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Shell model calculations in the full sdpf model space are carried out for the known and
possible first-forbidden beta decays for 34 < 4 <44. The main purpose is to study the strong
quenching of the unique (4J =2) decays, which results from the repulsive nature of the 7'=1
particle-hole interaction, and the strong meson-exchange enhancement of the 4J=0 decays.
Procedures for calculating the relevant matrix elements and combining them to form the
decay rate are described in detail. Various approximations designed to display more clearly
the dependence of the rates on the contributing matrix elements are presented and the
associated errors assessed. The results are compared to experiment and conclusions are drawn
regarding our present understanding of first-forbidden beta decays. © 1988 Academic Press, Inc.

A. INTRODUCTION

The study of first-forbidden beta decay has revealed two unusual and initially
startling phenomena which have allowed a better understanding of the basic nature
of the interaction of nucleons within the nucleus. The first of these phenomena to be
studied was the strong quenching of the unique (4J=2, e.g., 0" < 27 ) rates [1,2]
which can be traced to the repulsive nature of the T=1 particle-hole interaction.
More recently, Kubodera, Delorme, and Rho [3] used chiral-symmetry arguments
and soft-pion theorems to predict a very large (~40-70 %) enhancement over the
impulse approximation for the time-like component of the axial current in nuclear
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processes. The enhancement, due to meson-exchange contributions to the matrix
element of ys, is most easily studied via first-forbidden beta decay between states of
the same spin—for instance 0" «» 0~ decays—and such studies near 4 = 16 appear
to verify the prediction [4, 5].

The main motive for the present work was to further study these two
phenomenon in the A4=34-44 region. First-forbidden beta decay (4J<2,
m;m,= —) occurs near closed shells where the valence nucleons of initial and final
states occupy orbits of opposite parity. The 4 =34-44 region supplies the bulk of
the information used in the pioneer study of unique decays [1,2]. In that study
effects of the full sdpf model space were added perturbatively to a ds; f7)
calculation. In this study we will go a step further by diagonalizing in the full
Ofiw and 1Aw sdpf model spaces. Extensive calculations of first-forbidden 4J=0
transitions have been made by two of us for the nuclei near '*0 [5-10]. Prior to
the present efforts—some results of which have been previously reported [11]—
there have been no calculations of 47=0 or | transitions for the 4 =40 region.

This lack of attention is typical of the general situation. First-forbidden beta
decay is an under-utilized tool in nuclear spectroscopy and, more important, is
relatively poorly understood. To illustrate this latter point, consider that the effects
of the nuclear medium on Fermi and Gamow-Teller decays have been the subject
of exhaustive investigation. In particular, detailed experimental and theoretical
information is available concerning the quenching of g, in nuclear matter via core
excitations, meson-exchange currents, isobar currents, etc. [12, 13]. By contrast,
our understanding of the AJ =2 first-forbidden decay rates in the A =34-44 region
has not advanced theoretically since 1971 when the matrix elements were calculated
in a highly truncated model space; and the 4J < 2 rates have not been considered at
all. The description of these decays is relatively complicated and involves matrix
elements which are quite sensitive to details of the interaction and to the single-
particle wavefunctions. From general considerations and from experience in the
A=16 region, it is clear that quite sophisticated shell-model calculations are
necessary in order to assess the information which can be obtained from the
A = 34-44 region on the effects of nuclear matter on the first-forbidden operators.

With this background in mind, the purpose of the present work is to catalog the
known and possible first-forbidden decays in the 4 = 34-44 region, to calculate the
theoretical decay rates, and to compare experiment to theory. The principal motive
is to provide a better general understanding of first-forbidden decays. A second
motive is to search for cases which might, through detailed study, provide
information of a fundamental nature on such phenomena as the aforementioned
meson-exchange enhancement of 4J =0 transitions and the repulsive nature of the
T=1 particle-hole interaction. Finally, the theoretical study of first-forbidden
decays cannot help but provide valuable spectroscopic information.

There are two alternate formalisms used in the calculation of first-forbidden beta
decay: those of Behrens and Buhring [14] and of Walecka [15]. The Behrens—
Buhring formalism is exact (in principle) and we shall use it. The Walecka treatment
neglects certain terms proportional to the nuclear charge and also the neutron-
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proton mass difference. The difference between the two treatments is small for the
rather large energy releases encountered in most of the decays of interest here;
however, for small B¥ Q values—e.g., '*Ne(B+)'*F—the difference can be large.
The calculation of first-forbidden decay rates via the impulse approximation in
the nuclear shell model naturally involves three steps: first, the calculation of the
one-body density matrix elements (OBDME); second, the calculation from these
OBDME of the first-forbidden matrix elements of which there are generally six;
third, the combination of the matrix elements to obtain a decay rate. The
calculation of the OBDMEs is a straightforward application of a shell-model code.
We use OXBASH [16]. The first-forbidden decays under consideration involve
nucleon transitions between the (2s, 1d) and (1f, 2p) major shells. We shall describe
these transitions via a cross-shell interaction involving the full (2s, 1d)(1f, 2p)
configurational space. This sdpf interaction—designated WBMB—has been fully
described previously [17]; it is similar to one used in recent calculations of some
unique first-forbidden decays [18]. The first-forbidden matrix elements are defined
in Section B. In Section C we discuss the effect on these matrix elements of
shortcomings of the impulse approximation (nucleons in a nucleus do not act as if
they were in free space) and truncation to the WBMB model space. The calculation
of the decay rate is taken up in Section D and some useful definitions and
approximations are presented in Section E. The notation used in first-forbidden
beta decay has developed historically and has not been unified. In the present treat-
ment we shall attempt to display as clearly as possible the relationships between
our formalism and previous or alternative ones. In Sections F and G we describe
the shell-model calculations and compare them to experiment. Section H contains
predictions for unobserved transitions. The findings are summarized in Section L.

B. DEFINITION OF THE MATRIX ELEMENTS

Nuciear matrix elements of the following two classes of one-body operators,

r, [r, a]1%, where R=0, 1,2, (1)

and
yS 3 g7

are required in an analysis of first-forbidden beta decay in the impulse
approximation. The nonrelativistic operators of the first group come from an
expansion of the lepton wavefunctions, while those in the second group occur in the
hadronic weak current. They connect the large and small components of nucleonic
wavefunctions and are referred to as relativistic. In Eq. (1), R represents the rank of
the operator. Matrix elements of different rank add incoherently in forming the
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decay rate. Also, the contribution to a given decay between states of J; and J, has
the selection rule

W, —J | <R<J,+J,. )

Thus the rank R is a very useful concept in understanding and classifying first-
forbidden decays. In Eq. (1) the operator r is the analog of the E1 operator and has
rank 1 (R1) while ys and « are RO and R1, respectively. The desired matrix elements
and the symbols used to represent them are [6, 19, 20]

M§=4/3<J, T, lir[C,, 61° 1) J,T5 C,

where C, = [4n/2QL+1)]*Y,,
x=—J; T irCyt| J,T;>C,

u=2/2 J, T, ir[C,, 61"t J,T,>C, (3)
z= —A2{J, T, |ir[C,, 61%t| J,T,> C,

where A= —C,/C, =1.2605 is taken from an analysis of neutron beta decay [21].
In Eq.(3) and throughout Section B, all quantities are in natural units unless
otherwise stated;

C={T,M1+1|T,M;>J/(/2J)

for B¥ decay, and the matrix elements, reduced in both J and T, are according to
the definition of Brink and Satchler [22]. Unless otherwise stated, matrix elements
are evaluated with harmonic oscillator wavefunctions calculated with an oscillator
length b = (41.467/fiw)"? fm with Aw =454 "7 - 25477 MeV.

