 426-keV y ray provide,
after the normalization of the detector effi-
ciencies, the - and y-decay branching ratio of
the 1* state in 24Al.
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2.4 High-energy delayed y rays

The most feasible way to determine the decay
branch of the'1* isomer to its analogue state
is to measure the high-energy delayed y rays.
Delayed y rays up to 14 MeV were measured
by the Ge(Li) detector. The y rays from the
radioisotope !52Eu and the 6143 keV prompt
y rays of the 3~ —0* transition in '°O accom-
panying the *°O(p, p’)!%0 reaction were used
for the energy calibration. The present data on
the energies of the y lines in 2*Mg succeeding
the B decay of the ground state of 24Al coin-
cided with the previous data!) within errors of
+3keV. Gamma-ray detection efficiency up
to 2 MeV of the Ge(Li) detector was obtained
by measuring the y rays from !3*Ba and !52Eu
and was extrapolated to the higher-energy
part. The known y decay branches of the
9515 keV and the 8436 keV levels in 2*Mg!’ were

" used to check the efficiency of the detector.

The differences between the present data and
the previous ones on these decay branches were
less than 8 %. :

§3. Experimental Results

3.1 Energy level of the 1* isomer in 2*Al

It has been reported that the 1* isomer in
24A] is located at 439 keV and its half-life is
129+ msec.”? However, care must be taken
since the 439-keV delayed y ray comes also
from 23Na which is fed through g decay of
23Mg produced by the 2*Mg(p, pn)**Mg reac- -
tion. In the delayed-y-ray spectrum there is a
peak at 426 keV as well as at 439 keV (see
Fig. 1). The time spectrum of the 426-keV y
ray showed an exponential decay with a half-
life of 128+ 6 msec while that of the 439-keV
y ray was flat. The latter seems to come solely
from the B decay of 2*Mg with T, =12 sec.

To ascertain that the 426-keV y ray belongs
to 24Al, the excitation functions were measured
(see Fig. 2). The excitation functions of the
delayed y rays in 2*Mg Treflect the yields of
24A1 and 24™Al with the reaction Q-values of
—14.6 MeV and —15.0 MeV, respectively. The
excitation function of the 426-keV y ray showed
the same feature as those of the y transitions in
24Mg, and therefore the 426-keV y ray ac-
companies the (p, n) reaction. On the other
hand the yield of the 439-keV y ray becomes
maximum at E,=24.5MeV which is about
3 MeV higher than the other y rays, reflecting
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Fig. 1. Time spectra of the 426-keV and 439-keV
y rays
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Fig. 2. Excitation functions of the delayed y rays.

the reaction Q-value of —16.5MeV of the
24Mg(p, pn)*>Al reaction. The 1* isomer in
**Al was therefore assigned to be located at
426 keV, not at 439 keV. Its half-life is 128+6
msec, in good agreement with the previous
value.
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3.2 B- and y-decay branching ratios
The p-ray time spectrum was fitted to a
function

A, exp (—0.693 x ¢/T))
+A, exp(—0.693%x¢/T,)+4;, (1)

where T,=128 msec and 7,=2.07sec (see
Fig. 3). From the yield of the f§ ray with T} ,=
128 msec and that of the 426-keV y ray the
f- and y-decay branching ratios of the 1*
isomer were obtained to be Ny;=22+39% and
N,=78+3Y%,. The error is mainly the systematic
one arising from low-energy f rays stopped in
the first plastic scintillator.

3.3 High-energy delayed y rays

The energy spectrum of the high-energy
delayed y rays is shown in Fig. 4. Intensities of
the y rays are listed in Table I. (see also Fig. 5).
Candidate for the analogue state of the 1%
isomer in **Al was looked for at around 9.94
MeV, and the only peak observed was located

at 9962+4 keV, which was the same peak as

Table I. High-energy delayed y rays.
Intensity
E, (keV) Location
Present ref. 1

1079 4,—4, 13.94+0.3 16.6+1.6
1117 10.740.3

1172 7.6+0.2

1298 5.44-0.2

1340 8.24-0.2

1369 2,—0 100.0+1.0 100.04-0.5
1468 22.14+0.4

1633 32402

1771 4,2, 0.24+0.2

2222 1.64-0.1

2630 4.94-0.3

2754 4,—2, 39.24-0.6 45 44
2870 2.—2, 1.740.3 1.54+04
3200 4,3 4.14-0.3 3.7+0.5
3505 4,—4, 1.94-0.2 24404
3867 3;—2, 53402 5.840.6
4197 43—2, 3.240.2 4.64-0.5
4239 2,—0 2.74+0.3 3.74+04
4313 434, 13.2+0.6 15.64-1.6
4641 4,-2, 24402 3.740.7
5392 4,—4, 14.14+0.9 21 42
6128 1.94-0.2

7068 4;—2, 49.54+-4.0 42 44
7629 1.04-0.2

7648 0.9+0.2

7850 0.840.2

9962 1 -0 0.39+0.1
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reported by Détraz.?) The f decay branch of
24mAJ(1%) is 22% and the branch to the 9962-
keV level amounts to 1.2+0.3% out of 22Y%.

