Magnetic moments of T=0 states in N=Z nuclei

B A Brown

Nuclear Physics Laboratory, Oxford University, Keble Road, Oxford OX1 3RH, UK

Received 10 November 1981

Abstract. Theoretical calculations for magnetic moments of T=0 collective states in N=Z nuclei are compared with recent experimental results. The $J^{\pi}=2^+$ and 3^- states considered all have $0.49 < g_{\text{theor}} < 0.51$ if the wavefunctions have pure T=0 isospin. Isospin mixing increases the calculated ¹⁶O 3^-g factor by 9%, consistent with experiment, but has a much smaller effect on the 2^+ states. A reported negative experimental g factor for the 4^+ state in ²⁰Ne is in complete disagreement with theory.

1. Introduction

It is well known (Kurath 1961, Sugimoto 1969, van Hienen and Glaudemans 1972, Zalm *et al* 1978, Raman *et al* 1978) that for nuclei where the states have good isospin the isoscalar magnetic moment $\mu_0(J) = \frac{1}{2}(\mu(J, T, T_z = T) + \mu(J, T, T_z = -T))$ can be directly related to the expectation value of the spin density

$$g_0(J) = \mu_0(J)/J = \frac{1}{2} + (\mu_p + \mu_n - \frac{1}{2})\langle S_3 \rangle/J$$
(1)

where

$$\langle S_3 \rangle = \left\langle J, M = J \right| \sum_{i} s_{3i} \left| J, M = J \right\rangle$$

and where μ_p and μ_n are the free-nucleon moments, $\mu_p + \mu_n = 0.880$. For collective excitations built on $J^{\pi} = 0^+$ ground states the angular momentum comes only from vibrational and rotational degrees of freedom and hence $\langle J_3 \rangle = \langle L_3 \rangle$ or $\langle S_3 \rangle = 0$, which immediately implies that $g_0 = \frac{1}{2}$. The subject of this work concerns some interesting deviations from $g_0 = \frac{1}{2}$ obtained from theoretical calculations of the effects due to other nuclear degrees of freedom and compared with recent experimental results. The experimental g factors given in table 1 have been obtained only recently due to new techniques which have been developed (Randolf *et al* 1973, van Middelkoop 1978) for measuring the moments of states with lifetimes of the order of 10^{-12} s.

For states with good isospin the contributions to the moments from the single-particle degrees of freedom can be easily understood in terms of the $\langle S_3 \rangle$ expectation values. The single-particle values for $T = \frac{1}{2}$ states in odd-even nuclei are $\langle s_3 \rangle = \frac{1}{2}$ for $j = l + \frac{1}{2}$ and $\langle s_3 \rangle = -\frac{1}{2} + 1/(2l+1)$ for $j = l - \frac{1}{2}$. The stretched two-particle configurations for T = 0 states in odd-odd nuclei have $\langle S_3 \rangle = 2\langle s_3 \rangle$. A good example of the latter case is the deuteron $J^{\pi} = 1^+$ state which has $g_{exp} = 0.8574$ or, from equation (1), $\langle S_3 \rangle_{exp} = 0.941$ which is quenched from the pure s-state value of $\langle S_3 \rangle = 1$ due to the d-state admixture. In fact, all one- and two-particle configurations have $\langle S_3 \rangle_{exp}$ values which are systematically

0305-4616/82/050679 + 07 \$02.00 © 1982 The Institute of Physics

		g exp	$g_{\Delta N=0}$	$\langle S_3 angle_{ ext{exp}}$	$\langle S_3 \rangle_{\Delta N=0}$
¹² C	2+		0.510		0.054
¹⁶ O	3-	0.556(4) ^a	0.511	$(0.44(3))^{h}$	0.085
²⁰ Ne	2 +	$0.54(4)^{6}$	0.510	0.21(21)	0.050
	4 +	$-0.10(19)^{c}$	0.511	-6.3(20)	0.111
	6+		0.522		0.355
	8 +		0.534		0.722
²⁴ Mg	2 +	$0.51(2)^{b}$	0.512	0.05(10)	0.063
	4 +		0.515		0.158
²⁸ Si	2 +	$0.56(9)^{d}$	0.513	0.3(5)	0.071
³² S	2 +	$0.47(9)^{e}$	0.495	-0.2(5)	-0.024
³⁶ Ar	2 +		0.491	~ /	-0.047
⁴⁰ Ca	3-	$0.56(13)^{f}$		0.5(10)	
	5-	$0.54(10)^{g}$		0.5(13)	

Table 1. Experimental g factors and the $\langle S_3 \rangle_{exp}$ matrix elements deduced from equation (1) compared with $\Delta N = 0$ shell-model predictions.