In the Behrens-Biihring formulation [14] the beta decay formulae are derived by
expanding the electron radial wavefunctions in powers of the mass and energy
parameters of the electron and of the nuclear charge. In this treatment additional
matrix elements occur which contain both the nuclear and the electromagnetic
structure of the nucleus via the shape of the nuclear charge distribution. The use of
a uniform charge distribution of radius r, is a very good approximation provided it
implies the correct experimental rms size of the nucleus We use for r, the expression
given by Brown et al. [23]. The extra matrix elements needed are obtained from
the definitions of M3, x, and u by including in the radial integral an extra

factor [14]
1 2
—§—I(1,1,1,1;r)=[1——5-<;;):|, 0o<r<r,

R t/r,\’
= -——g 7 , r>r,
r

(4)
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and are denoted M}{', x', and u'. The ratios of the primed to unprimed quantities
are fairly insensitive to details of the nuclear structure and are roughly 0.7. We
denote these ratios r.,, r’, r,, respectively. We sometimes use a ratio of 0.7 in

approximations made to better understand the underlying structure of specific
decays. The relativistic matrix elements, of yst and at, are

Mg =iJ; Tyllysth 4, T C,
{'y=—J;Tylat| J;T;)C.

(5)

We have adopted the notation M5 and M [ [24] for the two RO matrix elements
of Egs. (3), (5) because it more readily indicates that they are the space-like and
time-like components of the RO axial current, which are presently of much interest
[3, 4]; the notation M5 and M replaces the w and &'v of Schopper [19]. These
are all the matrix elements which enter in dominant order, i.e., in leading order in
an expansion in terms of the electron mass, m,, the electron energy W, and the
nuclear charge, Z. Higher-order terms are completely negligible in any application
we have encountered to date. In evaluating M and &'y the usual nonrelativistic
replacements for y5 and a can be made yielding

Mg = "1\/5<Jfo

Sy=— <Jf T,

é;hNPtJJ>C

(6)

i
Ly
M.

LR>C

where M is the mass of the nucleon. These approximations are accurate to order
1/M . The conserved vector current (CVC) theory may be used [ 14, 25] to obtain
an alternative expression for £’y in terms of x and a similar nonrelativistic matrix
element involving the Coulomb field of the nucleus. Under the strong assumption—
which we adopt—that isospin is a good quantum number one has [26]

Ey=E,x. (7)

In this way the number of independent matrix elements can be reduced by one.
Several examples which illustrate the energetics involved in the relationship of
Eq. (7) are given in Fig. 1. If we denote an analog of the initial state by a(i) and of
the final state by a( f'), we have that

E,=E[a()]—E[f] (8a)
if the gamma transition occurs in the final nucleus or

E,=E[i]-E[a(f)], (8b)
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FiG. 1. Examples illustrating the energetics involved in the CVC relationship of Eq. (7). J; T values
are given for some levels. Energies are not to scale and the '"F(§*)'’0O decay (to a presumed 3~; § state)
is partly hypothetical. E, is positive for downgoing and negative for upgoing arrows. Initial states are
labeled / and final states f; their analogs are labeled a(i) or a( /).
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if it occurs in the initial nucleus. We can use a measured radiative width for the E1l
transition to obtain the magnitude of x. Thus,

x| = [(8n/3) B(EL; i f)XT:M1 £ 1| T, MpY<T,M10| T, M»*1'?, (9)

where the +1 sign refers to §¥ decay and M can be M, or M, In Eq.(9),
B(El;i— f) is in units of fm? and can be deduced from

I,(eV)=104653[E, (MeV)]’ B(El;i— f) (10)

if E, is positive. If E, is negative we need B(E17), and the right-hand side of
Eq. (10) must be equated to [(2/,+1)/(2J,+1)]T,. In the case of transitions
between mirror nuclei, e.g., "*Ne(3*; gs) > "F(}; 110keV), we can take the B(E1)
from either nucleus (or an average for the two nuclei). In some cases the
assumption of good isospin may not be warranted, e.g., the analog state mixes
strongly with nearby states of the same J”, and the effect on ¢’y should be
examined. So far we have found no cases where the effect is large enough for
concern.

There is no basis [25] for a corresponding relationship between the axial matrix
elements M ] and M} although it has sometimes been assumed that M| is related
to —M; as &'y is to x. For oscillator single-particle wavefunctions with 2n+ /=
n'+1'+1

I8 jllis - V| (I'8)j> = FUB)j lis-r|| (I'))j/b? (11)
so that for a 14w initial state and a 0fw final state,
Mg: _MS/MNb2= _'EoscMg, (12)

where E,. is the energy of an oscillator quantum (Aw) in units of m,. If 2hw
configurations are included, the relationship expressed in Eq. (12) no longer holds
since the operators ¢-V and ¢ -r have different Hermitian conjugation properties
[expressed in Eq. (11)]; contributions of 24w configurations will be constructive in
one matrix element and destructive in the other. For single-particle wavefunctions
other than harmonic oscillator (HO), e.g., Woods—Saxon (WS) wavefunctions, the
ratio of matrix elements in Eq. (11) can be significantly state dependent with
opposite effects on M§ and M much like the contributions of 2w configurations
[5]. Thus, we shall calculate M} directly from Eq. (6).

To summarize, we have defined six matrix elements which can be categorized by
tensorial rank as

RO: M5, M
Rl:x,u &'y (13)
R2:z.



478 WARBURTON ET AL.

We will express £’y in terms of x via Eq. (7) so that in general there are five truly
independent matrix elements contributing to a decay. In addition, there are a
further three primed matrix elements MJ’, x', ¥’ which, although closely related to
MS$, x, and u, must be calculated as well.

C. INADEQUACIES OF THE APPROACH AND EFFECTIVE OPERATORS

The operators we have just defined are subject to the usual renormalizations due
to general inadequacies inherent in the restricted shell-model formalism. These are
of three general types, namely nonnucleonic degrees of freedom, too restricted a
model space, and inadequate radial wavefunctions. The most startling of these
effects are the very large meson-exchange enhancement of the time-like component
of the RO axial current [3, 4] and the very strong quenching of unique (R2) decays
due to core excitations [2]. Let us review what we know about the expected
renormalizations of these operators.

