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Abstract. Theoretical calculations for magnetic moments of T=O collective states in N =  2 
nuclei are compared with recent experimental results. The J"= 2 + and 3 - states considered 
all have 0.49 < gtheor < 0.5 1 if the wavefunctions have pure T= 0 isospin. Isospin mixing 
increases the calculated l60 3-g factor by 9%, consistent with experiment, but has a much 
smaller effect on the 2' states. A reported negative experimental g factor for the 4' state in 
*'Ne is in complete disagreement with theory. 

1. Introduction 

It is well known (Kurath 1961, Sugimoto 1969, van Hienen and Glaudemans 1972, Zalm 
et al 1978, Raman et a1 1978) that for nuclei where the states have good isospin the 
isoscalar magnetic moment p o ( J )  = i ( p ( J ,  T, T, = T )  + p ( J ,  T, T, = - T ) )  can be directly 
related to the expectation value of the spin density 

where 

and where pp and p ,  are the free-nucleon moments, pp + p n  =0.880. For collective 
excitations built on J"=O+ ground states the angular momentum comes only from 
vibrational and rotational degrees of freedom and hence ( J 3 ) = ( L 3 )  or (S,)=O, which 
immediately implies that go = 4. The subject of this work concerns some interesting 
deviations from go = 4 obtained from theoretical calculations of the effects due to other 
nuclear degrees of freedom and compared with recent experimental results. The 
experimental g factors given in table 1 have been obtained only recently due to new 
techniques which have been developed (Randolf et aI 1973, van Middelkoop 1978) for 
measuring the moments of states with lifetimes of the order of lo-'* s. 

For states with good isospin the contributions to the moments from the single-particle 
degrees of freedom can be easily understood in terms of the ( S , )  expectation values. The 
single-particle values for T=$ states in odd-even nuclei are (s3)=4 for j=Z+ 4 and 
(s,) = - 4 + 1/(2Z+ 1) for j =  I -  1. The stretched two-particle configurations for T= 0 
states in odd-odd nuclei have (S3)=2(s3). A good example of the latter case is the 
deuteron J" = 1 + state which has gexp = 0.8574 or, from equation (l), ( S ,  )exp = 0.94 1 
which is quenched from the pure s-state value of ( S ,  ) = 1 due to the d-state admixture. In 
fact, all one- and two-particle configurations have ( S ,  )exp values which are systematically 
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Table 1. Experimental g factors and the (SJ)cxp matrix elements deduced from equation (1) 
compared with AN= 0 shell-model predictions. 

gexp gAN=o (S3 >exP (S3)AN=O 

'2C 2 +  0.5 10 0.054 
0 3- 0.556(4)' 0.5 11 (0.44(3))h 0.085 

20Ne 2' 0.54(4)b 0.5 10 0.21(2 1) 0.050 

6' 0.522 0.355 
8 +  0.534 0.722 

24Mg 2' 0.5 l(2)b 0.5 12 0.05(10) 0.063 
4 +  0.515 0.158 

28Si 2 +  0.56(9)d 0.513 0.3(5) 0.07 1 

4 +  -Oslo( 19)' 0.5 11 - 6.3(20) 0.111 

3 2 s  2' 0.47(9)e 0.495 - 0.2(5) - 0.024 
36Ar 2 +  0.49 1 - 0.047 
4 0 ~ a  3- 0.5 6( 13)' 0.5( 10) 

5 -  0.54( 0.5( 13) 

a Bennett (1980). 
Horstman et al(1975). 
' Speidel et a1 (1980). 

Eberhard et aI(1975). 
e Zalm et a1 (1979). 

Jain etal(1976). 
Hensler et a1 (1974). 
(SI) = 0.09(3) from equation (4) using the calculated Sg=O.O44 discussed in the text. 

quenched relative to the single-particle estimate due to configuration mixing within major 
oscillator shells (AN= 0) (Brown and Wildenthal 198 1 (unpublished), Wildenthal and 
Chung 1979) as well as higher-order mixing involving 2 p 2 h ,  4 p 4 h ,  . . . (AN> 2) 
configurations (Shimizu et af 1974, Arima and Hyuga 1979). Thus for T=O states, ( S , )  is 
determined by the competition between the collective component which has ( S ,  ) = 0 and 
the quenched two-particle component which has - 1 < ( S ,  ) < + 1. 

It is important to remember that equation (1) is not valid if the wavefunctions do not 
have good isospin or if extra-nucleon degrees of freedom are important. It will be shown 
below that isospin mixing effects are important for the l60 J" = 3 -  state. The calculated 
meson-exchange corrections are small for the isoscalar moments (the one-pion-exchange 
current contributes only to the isovector magnetic moment operator) and will be ignored 
here (see Hyuga et af (1980) and table I1 of Raman et aZ(1978)). 