§4. Discussions

4.1 B decay of the 1" isomer in **Al

The log (ft) value of the 1*—9962keV f
transition is 3.540.1, indicating a super-
allowed transition (see Table I). The log (/)
values of the super-allowed f transitions from
the ground state of 2*Al to the 9515-keV level
and the 8436-keV level are 3.48 and 3.99,"
respectively. The 9962-keV level is, therefore,

ENERGY(MeV) —
Fig. 4. High-energy delayed p-ray spectrum.

as suggested by Détraz,> assigned to be the 17°
analogue state. Revised log (f7) values of the
f decays to the 27, 27 and 0" state, based on
the previous -decay data, are listed in column
6 in Table II.

4.2 The M3 transition in **Al

From the lifetime and the y-decay branch
the y-decay partial half-life of the 1* isomer in
24A] was deduced to be 16447 msec. The
reduced transition probabilitiy B(M3) obtained
is
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Table 1I. Decay branch of 2*™Al.
Decay branch (%) log ft
Present ref. 1 Present ref. 1 Revised !
value
y decay 78 +3 93 +2
B decay 22 43 7 +2
Daughter level
(keV) 1=
9962 17(T=1) 1.240.3 3.540.1
4239 2. 3.14£2.0% 0.74-0.2 6.07+0.15 5.6040.15
1369 Ak 5.9+4+4.0% 1.940.5 6.1840.15 5.7140.15
0 0+ 11.8+£6.3% 44+1.2 6.014-0.15 5.544-0.15

Y The log (/1) values in ref. 1 have been revised by using the present results; E.(1*)=426 keV, T,,, =128 msec,

Ni(total)=22+43% and Ny(1*—9962 keV)=1.2--0.3%.
#)  The f yield has been determined as the difference between the y yields from and to the level.
3 Remaining 11.8% has been assumed to feed the ground state.
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B(M3: 1+ —4*: 2%A1) =264+ 13 (eh/2Mc)? fm*. ?)

In the mirror nucleus 24Na the 1* isomer with T;,=20.12+0.11-msec" is located at 472 keV
and decays solely by the y transition. The reduced M3 transition probability in 2*Na is

B(M3: 1* »4*: 24Na)=1046 + 6 (eh/2Mc)? fm*. 3)
Operator of M3 moment is expressed as
A
=/3@2x3+1) _E {g.[Y? x s+ Q@[3+ 1))g, [Y? x )3} @

By using the wavefunctions of Chung and Wlldenthals’ the roots of the reduced M3 transition
probabilities are written as

VBM3: 17547 %A = (00176g +0. ozssgf)<d|r2|d>,,+(o 726g" +0.253g7){d|r?|d ),
 +0.176g2¢d|r¥s),—0.043g%(d|r|sD,, Q)

/B(M3: 1*—4%: 2%Na)=same as above but exchange p and n. ‘ ©)

The orbital magnetic moments are then, put

@8 vs.9% Plot for M3 Transitions
to be bare values;

gb=10, | ) Lot *Na
g1=0.0. )

The matrix elements of r? are calculated by
using harmonic oscillator wavefunctions (Case
I and II in Table III) and Woods-Saxon wave-
functions (Case III).®’ The corrections for spin
magnetic moments are deduced from a pair of
experimental data on B(M3) and egs. (5)-(8).
The isoscalar and isovector spin magnetic :
moments are reduced to 65~74% and 79~ o oz o 7 .

86 %, respectively (see Table III and Fig. 6).-
The core polarization theory explains well
these reductions.” This has been previously
pointed out by Arima et al.¥ for M3 form
factor of 170.

Fig. 6. g2 vs g% plot for the M3 tranéitions in 24Al
and 24Na. Case III in Table III corresponds to this
figure.
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‘Table ITI.  Corrections for spin magnetic moments in the M3 transitions in 2*Al and 2*Na.

Experiment (%) Theory"? (%)
Case I Case II» Case ¥
ogllgd™r> —30.6£2.1 —25.742.3 —35.2420 —314
ogllgitee —21.0:+0.7 —16.440.7 —14.440.7 —20.6

D ref. 7.
2 Harmonic oscillator wavefunctions are used. Experimental charge radius {r?)>'/2=3.035 fm is adopted.
fiw=12.00 MeV.

3 Harmonic oscillator wavefunctions are used. Experimental point radius {r23)112=2.956 fm is adopted. Proton-
and neutron-finite size and center of mass motion are corrected. #w=12.65 MeV.
4 Woods-Saxon wavefunctions are used.
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