^a Bennett (1980).

^b Horstman *et al* (1975).

^c Speidel et al (1980).

^d Eberhard *et al* (1975).

^e Zalm et al (1979).

^f Jain et al (1976).

^g Hensler et al (1974).

^h $\langle S_3 \rangle = 0.09(3)$ from equation (4) using the calculated $\delta g = 0.044$ discussed in the text.

quenched relative to the single-particle estimate due to configuration mixing within major oscillator shells ($\Delta N=0$) (Brown and Wildenthal 1981 (unpublished), Wildenthal and Chung 1979) as well as higher-order mixing involving 2p-2h, 4p-4h,... ($\Delta N \ge 2$) configurations (Shimizu *et al* 1974, Arima and Hyuga 1979). Thus for T=0 states, $\langle S_3 \rangle = 0$ and the quenched two-particle component which has $-1 < \langle S_3 \rangle < +1$.

It is important to remember that equation (1) is not valid if the wavefunctions do not have good isospin or if extra-nucleon degrees of freedom are important. It will be shown below that isospin mixing effects are important for the ¹⁶O $J^{\pi} = 3^{-}$ state. The calculated meson-exchange corrections are small for the isoscalar moments (the one-pion-exchange current contributes only to the isovector magnetic moment operator) and will be ignored here (see Hyuga *et al* (1980) and table II of Raman *et al* (1978)).

Assuming that the wavefunctions have pure T=0 isospin, equation (1) has been used to extract $\langle S_3 \rangle_{exp}$ from the experimental g factors (see table 1). These are compared with shell-model calculations involving full configuration mixing within major oscillator shells $\langle S_3 \rangle_{\Delta N=0}$: (1p)⁸ with the Cohen-Kurath (1965) interaction for ¹²C, (1p)⁻¹ (1d, 2s)¹ with the Millener-Kurath (1970) interaction for ¹⁶O and (1d, 2s)ⁿ with the Chung-Wildenthal interactions (Chung 1976, Wildenthal 1977) for the sd-shell nuclei. For the 2⁺ states considered $\langle S_3 \rangle_{\Delta N=0} \leq 0.1$, and this is in agreement with experiment. However, except for ²⁴Mg, the experimental error bars are too large for any discriminating test of the theory and new measurements of the g factors with about 1% precision are needed.

The $\Delta N=0$ predictions for the ²⁰Ne ground-state band are interesting. In contrast to $\langle S_3 \rangle_{SU3} = 0$ for all J values obtained with SU3 cluster wavefunctions (see, e.g., Strottman 1972), the $\Delta N=0$ shell-model values increase as J becomes larger and reach almost the

stretched two-particle value for the 8⁺ state. The experimental value (Speidel *et al* 1980) for the 4⁺ state is completely inconsistent with these predictions and in fact has an $\langle S_3 \rangle$ value an order of magnitude larger than even a two-particle configuration. Confirmation of this experimental result is essential.

The value of $\langle S_3 \rangle_{exp} = 0.44 \pm 0.03$ from the ¹⁶O 3⁻ g-factor measurement at Oxford (Bennett 1980) is in fair agreement with that expected for the simplest shell-model configuration $\langle S_3 \rangle [(p_{1/2})^{-1}(d_{5/2})] = 0.33$. However, it is well known from the large $0^+ \rightarrow 3^- B(E3)$ value that this state is collective. Part of this collectivity comes out of the 1p-1h (p)⁻¹ (sd)¹ calculation which gives $\langle S_3 \rangle_{\Delta N=0} = 0.085$ and additional $\Delta N=3$, 1p-1h and 3p-3h mixing which is needed to reproduce the B(E3) value might be expected to further reduce $\langle S_3 \rangle$. Thus $\langle S_3 \rangle_{exp}$ for the ¹⁶O 3⁻ state is in disagreement with theoretical expectations.