Assuming that the wavefunctions have pure T= 0 isospin, equation (1) has been used 
to extract (S,) , , ,  from the experimental g factors (see table 1). These are compared with 
shell-model calculations involving full configuration mixing within major oscillator shells 
(S3)m=o: (lp)' with the Cohen-Kurath (1965) interaction for "C, (lp)- '  (Id, 2s)' with 
the Millener-Kurath (1970) interaction for l60 and (Id, 2s>" with the Chung-Wildenthal 
interactions (Chung 1976, Wildenthal 1977) for the sd-shell nuclei. For the 2+ states 
considered (S3)m=0 GO.1, and this is in agreement with experiment. However, except for 
24Mg, the experimental error bars are too large for any discriminating test of the theory 
and new measurements of the g factors with about 1% precision are needed. 

The A N = O  predictions for the 20Ne ground-state band are interesting. In contrast to 
(S , ) , , ,  = 0 for all J values obtained with SU3 cluster wavefunctions (see, e.g., Strottman 
1972), the A N = O  shell-model values increase as J becomes larger and reach almost the 
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stretched two-particle value for the 8' state. The experimental value (Speidel et al 1980) 
for the 4' state is completely inconsistent with these predictions and in fact has an ( S , )  
value an order of magnitude larger than even a two-particle configuration. Confirmation of 
this experimental result is essential. 

The value of (S,),,, =0.44 f 0.03 from the l6O 3 -  g-factor measurement at Oxford 
(Bennett 1980) is in fair agreement with that expected for the simplest shell-model 
configuration (S3)[(p1,2)-'(ds,2)] = 0.33. However, it is well known from the large 
0'-+3-B(E3) value that this state is collective. Part of this collectivity comes out of the 
lp-lh (p)-' (sd)' calculation which gives (S,)m,=O =0.085 and additional AN= 3, lp-lh 
and 3 p 3 h  mixing which is needed to reproduce the B(E3) value might be expected to 
further reduce ( S , ) .  Thus (S,),,, for the l6O 3 -  state is in disagreement with theoretical 
expectations. 

2. Effects of isospin mixing 

It will now be shown that the discrepancy in l60 mentioned above can be understood as an 
effect of isospin mixing. First the two-level mixing of the T=O and 1 J " = 3 -  
configurations [(p 1,2)- 1(ds,2)] will be considered. In perturbation theory the magnetic 
moment of the lowest 3 -  states is given by 

(3 3 4 3  -) = (3 - ~ = O l p l 3 - ~ = 0 )  + ap 
where 

and equation (1) must be modified to 

4n .I 
)"*(.IT= lllMlllJT=O) 

3 ( J +  1)(2J+ 1) 

+ [ J ( J +  l )+ jh ( jh  + I)-jp(jp -t l)kl(jh>}pN (6) 

where g l ( j ) =  f(g(nj) -g(vj)) are the single-particle isovector g factors. The Schmidt 
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values are g,(ld5/2)= 1.342 and g , ( l~ , ,~ )=-O.899  and hence (3-T= 1Ip/3-T=0) = 
- 2 . 9 0 , ~ ~ .  Alternatively, this off-diagonal matrix element can be related to the B(M1) 
between these two states: 

I ( JT=l / ,U~JT=O)~= ( - - J: l )  1'2(B(Ml))1/2. (7) 

The experimental value for the transition between the 13.26 MeV T= 1 and 6.13 MeV 
T=O 3- states is B(M1)=(2.16 kO.35)p: (Ajzenberg-Selove 1977, Gorodetzky et a1 
1968), which gives / (3-T= llpl3-T=0)/=(2.6 k00.2)pN in fair agreement with the 
( l ~ ~ , ~ ) -  '( ld5/2) calculation given above. 

We will assume that the isospin mixing is due to the Coulomb interaction Vc between 
two protons. In the one-particle-one-hole model the off-diagonal matrix element 
(T=OiVcIT= 1) can be related t o A =  15, 16 and 17 binding energies (E=-BE): 

E(16FJ, T= 1 ) = & ( 7 1 j p ) - E ( V j h ) + ( V , ) + E ( 1 6 0  GS) ( 8 4  

E(16NJ, T= l)=E(vjp)-&(jrijh) + ( V s )  +E(160 GS) 

E(160J, T= I)=t(E(Zjp)-&(Vjh) + &(Vjp)-&(Zjh) f (Vs) + &( V C )  +E(160 G S )  

( J ,  T=OlV,IJ, T = 1 ) =  - $ ( A E ~  + ( V c ) )  

(8b) 