1. Nonnucleonic Effects

A treatment of the expected effects of nonnucleonic degrees of freedom on the
R =1, 2 beta matrix elements of [r, ¢]* is not available. Blunden, Castel, and Toki
[27] considered the effect on the analogous electromagnetic matrix elements and
found quenching of ~7 % and 10 % for R=1 and 2, respectively. However, it is
well known that nonnucleonic effects for weak and electromagnetic processes are
different [137]. The meson effects on the RO component of [r, 1% were calculated
by Towner and Khanna [24] for the '*N($)"*O 0~ — 0" decay and found to be
generally small (~0-2%). A general consensus of calculations of the meson
enhancement of v is consistent with the value of 64 % found in a consideration of
decays in light nuclei {5].

2. Model Space Truncation

The transitions considered herein typically take place between a state represented
as Ohw in the sdpf model space and a lhw state generated by promoting a proton
through 14w and transforming it into a neutron. Our model space for this
transition is complete as long as Z <20, N =20. For these transitions the largest
expected effect arising from nucleonic contributions from outside our model space is
that due to np—nh (n=2, 4, ...) excitations of both the initial and the final states.
Consider the example of the '*N(f)*O 0~ — 0% decay shown schematically in
Fig. 2. We assume initial and final states

= o} o0

Y=Y a,|Cm+1)ho); |f>= 3 a,|2mho) (14)

m=0 m=0

and define M,,, as the matrix element connecting the mth initial and pth final
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terms. We then have the contributions to the total matrix elements as shown in
Fig. 2. We now assume a very simple model (VSM)

am+1=faam’ Mmm:MOOa
mom+ 1= Moy ali m, Si=My /M.

(15)
M

Then the total matrix element is
M=My[l+/. /1] (16)

In the 4 ~ 40 region, calculations in the mixed (0 + 2) iww model space give f, ~0.5
as was the case in the 4 = 16 calculation [5] illustrated in Fig. 2. The value of f| is
critical. For "*N(f)'*O0~ - 0%, a value of f,~ +0.25 was found for the RO
matrix elements with the plus sign for M3 and the minus sign for M. Thus, in that
example the VSM gives

M= My[1+0.13]. (17)

It is instructive to consider what we would have obtained in this example if we had
truncated the initial and final states so that the transition was 1#4w — (0+2) fiw or
(1+3)Aw — (0+2) Aiw. The results for M would have been 0.78 and 0.74 as
opposed to 0.87. The effect of core excitations is overestimated in both cases; the
1hw — (0+ 2) Aw result is somewhat closer to the VSM result than the more
ambitious calculation. On the other hand consider the case in which nfiw terms are
negligible for 7 > 4; then the (1 + 3) Aiw — (0 + 2) #w result is clearly to be preferred.
One thing we learn from this exercise is that one cannot generally say whether
(1 +3)Aw — (0+2) Aw is closer to the truth than 14w — (0 + 2) #iw. An illustration
of a situation for which the VSM seems to be applicable is calculation of the unique
n-forbidden beta matrix element z in the Hsiech-Mooy-Wildenthal [28] d;, f7,
model. Results are shown in Table I for a hypothetical “*K(2 ) - *°Ca(0*) decay.
The value of z for the full model space is in the lower right corner. It is seen that
for truncation to an mp-mh initial state its value is approximated well for an

'®N (07)) = 0.91|Ihw)+0.46]|3hw)+ -

T
MB = M00+M0| + M” +M|2+---'

N

y
'®0(0")) = 0.89]0 hw) +046 |2 hw)+~0.2]4 hw)

F1G. 2. Schematic of *N(0~) — $O(0*) B~ decay. The amplitudes of the various nfiw components are
approximate so that the wavefunctions are not quite normalized.
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TABLE 1

Hsieh-Mooy-Wildenthal [28] Predictions for the Unique First-Forbidden beta Matrix Element z
(in fm) of Eq. (3) for a Hypothetical *K(2~) — *Ca(0*) Decay

Final state
(hw)
Initial state
(Aw) 0 042 0+2+4 0+24+4+6 0+2+4+6+8

1 26.10 %1592« 13.78 13.50 13.48

1+3 21.04 19.20 *16.86% 16.52 16.52
1+3+5 19.20 18.50 16.98 *16.64% 16.62
14+3+5+7 19.04 18.44 16.94 16.62 *16.58%

Note. The calculation was made with harmonic oscillator wavefunctions with a length parameter of
1.963 fm. The model space is eight nucleons in a ds, f7,, model space with the indicated np-nh com-
ponents. The highlighted values are those for which the final state wavefunction contains only those
terms which can connect to the indicated initial state. The near constancy of these highlighted values is
to be noted and suggests that only the 1Aw — (0+ 2) Aw calculation need be done.

(m+ 1)p—(m+ 1)h final state; i.e, lhw — (0+ 2) Aw does considerably better than
(1+3)hw - (0+2) hw.

Because of the large model space dimensions involved it is not possible to make a
general study of the effects of core excitations near 4 =40 without resorting to
perturbative approaches. However, the archetypical case of 1p-1h excitations in “°K
decaying to the “°Ca ground state can be handled in a large enough basis to be
informative. Thus, we have calculated hypothetical 0=, 17, and 2~ decays of “)K to
“Ca 0" in a 1hw — (0 + 2) Aiw model using the full sdpf model space. We find quite
small departures from the i — Ofiw results for RO and R1 decays and the large
effects found formerly [see Section F.1] for the R2 decay. The small effect for RO
and R1 can be traced to small matrix elements for 14w — 24w which appear to
result from the dominance of f, orbits in the 24w wavefunction; i.., this orbit
cannot contribute to the RO and R1 decays while, on the other hand, d;, < f5,,
transitions dominate the R2 decays. The effect on the R1 decays appears to be
small but unpredictable; that on the RO decays is to slightly increase M35 and
decrease M.

3. Radial Wavefunctions

Calculation of beta-decay matrix elements is usually performed with harmonic
oscillator (HO) radial wavefunctions. Realistic radial wavefunctions can differ
significantly from harmonic oscillators especially when the valence nucleons are
loosely bound as is often the case in the 14w states encountered in first-forbidden
beta decay. To illustrate the expected effect of using harmonic oscillators, consider
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the first-order expansion of the nuclear radial wavefunctions in terms of oscillators
for a single-particle 2s,,, — 1p,,, transition,

125> =125 Yo + o 15D o + %2 135 Do+ (18a)
Ip>=11p>uo+B112p>u0+ B2 13puo - (18b)

then, to first order,

2| r1p)> =<2 r|1p>po+a; {1s| r |1pdyuo + B {25 r12p>uo
=(1+y) (2| r|1p>no, (19)

where
y==3"a,—(3)"B,. (20)

The main deficiency of the harmonic oscillator wavefunctions is that the asymptotic
region (large r) is relatively too small. This is remedied by adding first-order terms
with negative coefficients since the sign of the asymptotic wavefunction oscillates
with the principal quantum number. Thus, we expect y to be positive for the matrix
element of r (and thus M3). On the other hand, E,— E, is positive for the zeroth-
order term and negative for the first-order terms of Eq. (19). Thus, from Egs. (11)
and (12), we expect y for M to be the negative of y for M$. This example
illustrates that, in first order, using harmonic oscillator radial wavefunctions is
expected to cause the same (1 + y) effect on the matrix elements M § and M as was
found [24] for core excitations [see Eq. (16)]. Of course, calculations carried to
higher order can differ significantly from this example just as they can for core
excitations.