2. Effects of isospin mixing

It will now be shown that the discrepancy in ¹⁶O mentioned above can be understood as an effect of isospin mixing. First the two-level mixing of the T=0 and $1 J^{\pi}=3^{-1}$ configurations $[(p_{1/2})^{-1}(d_{5/2})]$ will be considered. In perturbation theory the magnetic moment of the lowest 3⁻ states is given by

$$\langle 3^{-}|\mu|3^{-}\rangle = \langle 3^{-}T = 0|\mu|3^{-}T = 0\rangle + \delta\mu$$
⁽²⁾

where

$$\delta\mu = -2 \frac{\langle 3^{-}T = 0 | V_{\rm C} | 3^{-}T = 1 \rangle}{|\Delta E|} \langle 3^{-}T = 1 | \mu | 3^{-}T = 0 \rangle \tag{3}$$

and equation (1) must be modified to

$$g_0(J) = g(J) - \delta g = \frac{1}{2} + (\mu_p + \mu_n - 1) \langle S_3 \rangle / J$$
(4)

where $\delta g = \delta \mu / J$. For the derivation of the following formulae it is convenient to write the 1p-1h wavefunctions in proton-neutron formalism:

$$|j_{h}^{-1}j_{p}, J, T=0, {}^{16}\text{O}\rangle = -(|(\pi j_{h})^{-1}(\pi j_{p})J\rangle - |(\nu j_{h})^{-1}(\nu j_{p})J\rangle)/\sqrt{2}$$

$$|j_{h}^{-1}j_{p}, J, T=1, {}^{16}\text{F}\rangle = |(\nu j_{h})^{-1}(\pi j_{p})J\rangle$$

$$|j_{h}^{-1}j_{p}, J, T=1, {}^{16}\text{O}\rangle = (|(\pi j_{h})^{-1}(\pi j_{p})J\rangle + |(\nu j_{h})^{-1}(\nu j_{p})J\rangle)/\sqrt{2}$$

$$|j_{h}^{-1}j_{p}, J, T=1, {}^{16}\text{N}\rangle = |(\pi j_{h})^{-1}(\nu j_{p})J\rangle.$$
(5)

One can show that

$$\langle JT = 1 | \mu | JT = 0 \rangle$$

= $\left(\frac{4\pi}{3} \frac{J}{(J+1)(2J+1)}\right)^{1/2} \langle JT = 1 ||M1|| JT = 0 \rangle$
= $\frac{-1}{2(J+1)} \left\{ [J(J+1) + j_{p}(j_{p}+1) - j_{h}(j_{h}+1)]g_{1}(j_{p}) + [J(J+1) + j_{h}(j_{h}+1) - j_{p}(j_{p}+1)]g_{1}(j_{h}) \right\} \mu_{N}$ (6)

where $g_1(j) = \frac{1}{2}(g(\pi j) - g(\nu j))$ are the single-particle isovector g factors. The Schmidt

values are $g_1(1d_{5/2}) = 1.342$ and $g_1(1p_{1/2}) = -0.899$ and hence $\langle 3^-T = 1|\mu|3^-T = 0 \rangle = -2.90\mu_N$. Alternatively, this off-diagonal matrix element can be related to the B(M1) between these two states:

$$|\langle JT=1|\mu|JT=0\rangle| = \left(\frac{4\pi}{3}\frac{J}{J+1}\right)^{1/2} (B(M1))^{1/2}.$$
 (7)

The experimental value for the transition between the 13.26 MeV T=1 and 6.13 MeV T=0 3⁻ states is $B(M1) = (2.16 \pm 0.35)\mu_N^2$ (Ajzenberg-Selove 1977, Gorodetzky *et al* 1968), which gives $|\langle 3^-T=1|\mu|3^-T=0\rangle| = (2.6 \pm 0.2)\mu_N$ in fair agreement with the $(1p_{1/2})^{-1}(1d_{5/2})$ calculation given above.