( W  

( 8 4  
where 

and 

& ( j h ) = E ( 1 6 0 ~ S ) - E ( A =  15, T=i).  (8.f 1 
( Vs ) is the strong isospin-conserving (T, -independent) particle-hole matrix element and 
( Vc ) is the Coulomb particle-hole matrix element between two protons. First equations 
(8e) and (8f) can be used to obtain ~ ( j ) ,  then these are put into equations (8a) or (8b) to 
obtain ( V , )  and finally E and ( V , )  are put into equation (8c) to obtain ( V c ) .  The 
numerical values obtained from the experimental binding energies (Wapstra and Bos 1977, 
Ajzenberg-Selove 1976, 1977) of A =  15 A-, A =  17 $' and A =  16 3- states are 
E ( Z ~ ~ , ~ ) - - E ( V ~ ~ / ~ ) =  3.54 MeV, ~ ( 7 1 p ~ , ~ ) - & ( ~ p ~ , ~ ) =  3.54 MeV, ( VS)(l6F)= 1.87 MeV, 
( V,)(16N)= 1.95 MeV and ( VS)(l6O) + ;( V c ) =  1.73 MeV. The values of (V , )  obtained 
from 16F and 16N are inconsistent due to an effect which will be discussed below. The 
average value will be used to obtain (V,) = -0.36 MeV. Notice that empirically Ael z 0 
in equation ( 8 4 ,  leaving only (V,)  to contribute to the isospin-mixing matrix element 
(3-T=OlVc13-T= 1)=+0.18 MeV. 

Thus in the two-level mixing approximation the matrix elements required for 6,u can be 
obtained from experimental quantities and the sign can be deduced from the ( ~ ~ , ~ ) - l ( d ~ / ~ )  
calculation. From equation (3) the result for mixing of the 13.26 MeV T= 1 and 6.13 MeV 
T=O 3 -  statesis(lhEl=7.1 MeV) 

- 2( + 0.1 8)(- 2.6) 
6 p  = /.LN =0.13pu,. 

7.1 (9) 

This, together with the A N = O  value for the T=O component (3-T=O/p13-T=0) = 1.53, 
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gives (3-lpu/3-)= 1 . 6 6 , ~ ~  or g(3-)=0.555, which is in remarkably good agreement with 
experiment. 

Relationships between masses and isospin mixing were first used by Braithwaite et a1 
(1972) to estimate isospin mixing for the 12C 1 + states and the relation given in their paper 
is equivalent to using only the matrix element ( V , )  obtained from the neutron-rich nucleus 
(16N in this case) and ignoring information about the proton-rich nucleus (16F in this case). 
Similar relationships have been used since then (see, e.g., Sato and Zamick 1977, Shlomo 
and Wagner 1978). 

The reason for the difference in ( V , )  between 16N and 16F can be understood as an 
implicit effect of the Coulomb interaction in the model space (Lawson 1978). For 16F the 
Id,,, proton single-particle wavefunction is bound by only 0.6 MeV while for 16N the Id,,, 
neutron single-particle wavefunction is bound by 4.14 MeV. For a delta-function residual 
interaction the residual particle-hole interaction is proportional to the integral 

and the large spatial extent of the proton orbit in 16F due to its small binding energy 
reduces the value of this integral compared with that for 16N. The I6F to I6N ratio for this 
integral using Woods-Saxon wavefunctions is 0.90 compared with the empirical value of 
1.87/1.95=0.96 for the 3- level (and 1.45/1.65 =0.95 for the 2- level). (For the (lplI2)-'  
(2s,/,) J n  = 0 -  and 1 - levels the calculation gives 0.76 compared with the empirical values 
of 0.65/0.90 = 0.72 and 0.85/1.18 = 0.72, respectively.) The discrepancies between theory 
and experiment may be due to the finite range of the residual interaction, but the effect is 
understood qualitatively. In this model ( V , )  for the middle nucleus l60 should be about 
the average of the values for 16N and I6F as we have assumed above. 

In the limit of an infinitely long-range Coulomb interaction it is easy to see that 
Acl  = (V , )  ( ~ 0 . 3 6  MeV) and there would be no isospin mixing. As, is nearly vanishing in 
this case partly because of the small binding energy of the d5/2 orbit. In fact, for this reason 
the isospin matrix elements of the (lplI2)-'  ( 2 ~ , / ~ )  J"=O- and 1- states should even be 
larger (about 0.40 MeV) since Acl =-0.37 MeV for the difference between the lp,,, and 
2s displacement energies. 

The effects due to more complicated structures for the lowest 3- states as well as the 
effects due to isospin mixing with more highly excited T= 1 3- states have been considered 
using the relation 

The wavefunctions were obtained by allowing complete configuration mixing within the 
model space ( 1pl12, Id,,,, 2s1/2)4 (ZBM) with the Reehal-Wildenthal(l973) interaction and 
a separate calculation within the model space (lp)- '  (Id,  2s)' (PHSD) with the 
Millener-Kurath (1970) interaction. 