The calculation of the first-forbidden matrix elements using Woods—Saxon radial
wavefunctions has been discussed fully for the A =16 region [5, 6, 10]. These
calculations are done by transforming to the relative coordinate system for, e.g., a
v— 7 B~ transition outside an 4 —1 core and using the appropriate separation
energy for each of the first 5-10 most important core states as determined from and
combined with the associated spectroscopic amplitudes. It was found that the RO
matrix elements are very sensitive to the radial wavefunctions and the evaluation of
the decay rate with Woods—Saxon wavefunctions can differ by factors of 2-3 from
the HO value. It was also found that the R1 and R2 matrix elements near 4 =16
are much less sensitive to the radial form of the wavefunctions than is RO.
Regardless of the radial wavefunctions used it is imperative that the associated
parameters are such as to give the correct (experimental) rms size of the nucleus
and comparisons between calculations done with HO and WS wavefunctions are
only meaningful if they imply the same rms size of the nucleus. We belabor this
point because two studies have been presented [29, 30] which purport to show
considerably less sensitivity to the form of the radial wavefunctions than that found
in the studies of Millener, Warburton, and collaborators [5, 6, 10]. The dis-
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crepancy is due to the fact that in these two studies the HO and WS wavefunctions
were not constrained to give the same nuclear radius.

Our tests of the effect of the form of the radial wavefunctions on the decay rates
for A~40 nuclei were done with both Woods-Saxon and Hartree-Fock
wavefunctions. The translation to a relative coordinate system was neglected (the
error introduced goes as ~A4~') and a single 4 —1 core was assumed. These
approximations are adequate for assessing the effect. For 4 ~40 we find the same
insensitivity for R1 and R2 and much less sensitivity for RO than that near 4 = 16.
The general effect on M3 and M near 4=40 is to increase the former by
~5-10 % and decrease the latter by the same amount. The different behavior of the
RO matrix elements near 4 =16 and 40 is due to the different sensitivities of the
major components which are 2s,, & 1p,, for A~ 16 and 2p;, < 1d;, for 4 ~40.

4. Summary

This preamble is designed to indicate the problems which need to be studied in
order to understand the renormalizations of first-forbidden operators. It is also a
justification for our choices of effective operators to use in the predictions of
unobserved decays.

We define effective operators

M 5= Ger M sheit moder-

For M and M§ we shall take g+ =0.9¢,.. and gs=1.1 where the factors 0.9 and
1.1 are a rough representation of the effects of using harmonic oscillator
wavefunctions and of neglecting core excitations. We attempt some evaluation of
£mec—the meson-exchange enhancement factor—in Section F but in our predictions
of unobserved decays we assume the best current value [5] of £,..= ~1.64 and
take gr=1.5. Because of rather complete ignorance, we shall abide with
q.=q,= 10 for the R1 matrix elements. The best value of ¢, for the R2 decays is
obtained by comparison to experiment (Section F), ¢.=0.510.

D. THE DEcAY RATE

1. Definitions and Construction

For historical reasons, comparison between theory and experiment of the
absolute decay rate for first-forbidden transitions utilizes the expression [19, 21]

ft = 6166 sec, (21)

where ¢ is the partial half-life of the transition and

f=fW° C(W) F(Z, WY (W?=1)"2 W(Wy— W) dW. (22)
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The integrated Fermi function, f, is related to the decay rate 4 by

A (sec™ )= 1/t=1n2/r= f/8896. (23)

In Eq. (22), W is the B energy and W, the disintegration energy (maximum f
energy), both in units of the electron rest mass (and including the rest mass), and Z
is the charge of the final nucleus. We use natural units /= c=m,= 1. The unit of
time is seconds, and of length the electron Compton wavelength, £, = 386.159 fm.
Retaining the dominant terms discussed in Section B, Schopper [19] expressed the
shape factor as

C(W)=K+KaW+Kb/W+KcW?> (24)

The coefficients X, Ka, Kb, K¢ in Eq. (24) have small energy dependences via the
functions u, and 1, defined and tabulated, for instance, by Behrens and Jinecke
[31]. For light nuclei u, differs negligibly from unity except for transitions with
energies higher than those encountered experimentally. Likewise, 4, differs
negligibly from unity except for very low or high energy transitions. Although the
energy dependence of u; and 4, is not negligible in some applications, its effect on
the decay rate is negligible for all observable first-forbidden decays we have
encountered for Z < 50. We shall take u, = 1, =1 in which case we can display the
separation of the shape factor into rank by defining

C(W)=Y K(NRYWY (25)

N, R

with the K(NR) being independent of W and N taking on the values 0, 1, —1, 2.
The equivalence to Schopper’s notation is

K=Y K(OR), Ka=Y K(IR), etc. (26)

R

We now define the integrals, I, as
Wo
IN=fl WNE(Z, W)W =12 W(Wy— W) dW (27)
and separate f according to rank:
f=Y S ®=fOHf D4, (28)
R
Then

fRO=Y KNR)I,, f=Y K(NR)Iy. (29)
N RN
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Following the treatment of Behrens and Buhring [14], we have

RO: K(00) =3+ 4(M3)°,  K(—10)= —3u,y,{ M3 (30a)
RI: K(01)= [} + §(x +u)? — G,y u(x + u) + s Wi(2x + u)? — £42(2x —u)?]
K(11) = —$uY — LW (4x* + 5u?) (30b)

K(—11)=3u,7,{(x +u)
K(21)=£[842 + (2x + u)* + A,(2x —u)?]
R2: K(02) = 5z (W2—4,),
K(12)= —12W,, (30c)
K(22)= +423(1 + 4,),

where we have chosen to display the dependence on u, and 1,. (Note however that
Eq. (25) is not correct if u, and 4, are functions of W.) In Eq. (30) we have

V=M}+EMY, lo=V+IMSW,,

(31)
Y=yl +x), [ =Y+3u—x)W,.

The coefficients K(NR) depend on the nuclear matrix elements, on W,, and on
¢=aZ/2r,. The parameter y, is given by [1 — («Z)?]"? where « is the fine structure
constant. The relationships given here hold for §* decay with the convention that
+Z is taken in ¥ decay. The corresponding formalism for electron capture—
derived from the results presented by Bambynek et al. [32]-—is given in a recent
study of “Ti(EC)*Sc by Alburger and Warburton [33].

2. Units

We have used natural units throughout up to this point. Although it is not the
elegant thing to do, there are two reasons why we would rather present the matrix
elements in units of fm: (1) they are then of order unity rather than of order A
and (2) there are historical reasons concerning the definition of the unique first-for-
bidden decay rate. To accommodate this change we simply divide the I, of Eq. (27)
by #Z. and multiply the matrix elements by A, so that Egs. (21)~(31) still apply.
We note that this procedure does not give the proper units for the relativistic
matrix elements and so one should think of Z..—in this application—as a simple
scaling factor.