We will assume that the isospin mixing is due to the Coulomb interaction V_c between two protons. In the one-particle-one-hole model the off-diagonal matrix element $\langle T=0|V_c|T=1\rangle$ can be related to A=15, 16 and 17 binding energies (E=-BE):

$$E({}^{16}\mathrm{F}J, T=1) = \varepsilon(\pi j_p) - \varepsilon(\nu j_b) + \langle V_s \rangle + E({}^{16}\mathrm{O}\,\mathrm{Gs})$$
(8a)

$$E({}^{16}\mathrm{N}J, T=1) = \varepsilon(\nu j_{\mathrm{p}}) - \varepsilon(\pi j_{\mathrm{h}}) + \langle V_{\mathrm{s}} \rangle + E({}^{16}\mathrm{O}\,\mathrm{Gs})$$
(8b)

$$E({}^{16}\text{O}J, T=1) = \frac{1}{2}(\varepsilon(\pi j_{\text{p}}) - \varepsilon(\nu j_{\text{h}}) + \varepsilon(\nu j_{\text{p}}) - \varepsilon(\pi j_{\text{h}}) + \langle V_{\text{s}} \rangle + \frac{1}{2} \langle V_{\text{C}} \rangle + E({}^{16}\text{O Gs})$$
(8c)

$$\langle J, T=0|V_{\rm C}|J, T=1\rangle = -\frac{1}{2}(\Delta\varepsilon_1 + \langle V_{\rm C}\rangle)$$
(8d)

where

$$\Delta \varepsilon_{1} = (\varepsilon(\pi j_{p}) - \varepsilon(\nu j_{p})) - (\varepsilon(\pi j_{h}) - \varepsilon(\nu j_{h}))$$

$$\varepsilon(j_{p}) = E(A = 17, T = \frac{1}{2}) - E(^{16}\text{O gs})$$
(8e)

and

$$\varepsilon(j_{\rm h}) = E({}^{16}{\rm O~Gs}) - E(A = 15, T = \frac{1}{2}).$$
 (8f)

 $\langle V_s \rangle$ is the strong isospin-conserving $(T_z$ -independent) particle-hole matrix element and $\langle V_C \rangle$ is the Coulomb particle-hole matrix element between two protons. First equations (8e) and (8f) can be used to obtain $\varepsilon(j)$, then these are put into equations (8a) or (8b) to obtain $\langle V_s \rangle$ and finally ε and $\langle V_s \rangle$ are put into equation (8c) to obtain $\langle V_C \rangle$. The numerical values obtained from the experimental binding energies (Wapstra and Bos 1977, Ajzenberg-Selove 1976, 1977) of $A = 15 \frac{1}{2}^-$, $A = 17 \frac{5}{2}^+$ and $A = 16 3^-$ states are $\varepsilon(\pi d_{5/2}) - \varepsilon(\nu d_{5/2}) = 3.54$ MeV, $\varepsilon(\pi p_{1/2}) - \varepsilon(\nu p_{1/2}) = 3.54$ MeV, $\langle V_s \rangle$ (¹⁶F)=1.87 MeV, $\langle V_s \rangle$ (¹⁶F)=1.95 MeV and $\langle V_s \rangle$ (¹⁶O) + $\frac{1}{2}\langle V_C \rangle = 1.73$ MeV. The values of $\langle V_s \rangle$ obtained from ¹⁶F and ¹⁶N are inconsistent due to an effect which will be discussed below. The average value will be used to obtain $\langle V_C \rangle$ to contribute to the isospin-mixing matrix element $\langle 3^-T=0|V_C|3^-T=1\rangle = +0.18$ MeV.