In both model spaces the sum was found to be dominated by more than 90% from the 
contribution from the lowest T= 1 3-  state. The theoretical B(M1) values between the 
lowest T=O and T= 1 states are 1 .25~ ;  for the PHSD model space and 2.30,~; for the 
ZBM model space compared with the ( l ~ ~ / ~ ) - ' ( l d ~ , ~ )  value of 2 .68~ ;  from equations (6) 
and (7) and the experimental value of (2.16 f 0.35)p;. In the PHSD model space the M1 
matrix element is small due to destructive interference between the large ( ~ ~ / , ) - - ~ ( d ~ , , )  
component and the relatively small (pu2)-'(d5/,) and ( P ~ / ~ ) -  1(d3,2) components. These 
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results indicate that the Millener-Kurath interaction induces somewhat too large an 
admixture of the lp,,, and ld,,, orbits into the 3- wavefunctions. 

Recently the Oxford shell-model code has been extended to calculate two-body 
transition densities and two-body Coulomb matrix elements (Brown et a1 198 1 ,  
unpublished). The two-body Coulomb matrix elements were calculated with harmonic- 
oscillator wavefunctions and the single-particle energies were taken as adjustable 
parameters to fit the A = 15 and A = 17 displacement energies. The isospin-mixing matrix 
element was calculated to be 0.15 MeV in the ZBM model space and 0.12 MeV in the PHSD 
space, to be compared with the (lp,/2)-1(1d5/2) value obtained above of 0.18 MeV. 
Although the calculations can be criticised because harmonic-oscillator wavefunctions 
were used for the two-body Coulomb matrix elements, the reductions relative to 0.18 MeV 
are expected because of the more complex structure of the 3- states in these model spaces. 
The moment correction becomes Sp=0.09pu, when a value of 0.12 MeV is used for the 
matrix element V ,  in equation (3) (together with the experimental off-diagonal M 1 matrix 
element), which is still in  fair agreement with the experimental value of dp = 0.135 f 0.012. 

The quantity Sp is rather large for the 3- state in l 6 0  because of the strong 
(T= l)-t(T=O) M1 strength of(1.2 i 0.2) Wu, the relatively small gap (7.1 MeV) between 
the states and the large isospin-mixing matrix element. As discussed above, normally the 
isospin matrix element would be smaller because of a cancellation between the terms 
involving A&, and ( V c )  in equation (8d). For example, in 12C A&, =0.24 MeV from the 
A = 11 and 13 binding energies and (V,)  should have about the same value of -0.36 MeV 
and thus (T=O/V,/T= 1 ) ~ 0 . 0 6 .  Also the (T= l)-i(T=O) strength is smaller 
((0.34 f 0.06) Wu for "C) and A& is larger (11.7 MeV) and hence lSglz0.007 for the 2' 
state in 12C. From the experimental properties of the 4 +  T= 1 state in ,'Ne (Fifield er a1 
1980), equation (9) takes the form ~Sp~=2(0.10)(1.7)/(6.8)=0.050 or iSg/=O.O12 (an 
isospin-mixing matrix element of 100 keV was assumed), which is far too small to account 
for the experimental results reported by Speidel er a1 (1980). Isospin-mixing effects on 
other positive-parity states should be similar to these two examples. For the 3- and 5 -  
states in 40Ca the isospin-mixing effects should again be large since As, = 0, but the present 
experimental errors are an order of magnitude too large to be sensitive to this effect. 

3. Conclusions 

Tn conclusion, shell-model calculations for the collective 2' and 3- states in N = Z  nuclei 
give small values for (S,) consistent with the collective-model assumption that (S,) = 0. 
Since the meson-exchange corrections are small for the isoscalar magnetic operator it is 
expected that g= 4 for the collective states in N = Z  nuclei. Experimental results for 2' 
states are in agreement with this expectation, but at present the experimental errors are too 
large to offer a discriminating test of the theory. The g factor of the l60 3- state at 
6.13 MeV excitation has been measured an order of magnitude more precisely than any 
other collective state and the experimental g factor is 10% larger than g=  4. This deviation 
is found to be due to isospin mixing with the T= 1 3- state at 13.26 MeV excitation. which 
is important because of the large (3-, T= 1)-+(3-, T=O) MI transition strength and the 
large isospin-mixing matrix element. For the positive-parity states the isospin mixing 
effects are estimated to be smaller, of the order of /Sg( GO.01. The calculated values for 
(S,) in the ground-state band of 2oNe increase with increasing J up to (S, )  = 0.72 for the 
8' state. The shell-model g factor is then gm=o(8')=0.534 compared with the collective 
value of 4, which would be interesting to confirm experimentally. The measured value of 
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g(”Ne, 4 ’) = -0.10 f 0.19 (Speidel et al 1980) is completely inconsistent with existing 
theory and a confirmation of this result is essential. 
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