E. SoME USEFUL DEFINITIONS AND APPROXIMATIONS

1. Unique First-Forbidden Decays

For 47=2 only R2 contributes and thus there is only one nonzero matrix
element; hence these decays are called unique first forbidden. From Eq. (30c) we
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can find the unique first-forbidden shape factor associated with the present
formalism,

C( W)unique=ll_2zz[qz+'12 Pz], (32)

where g and p are the neutrino and electron momenta, respectively. We often use a
definition of unique first-forbidden transition strength which is related to that for
allowed decay. That is, for allowed Gamow-Teller (n = 0) or unique first-forbidden
decay (n=1), comparison to theory can be made via the transition strength (matrix
element squared), which we define as [1]

B [2n+1)!1]? - .
B,=6166 {W rEfn (33)
Equation (33) gives
B,=6166/f,1t, 10 6B, =2758/f, t fm?, (34)

where f, and f, are Fermi functions calculated with shape factors of unity and
(g% + 4, p?), respectively. In previous treatments, a unique first-forbidden transition
strength (G, »* has been used [1, 2]. z% is related to B, and (G, )>? by

2 =4B, =412(G > (35)

2. The Small Z Approximation

If we explicitly use the approximations y,=u,=4,=1, the coefficients of
Eq. (30) simplify considerably. Thus, with these approximations, Egs. (30) become

RO: K(00)={3+5(M5)°,  K(—10)= —3{ M} (36a)
R1: K(01) = &2+ L W2(2x + u)* — L(Tu® + 2x?)
K(11)= —3uY — JWy(4x* + 5u?)
K(—11)=2¢(x+u) (36b)
K(21) = £(104” + 8x?)
R2: K(02)=Lz2(W2—1)
K(12)= —1z*w, (36¢)

3. A Useful Approximation for the Rank O Contribution

It is useful to know that the RO contribution has very nearly the allowed shape.
That is, we see from Eq. (27) that aside from very small correction factors I, is the
Fermi integral, f;, that occurs in Fermi or Gamow-Teller allowed decays. The RO
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contribution to f comes from K(00) and from the 1/w term, K(—10), but in all
practical cases

|%#1V1C0M3|<Cg+%(Mg)z (37)

so that usually within a few percent accuracy the 1/w term can be neglected. A
minor consequence of this is that log f;¢ values are more meaningful for pure RO
decays such as 0% « 0~ decays than for 4J> 0 first-forbidden decays.

In any practical case, the two terms in the K(00) of Eq. (36a) are of disparate

magnitude, ie.,
HM5P <l (38)

Thus, using Eq. (31), we have the useful approximation
SO~L[M+a(Z, Wy, r,) M312 (39)
where
a(Z, Wy, r,)=r.l+3W, (40)

with r, = M5'/M$§ ~ 0.7. For ease of comparison to experiment, it is useful to define
a RO beta transition strength, B{®), and an analogous composite matrix element,
M®, such that

B =(M©P)=[M{+a(Z, W,,r,) M3 (41)
then the experimental matrix element from Eq. (39) is
M O(expt)= [ f§}/161" (42)

and the predicted and experimental rates are conveniently compared via the M () of
Egs. (41) and (42). Although we shall usually use the full expression for f® in our
calculations, we shall often use Eqgs. (41) and (42) in our attempts to understand
the underlying nuclear structure in RO decays.

4. Definition of an RO Single-Particle Rate

Before considering individual 4J=0 decays it is instructive to consider some
single-particle estimates which provide orientation as to what might be expected.
The simplest first-forbidden 0~ — 0™ transition is a 1p—1h — vac transition, and so
we are interested in matrix elements for M of the type

Cvac Jlir[Cy, 61° 1l (j; 'jido->- (43)

Recalling that M= —E M35 for a single-particle transition evaluated with
harmonic osciallator wavefunctions, we have

MO s.p; jiJe)=[gsa(Z, Wy, 1) —qrEosc ] MG(s.ps5 i), (44)
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TABLE II
Single-Particle Estimates for the 4/=0 §~ Matrix Element M as Defined in Eq. (45)

M3(s.p. )
A Ji Jr [4¢ — Eol .°( P, —iM3(s.p.) [M{O(s.p.)|
iCub

16 2515 1p1 24.356 -2 —3.1523 77
1dy, 1ps3p +/10 +7.0487 172

40 2p3p ldy, 17.893 -2 —4.9469 89
15, 1ds) +./21 +11.3347 203
21 251 +/5 +5.5308 99

96 351 212 11.907 -2 —5.5242 66
2ds) 2py;» +./14 +10.3349 123
2ds), s, -6 —6.7658 81
184> 1f32 +6 +16.5726 198

where s.p. stands for single particle, and we have explicitly inserted the scaling
factors which relate the shell-model (impulse approximation) values for M3 and
M to the effective values (see Section C). For simplicity, we specialize to g~
transitions in neutron-rich nuclei. In the evaluation of Eq.(44) we shall take
Wo=E,.—r,¢ and r, =0.70. We then arbitrarily approximate ¢gs and qr ~ 1.07
and gy ~ 1.36 which results in a simple expression for our single-particle estimate:

MO(s.p.; Jijr) =[5 — Eoe ] M§(s.D; JiJy). (45)

In Table IT we list results for transitions of this type encountered at 4 = 16, 40, and
96. These values of 4 were used in the evaluations of #w, b, and r, necessary to the
evaluation of Eq. (45). A criterion used in the evaluation of nuclear data by the
International Network For Nuclear Structure Evaluation is that a beta transition is
allowed if log fot < 5.9—see, e.g., [34]. This criterion is based on the compila-
tion of Raman and Gove [35]. From Egs.(21) and (39) we can deduce
that M{” <34 fm corresponds to log fyt>5.9. From TableII it is seen that this
limit is generously exceeded by the single-particle estimates. In actual fact, some
J—J, m;n,= —, transitions (but no first-forbidden 4J>0 transitions) do have
experimental values of log f,¢<5.9. For instance the *N(0~)- *O(0*) and
*Y(07) -~ *Zr(0*) decays have log f,t=5.53 and 5.61, respectively. Thus the
accepted limit dividing first-forbidden and allowed beta transitions is in need of
revision.

F. COMPARISON TO EXPERIMENT

Experimental information on the known first-forbidden decays in A =37-44
nuclei is collected in Tables III and IV. The unique first-forbidden beta transition

595/187/2-16
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strength, B, is included in Table III and f= 6166/t is listed in Table IV. We note
that no first-forbidden decays are known for 4 = 22-36 nuclei. We first consider the
unique (4J=2) decays of Table IIL.

1. Unique First-Forbidden Decays

In the second and third columns of Table V we compare the experimental B, to
predictions for the full WBMB model space using the free-nucleon operator. Not all
the decays of Table III are included in this comparison. In the full WBMB model
space, the 2~ states of “?Cl have a J-dimension well beyond our computational
capabilities. However, we consider “*Cl(f~)*Ar in a truncated basis in Section G
of this paper. The “*Ca 0} state at 1837 keV and the **Ca 0; state at 1884 keV are
identified as np—nh (n=2, 4, ...) excitations and thus are outside the WBMB model
space. We also consider these decays in Section G.