Thus in the two-level mixing approximation the matrix elements required for δu can be obtained from experimental quantities and the sign can be deduced from the $(p_{1/2})^{-1}(d_{5/2})$ calculation. From equation (3) the result for mixing of the 13.26 MeV T=1 and 6.13 MeV $T=0.3^{-1}$ states is $(|\Delta E|=7.1 \text{ MeV})$

$$\delta\mu = \frac{-2(+0.18)(-2.6)}{7.1}\,\mu_{\rm N} = 0.13\,\mu_{\rm N}.\tag{9}$$

This, together with the $\Delta N = 0$ value for the T = 0 component $\langle 3^{-}T = 0 | \mu | 3^{-}T = 0 \rangle = 1.53$,

gives $\langle 3^{-}|\mu|3^{-}\rangle = 1.66\mu_{N}$ or $g(3^{-}) = 0.555$, which is in remarkably good agreement with experiment.

Relationships between masses and isospin mixing were first used by Braithwaite *et al* (1972) to estimate isospin mixing for the ¹²C 1⁺ states and the relation given in their paper is equivalent to using only the matrix element $\langle V_s \rangle$ obtained from the neutron-rich nucleus (¹⁶N in this case) and ignoring information about the proton-rich nucleus (¹⁶F in this case). Similar relationships have been used since then (see, e.g., Sato and Zamick 1977, Shlomo and Wagner 1978).

The reason for the difference in $\langle V_s \rangle$ between ¹⁶N and ¹⁶F can be understood as an implicit effect of the Coulomb interaction in the model space (Lawson 1978). For ¹⁶F the $Id_{5/2}$ proton single-particle wavefunction is bound by only 0.6 MeV while for ¹⁶N the $Id_{5/2}$ neutron single-particle wavefunction is bound by 4.14 MeV. For a delta-function residual interaction the residual particle—hole interaction is proportional to the integral

$$\int R^{2}_{1p_{1/2}}(r)R^{2}_{1d_{5/2}}(r)r^{2} dr$$

and the large spatial extent of the proton orbit in ¹⁶F due to its small binding energy reduces the value of this integral compared with that for ¹⁶N. The ¹⁶F to ¹⁶N ratio for this integral using Woods–Saxon wavefunctions is 0.90 compared with the empirical value of 1.87/1.95 = 0.96 for the 3⁻ level (and 1.45/1.65 = 0.95 for the 2⁻ level). (For the $(1p_{1/2})^{-1}$ ($2s_{1/2}$) $J^{\pi} = 0^{-}$ and 1⁻ levels the calculation gives 0.76 compared with the empirical values of 0.65/0.90 = 0.72 and 0.85/1.18 = 0.72, respectively.) The discrepancies between theory and experiment may be due to the finite range of the residual interaction, but the effect is understood qualitatively. In this model $\langle V_s \rangle$ for the middle nucleus ¹⁶O should be about the average of the values for ¹⁶N and ¹⁶F as we have assumed above.

In the limit of an infinitely long-range Coulomb interaction it is easy to see that $\Delta \varepsilon_1 = \langle V_c \rangle$ (≈ 0.36 MeV) and there would be no isospin mixing. $\Delta \varepsilon_1$ is nearly vanishing in this case partly because of the small binding energy of the d_{5/2} orbit. In fact, for this reason the isospin matrix elements of the $(1p_{1/2})^{-1}$ ($2s_{1/2}$) $J^{\pi} = 0^{-}$ and 1^{-} states should even be larger (about 0.40 MeV) since $\Delta \varepsilon_1 = -0.37$ MeV for the difference between the $1p_{1/2}$ and $2s_{1/2}$ displacement energies.

The effects due to more complicated structures for the lowest 3^- states as well as the effects due to isospin mixing with more highly excited T=1 3^- states have been considered using the relation

$$\delta\mu = -2\sum_{i} \frac{\langle \mathbf{3}_{1}^{-}T = 0|V_{C}|\mathbf{3}_{i}^{-}T = 1\rangle}{|\Delta E_{i}|} \langle \mathbf{3}_{i}^{-}T = 1|\mu|\mathbf{3}_{1}^{-}T = 0\rangle.$$

The wavefunctions were obtained by allowing complete configuration mixing within the model space $(1p_{1/2}, 1d_{5/2}, 2s_{1/2})^4$ (ZBM) with the Reehal–Wildenthal (1973) interaction and a separate calculation within the model space $(1p)^{-1}$ (1d, 2s)¹ (PHSD) with the Millener–Kurath (1970) interaction.