An examination of Table V reveals that the WBMB predictions are generally
larger than experiment. This is as expected since we have not included ground-state
correlations in either the initial or the final states. Towner and his colleagues
[2, 44] included ground-state correlations to order 2w perturbatively and they
found an average diminution of the B, for A =37-44 nuclei of ~3.7. On general
grounds we might expect a further quenching due to mesonic and nucleonic struc-

TABLE V

Comparison of the Experimental Unique First-Forbidden Beta Transition Strengths to
the Predictions of the WBMB Interaction Calculated with the Operator Appropriate to Free Space,
B, (WBMB; free), and an Effective Operator, B,(WBMB,; eff)

Transition

Initial Final B,(expt) B,(WBMB; free) B,(WBMB; eff) Deviation

state state (fm?) (fm?) (fm?) (%)
8(37) TCI3%) 1.32 (14) 6.17 1.61 223
BS(0+) BC127) 2.12 (54) 799 209 —-14
#Cl1(2-) BA(0+) 1.67 (4) 6.13 1.60 —4.1
BC(3) ¥A1(37) 1.3 (4) 4.33 1.13 —129
BAr(37) ¥K3) 0.221 (11) 0.55 0.14 —346
0CI(27) 4OAT(0+) 045 322 0.84 86.9
C1(27) “OAr(4+) 0.59 (23) 1.66 0.43 —26.6
YK (47) “Ar(2+) 0.0079 (15) 0.0132 0.0035 —56.3
“1Ar(37) UK (3*) 0.56 (4) 1.64 043 -234
“Ca(37) UK(E) 0.108 (16) 0.164 0.043 —60.3
“2Ar(0+) 2K(27) 1.34 (40) 343 0.90 -328
“K(27) *2Ca(0+) 0.901 (9) 4.67 1.22 355
BK(ET) “Ca(}) 0.54 (6) 1.48 0.39 -29.8
“K(27) “Ca(0™+) 0.62 (18) 435 1.14 83.5
“K(27) “Ca(4™) 0.29 (10) 1.86 0.49 67.3

Note. All final states are yrast states.
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ture effects (see Section C). In order to predict unobserved branches it is desirable
to define effective first-forbidden operators which take account of such effects in as
accurate a manner as possible. For the unique decays this is a strightforward task.
We define an effective rank 2 operator for the WBMB model space by

Zep=4q:-2 (46)

and evaluate ¢2 as the average value of B,(expt)/B,(WBMB). For the data of Table
V, this procedure gives g, =0.510, corresponding to a diminution of B;(WBMB) of
3.84 in essentially exact agreement with the perturbative estimate [2] for the effects
of ground-state correlations. The effective B, are listed in the fifth column of Table
V while the percentage deviations of these B, from experiment are given in the sixth
column. The structure of most of these decays was discussed by Towner et al. [2].
Some of the B, values are quite small due to cancellation effects within the WBMB
model space. The consistency of the results is quite satisfactory (especially
considering these cancellation effects). There is a tendency for the agreement of the
effective B, with experiment to decrease with increasing 4. We note that the
WBMB interaction is well tested for 4 <41 but this is its first application for
A >41. In summary, it would appear that the effects of ground-state correlations on
unique decays are relatively state independent. In our calculations of nonunique
decays we shall use ¢.=0.510 in evaluating the R2 contribution.

2. The AJ =1 Transitions

As shown in Table IV, there are only four definite 4J=1 first-forbidden
transitions in the A4 =22-44 region and for two of these the uncertainty on the
branching ratio is larger than 50 % so that there is considerable doubt as to the
existence of the transition at the listed strength. The predictions for all but
“Ti(EC)*Sc are seen to be considerably less than experiment. Can we learn
anything of value about the rank 1 matrix elements from this comparison? First, we
should consider the composition of the two J; # 0 transitions. Both the *’S and *K
decays are predicted to have roughly equal contributions from rank 1 and rank 2.
For *’S the R1 contributions of x and u are predicted to be largely destructive while
for K they are predicted to be largely constructive. These facts and the large
uncertainties attached to these two decay modes make it difficult to unravel the
effects of the matrix elements x, #, and z on these two decays.

The predictions for the two 0* — 1~ decays have quite different dependencies on
x and wu. In the *S decay the contributions of x and u add destructively. An
approximate expression for f in terms of x and u can be obtained,

f=0.070[1—=0.181(u/x)]? for *8S(0*) = **ClI(17) (47a)
and with our predictions of x =0.1424 fm, ¥ =0.7314 fm we have

f=0070[1-093]>=34x10"* (47b)

We see that the x and u contributions are in almost complete cancellation—only a
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5 % change in the ratio of u to x is necessary to reproduce experiment so that the
agreement can be considered as quite satisfactory.

The sensitivity of the *’S and **S A4J=1 decays to the radial wavefunctions was
examined by calculating both decays with Woods—Saxon wavefunctions as well as
with HO wavefunctions. Neither was very sensitive; the *’S f-value increased by
1.0 % and the **S decay (with its nearly complete cancellation between x and u)
increased by 23 %.

The “*Ti 0* — 1~ decay, being electron capture, has a particularly simple depen-
dence on x and u [33]. To a very good approximation we can write

S=3.094x10 *[9.203x + 4.518u]> for “Ti(0*) - **Sc(17) (4%)

and, with our predictions (see Section G) of x=0.142fm, #=0.131 fm we have
constructive interference and thus less sensitivity to the inadequacies of the model.
We note that **Ti decay and *’Ti decay (see Table IX) are the only ones considered
for which the model space is not complete. That is, transitions from a Ofio Ti state
can also occur via Sc excitations in which a neutron resides in the gds major shell.
The effect of neglecting such excitations has been considered in a recent study of
“4Ti decay [33]. Unfortunately it appears that neglect of the gds shell renders the
result of Eq. (48) all but meaningless.

3. AJ =0 First-Forbidden Transitions

As for the unique (4J=2) decays, some of the 4J=0 decays are to final states
which we interpret as outside our model space or possibly so. These are so labelled
in Table IV and will not be considered further. All but one of the remaining final
states in Table IV are yrast states. The predictions for the decay to these yrast states
are compared to experiment in Table VI. The method of comparison is to extract
the experimental rank O beta transition strength B{® defined in Section E.3 and
compare it to the predicted B{®) by extracting the meson-enhancement factor &,
(Section C) necessary to give agreement; this is done with gr =0.9¢,,.. and ¢, = 1.1
(see Section C). For J # 0 decays the total f~value includes contributions from rank

1 and rank 2 as well as rank 0. For these we define a rank 0 f{)), as

fe(eg:at:fexpt_f%)BMB_f%%/)BMB' (49)

The accuracy of this approach depends on the relative contribution of the three
ranks. As shown in the last column of Table VI, it is a viable approach because
fexpt >f(“ll%3MB +f{82/}3MB

The expected value of ¢, is ~1.65 [5]. The average value for the 4 =38-41
entries of Table VI is 1.70, in good agreement with this prediction. Note that the
applicability of the WBMB interaction to the 4 <41 region has been well tested so
that this agreement is gratifying. As remarked earlier, the WBMB interaction has
not been tested previously for 4 > 42 nuclei. The unrealistically large values of ¢,
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TABLE VI

Comparison of the Predicted and Experimental 4J=0 Matrix Elements M{? of Eq. (42)
via the Meson-Exchange Factor ¢,

Transition

Initial Final M Pexpt) = —1.1 (S O+ Y m

state state LF/1]2 09ME  -a(Z, wo,r,) M5 &pe. (%)
BS(0+) BCHO0™) 11.8 (6) 13.90 394 1.13 0
®CI127) BAr(2*) 8.96 (23) 7.72 1.85 2.10 4.1
3"Cl(%Jr 39Ar(%") 8.1(15) 6.84 2.12 1.49 1.3
“Ar(37) “K(37) 44(9) 245 0.72 2.09 14
2C127) 2Ar(2+) 18.0 4.79 2.81 4354 9.0
2K (27) 42Ca(2t) 52(1) 2.00 0.52 2.86 12
BK(E) $Ca(37) 4.5(3) 1.86 0.58 2.73 0.6
“Ti(0+) #“Sc(07) 15.0 (4) 7.02 1.95 241¢ 0

¢ Calculated in a truncated basis (see text).

for 4> 41 in Table VI signals a lessened applicability of the WBMB interaction in
this region. There is reason to question the very large .. value obtained for the
“2CI decay rate as is discussed in Section G. For the other three 4 > 41 results, the
too small value of f {9k, could possibly be due to too small admixture of the D32
fs,2> and p,, orbits in the ( fp) part of the wavefunction; i.e., the dominant f, orbit
does not contribute to the 4J < 2 first-forbidden decays.

G. SOME TRUNCATED CALCULATIONS

1. General Considerations

As discussed in the last section, some of the transitions of Tables III and IV
involve J-dimensions in the full WBMB model space which exceed our com-
putational resources and some involve states which are outside of the WBMB
model space. In this section we describe the calculation of both of these types of
transitions in truncated bases. We first consider the decays of **Cl and **Ti, both of
which are of the first type. We then consider some unique decays to intruder states
in a dy;, f7,, model space.

2. 2CIB )" Ar

The WBMB model space for the 2~ “?Cl ground state is m(2s, 1d) > v(1f, 2p)°.
We shall truncate this model space by restricting the number of neutrons allowed
out of the f7,, orbit. We follow the customary procedure of designating a truncation
of (1f, 2p)” to <m nucleons in all possible permutations within the fs,, psq, P12
orbits as f77™r™. With truncation to f3,r* the J-dimension is 8978. Further
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truncation is necessary. We allow all f 3/2r2 for r=ps, but use f3,r for the f5,
and p,,, orbits. This truncation produces a J-dimension of 2566. To be consistent,
the **Ar model space should be truncated to f2,r* for r=p,, and f3,r for
r=fs;, p12- We have calculated the first-forbidden decays with the truncated 2¢1
model space and (1) the same truncation for **Ar and (2) the full WBMB space for
“2Ar. The difference between (1) and (2) provides some measure of the effect of the
truncation. The unique transition strengths were calculated in the full and truncated
WBMB model space using ¢, =0.510. The results are compared to experiment in
Table VII. We also show in Table VII the results of a calculation in the highly
truncated d, f7,, model space of Hsich, Mooy, and Wildenthal [28]. For the
2~ “2C] ground state the truncation is to d3, /'3, while the *Ar 0} and 4; states
are generated from d$, f4,. The calculations of Towner et al [2] in a d5,f7),
model space showed a similar consistency for the diminution of the unique rate to
that found in the WBMB model space. Towner et al. found g% =7+ 1 reproduced
experiment quite well. The results for column (c) of Table VII were so calculated.
We also show in Table VII a result for the 0; state of *?Ar assuming it is the lowest
state of d3, f5),.

The comparison to experiment of Table VII shows that the predictions for the
“2C] unique decay are in much worse agreement with experiment than the others
considered in Table V. From a consideration of the results for the d,,, f;,, model
space it does not seem likely that this disagreement is due to the truncation
described here. Rather we suggest there may be some difficulty with the experiment.
This is hard to judge since a description of the experiment has not been published,
only the results without uncertainties.

Another indication of some difficulty—either theoretically or experimentally—is
that the prediction for the RO “’Cl(27) — “*Ar(2;") rate falls short of experiment
more than any other decay in Table VI. We note that all RO and R1 rates are

TABLE VI
Comparison of Predicted and Experimental Unique First-Forbidden Decays in “2C1(27) — *Ar(J7)

B, (fm?)
Final state
J: a b ¢ Expt
(U 0.17 0.16 0.33 1.79
05 4 4 0.04 0.072
47 0.25 ¢ 0.85 1.56

¢ Truncated WBMB basis for “?Ar.

& Full WBMB basis for “?Ar.

< d3, 1% " model space with n=>5 for the ’CI2" state, n=6 for the *Ar0;" and 4;' states, and
n=4 for the ?Ar 0} state. g7 2=7 was used for all three final states.

4 Qutside the model space.

¢ The calculation was not done.
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identically zero in a ds, f;,, model space. Thus, we do not consider the **Cl decays
to the 2} states with n>2 since these states are quite possibly intruders in the
WBMB model space.

3. “Ti(EC)*Sc

In a full (sdpf') space, the decay of **Ti, in lowest order, would involve
(25, 1d)* (1f, 2p)* — (25, 1d)* (1f, 2p)°. (50)

The *Sc 0~ and 1~ wavefunctions corresponding to the model space on the right
in Eq. (50) have J-dimensions of 6151 and 17530, respectively. These exceed our
computational resources and some model space truncation is necessary in order to
estimate these decay rates. The truncation chosen was to restrict the (1f, 2p)° space
by demanding at least three f;, nucleons with the remaining two distributed freely
among the four fp orbits, this we term an f3,r* space. With this restriction the
J-dimensions become 1370 and 3956, respectively. The dimensions of the J*=0"
states in the full (1f, 2p)* space for the (J, T)= (0, 0) and (2, 1) states are only 66
and 285, respectively. However, to be consistent in the calculation of EC and v rates
the (1f;,2p)* model space should also be truncated. Since the electron capture
transitions involve n(s, d) —> v( fp), the analogous truncation is to f 3,,r which was
used and is shown in Tables IV and VI. However, the calculation of the decays was
repeated with no truncation and truncation to f2,r’ for “Ti. For these calculations
the 0" — 0~ M§ matrix element differed from the result for the f3,r truncation by
—18 and —9 %, respectively. The remarks as to the inadequacy of the shell-model
space used for the *Ti R1 decay [Section F.2] hold for this RO decay as well.