In both model spaces the sum was found to be dominated by more than 90% from the contribution from the lowest T=1 3⁻ state. The theoretical B(M1) values between the lowest T=0 and T=1 states are $1.25\mu_N^2$ for the PHSD model space and $2.30\,\mu_N^2$ for the ZBM model space compared with the $(1p_{1/2})^{-1}(1d_{5/2})$ value of $2.68\mu_N^2$ from equations (6) and (7) and the experimental value of $(2.16 \pm 0.35)\mu_N^2$. In the PHSD model space the M1 matrix element is small due to destructive interference between the large $(p_{1/2})^{-1}(d_{5/2})$ component and the relatively small $(p_{3/2})^{-1}(d_{5/2})$ and $(p_{3/2})^{-1}(d_{3/2})$ components. These

results indicate that the Millener-Kurath interaction induces somewhat too large an admixture of the $1p_{3/2}$ and $1d_{3/2}$ orbits into the 3⁻ wavefunctions.

Recently the Oxford shell-model code has been extended to calculate two-body transition densities and two-body Coulomb matrix elements (Brown *et al* 1981, unpublished). The two-body Coulomb matrix elements were calculated with harmonic-oscillator wavefunctions and the single-particle energies were taken as adjustable parameters to fit the A = 15 and A = 17 displacement energies. The isospin-mixing matrix element was calculated to be 0.15 MeV in the ZBM model space and 0.12 MeV in the PHSD space, to be compared with the $(1p_{1/2})^{-1}(1d_{5/2})$ value obtained above of 0.18 MeV. Although the calculations can be criticised because harmonic-oscillator wavefunctions were used for the two-body Coulomb matrix elements, the reductions relative to 0.18 MeV are expected because of the more complex structure of the 3⁻ states in these model spaces. The moment correction becomes $\delta\mu = 0.09\mu_N$ when a value of 0.12 MeV is used for the matrix element V_C in equation (3) (together with the experimental off-diagonal M1 matrix element), which is still in fair agreement with the experimental value of $\delta\mu = 0.135 \pm 0.012$.

The quantity $\delta\mu$ is rather large for the 3⁻ state in ¹⁶O because of the strong $(T=1) \rightarrow (T=0)$ M1 strength of (1.2 ± 0.2) Wu, the relatively small gap (7.1 MeV) between the states and the large isospin-mixing matrix element. As discussed above, normally the isospin matrix element would be smaller because of a cancellation between the terms involving $\Delta\varepsilon_1$ and $\langle V_C \rangle$ in equation (8d). For example, in ¹²C $\Delta\varepsilon_1 = 0.24$ MeV from the A = 11 and 13 binding energies and $\langle V_C \rangle$ should have about the same value of -0.36 MeV and thus $\langle T=0|V_C|T=1\rangle \approx 0.06$. Also the $(T=1) \rightarrow (T=0)$ strength is smaller ((0.34 \pm 0.06) Wu for ¹²C) and $\Delta\varepsilon$ is larger (11.7 MeV) and hence $|\delta g| \approx 0.007$ for the 2⁺ state in ¹²C. From the experimental properties of the 4⁺ T=1 state in ²⁰Ne (Fifield *et al* 1980), equation (9) takes the form $|\delta\mu| = 2(0.10)(1.7)/(6.8) = 0.050$ or $|\delta g| = 0.012$ (an isospin-mixing matrix element of 100 keV was assumed), which is far too small to account for the experimental results reported by Speidel *et al* (1980). Isospin-mixing effects on other positive-parity states should be similar to these two examples. For the 3⁻ and 5⁻ states in ⁴⁰Ca the isospin-mixing effects should again be large since $\Delta\varepsilon_1 \simeq 0$, but the present experimental errors are an order of magnitude too large to be sensitive to this effect.

3. Conclusions

In conclusion, shell-model calculations for the collective 2^+ and 3^- states in N=Z nuclei give small values for $\langle S_3 \rangle$ consistent with the collective-model assumption that $\langle S_3 \rangle = 0$. Since the meson-exchange corrections are small for the isoscalar magnetic operator it is expected that $g = \frac{1}{2}$ for the collective states in N=Z nuclei. Experimental results for 2^+ states are in agreement with this expectation, but at present the experimental errors are too large to offer a discriminating test of the theory. The g factor of the ¹⁶O 3⁻ state at 6.13 MeV excitation has been measured an order of magnitude more precisely than any other collective state and the experimental g factor is 10% larger than $g = \frac{1}{2}$. This deviation is found to be due to isospin mixing with the T=1 3⁻ state at 13.26 MeV excitation, which is important because of the large $(3^-, T=1) \rightarrow (3^-, T=0)$ M1 transition strength and the large isospin-mixing matrix element. For the positive-parity states the isospin mixing effects are estimated to be smaller, of the order of $|\delta g| \leq 0.01$. The calculated values for $\langle S_3 \rangle$ in the ground-state band of ²⁰Ne increase with increasing J up to $\langle S_3 \rangle = 0.72$ for the 8^+ state. The shell-model g factor is then $g_{\Delta N=0}(8^+)=0.534$ compared with the collective value of $\frac{1}{2}$, which would be interesting to confirm experimentally. The measured value of $g(^{20}\text{Ne}, 4^+) = -0.10 \pm 0.19$ (Speidel *et al* 1980) is completely inconsistent with existing theory and a confirmation of this result is essential.

References

Ajzenberg-Selove 1976 Nucl. Phys. A 268 1

- ----- 1977 Nucl. Phys. A 281 1
- Arima A and Hyuga H 1979 Mesons in Nuclei ed M Rho and D Wilkinson (Amsterdam: North-Holland) vol II p 683
- Braithwaite W J, Bussoletti J E, Cecil F E and Garvey G T 1972 Phys. Rev. Lett. 29 376
- Bennett D W 1980 Thesis University of Oxford
- Chung W 1976 Thesis Michigan State University
- Cohen S and Kurath D 1965 Nucl. Phys. 73 1
- Eberhardt J L et al 1975 Nucl. Phys. A 244 1
- Fifield L K et al 1980 Nucl. Phys. A 334 109
- Gorodetzky S et al 1968 Nucl. Phys. A113 221
- Hensler R et al 1974 Phys. Rev. C 10 919
- van Hienen J F A and Glaudemans P W M 1972 Phys. Lett. 42B 301
- Horstman R E et al 1975 Nucl. Phys. A 248 291
- Hyuga H, Arima A and Shimizu K 1980 Nucl. Phys. A 336 363 and references therein
- Jain H C et al 1976 Phys. Rev. C 14 2013
- Kurath D 1961 Phys. Rev. 124 552
- Lawson R D 1978 Phys. Lett. 78B 371
- van Middelkoop G 1978 Hyperfine Interactions 4 238 and references therein
- Millener D J and Kurath D 1970 Nucl. Phys. A 255 315
- Raman S, Houser C A, Walkiewicz T A and Towner I S 1978 Atomic Data and Nuclear Data Tables 21 567
- Randolph W L et al 1973 Phys. Lett. 44B 36
- Reehal B S and Wildenthal B H 1973 Particles and Nuclei 6 137
- Sato H and Zamick L 1977 Phys. Lett. 70B 285
- Shimizu K, Ichimura M and Arima A 1974 Nucl. Phys. A 226 282
- Shlomo S and Wagner G J 1978 Z. Phys. A 285 283
- Speidel K-H et al 1980 Phys. Lett. 92B 289
- Strottman D 1972 Phys. Lett. 39B 457
- Sugimoto K 1969 Phys. Rev. 182 1051
- Wapstra A H and Bos K 1977 Atomic Data and Nuclear Data Tables 19 177
- Wildenthal B H 1977 Elementary Modes of Excitation in Nuclei ed R Broglia and A Bohr (Rome: Italian Physical Society)
- Wildenthal B H and Chung W 1979 Mesons in Nuclei ed M Rho and D Wilkinson (Amsterdam: North-Holland) vol II p 721
- Zalm P C, van Hienen J F A and Glaudemans P W M 1978 Z. Phys. A 287 255
- ------ 1979 Nucl. Phys. A 315 133