4. Unique Decays to 2p-2h 07 States

We have already discussed the decay of the 2~ “’Cl ground state to the first
2p-2h intruder state of “*Ar which we identify as the 0 state at 2512 keV. There
are similar decays listed in Table III for “*K(f~)*? Ca and “K(f~)* Ca. For both
Ca isotopes we identify the 05 state as a 2p~2h intruder. The question we ask here
is whether or not a (1+3)Aw— (0+2+4)%wdy, f7), calculation in a dy, f7,
model space can reproduce the relative beta transition strengths for 0; and 0} in

TABLE VIII

The Ratio of Unique First-Forbidden Beta Transition Strengths for Decay of 2~ States to
the First Two 0+ States of *“?Ar, *?Ca, and *“Ca

B,(05°)/B,(07)

Decay Expt (1+3)hw->(0+2+4) o  (1+3)fiw— (0+2) ko
2CIB~)*Ar 0.04 0.04 0.12
“K(B~)*Ca 0.37 0.44 0.08

“K(B~)*Ca 0.58 0.25 0.08
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these three nuclei. Comparison to experiment is made in Table VIIL It is seen that
the Hsieh-Mooy-Wildenthal [28] d;, f7, model in the (1 +3) v - (0 + 2 + 4) fiw
model space does a very creditable job of explaining the relative rates and does
much better than (1 + 3) 2w - (04 2) Aw.

H. PreDICTIONS FOR UNOBSERVED TRANSITIONS

In this section we present predictions for unobserved first-forbidden transitions.
One motive is to provide estimates of the effect on allowed beta branching decay
rates of any significant but overlooked first-forbidden branches. Another motive is
to identify those cases worthy of future study. We use the effective operators
discussed in Section C for predictions. Results for 4 = 35-44 nuclei are collected in
Table IX.

The quantities listed in Table IX are defined as follows:

Qo: The mass difference between parent and daughter.
t»(total): The experimental half-line of the parent.

t,,(FFB): The predicted partial half-line for first-forbidden beta decay
calculated for all energetically accessible decays.

BR(FFB): The percentage of decays predicted to be first-forbidden;
BR(FFB) =100 -¢,,(total)/t, ,(FFB).

br(FFB): The percentage of first-forbidden intensity predicted to proceed via
the level in question.

br(total): The predicted total branching ratio for the level in question;
br(total) = 0.01 - br(FFB) - BR(FFB).
br(expt): The experimental branching ratio information (if known).

We omit from consideration here those nuclei which have been treated
adequately in previous sections. These include the decays of *’S, *S, *Cl, and “*Cl.
For the 4 =35-38 nuclei of Table IX there are no known first-forbidden decays.
The only branch in this group predicted to be greater than 1 % is **P decay to
3¢S 2. This branch would be difficult to measure accurately because of y cascades
from higher levels [46]. The one discrepancy in the 4 = 35-38 nuclei is the *’K RO
branch to 2. A further search for this branch would be of interest.

The potentially most interesting decay in the table is the **Ca(f+)*K 0* -0~
transition which has the very small predicted log ft-value of 5.52. A determination
of this branch—predicted to be 0.03 %—would be of considerable interest because
of its value in the study of meson enhancement of RO decays. We have not
previously discussed a 0% — 0~ §* decay, and therefore we consider this decay in
more detail. In the f~ RO decays considered so far we have 1hw — Oficwo transitions
so that M has the opposite sign from M3 [see Egs.(11) and (12)] and
a(Z, Wy, r,) is positive so that the two terms in Eq. (41) are of opposite sign.
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Typical f* decays are 0o — 1w so that from Egs. (11) and (12) we see that M3
and M [ have the same sign. However, a(Z, W, r,) usually changes sign since it is
given by r,, £+ 3W,, and r, {—negative for §+ decay—is usually larger than {W,,.
Thus, we usually have destructive interference in f+ RO decays but not necessarily
so and certainly of a lesser degree than in = decay since a(Z, W, r,) is smaller
due to the destructive interference between r, & and 1W,. In the present instance,
*¥Ca decaying to the 2993-keV 0~ state of K, Eq. (41) gives

B® =[MI—231.-MS]? (51)

and with our predictions for the effective matrix elements of M =577, M5 =198,
the M3 term is 8 % of the first term. In comparison the *S(f~)*Cl10* -0~
transition with a(Z, W, r,)=4.96 has a M3 term 17 % of the M term when the
same effective moments are used [see Table VI]. This is one reason for the large
predicted B{» value for the **Ca0* — 0~ decay. The other is the rather simple
nature of the wavefunctions. The **Ca 0* state is 94 % d 5,7 while the first two 0~
states of **K are both predicted to have dominant configurations of

ald;; psp> +blds;3 f7,) + remainder (52)

with (coincidentally) a® ~ 0.40, 5> ~ 0.28 for both. It turns out that in this case the
n(ds;,) = v(ps,) transition is unusually strong and dominant. It should be
remarked that our predicted 0, level is 1470 keV too high in excitation energy; this
is the worst agreement of the WBMB interaction with experiment for an fp level in
A =35-41 nuclei.

The 0+ *°Ti branch to the as yet unobserved **Sc 0, level also has a small log f,¢
value but it is predicted to be a 107> % branch and therefore considerably more
difficult to observe.

In *Cl, *Ca, “°Cl, and “K decays, the first-forbidden branch considered is
above or not far below the present experimental limit. These also are candidates for
further study.

1. SUMMARY

1. Introduction

In our view the most successful and complete shell-model descriptions of nuclear
observables have been the pioneer work of Cohen and Kurath [48] in the 1p shell
and the subsequent much more extensive description of the sd shell by Wildenthal
and collaborators as fully explored and explained in a series of articles by Brown
and Wildenthal [49-52]. Since these descriptions are of a single major shell they
are naturally confined to observables which are relevant to properties mainly
dependent on the amplitudes of nucleons in a single major shell. Here we are
concerned with nuclear states generated from occupations of more than one major
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shell, specifically, cross-shell wavefunctions between the (sd) and ( fp) major shells.
The observables of interest are intrinsically more complicated and probe features
of nuclear structure of a character different from those revealed by intra-shell
observables such as M1 and E2 moments and transitions. For various reasons
first-forbidden beta decay provides the simplest of these observables.

2. Unique First-Forbidden Decays

Once again we find it expedient to separate discussion of first-forbidden beta
decay by rank. The bulk of the experimental data in the 4 =40 region is for unique
4J =2 decays simply because the low-lying states are dominated by dy3 7,
excitations between which RO and R1 decays are forbidden. Our present study
updates the previous ones of Towner and his colleagues [2, 44] and substantiates
the findings of those studies. Those findings were that the repulsive T'=1
particle-hole interaction causes severe inhibition of the dominant transition, for
which the prototype is

(dy)* 32~"f'71/2 = (dy) 2 (o) (53)

via correlations in both the initial and the final states. We are able to treat this
problem more exactly in that the ds, f;,, model space is replaced by the full sdpf
space so that the transition becomes

(sd)* =157 fp)" = (s~ 16" 1 fpy (54)

This calculation then includes the correlations in the initial state added pertur-
batively by Towner et al. and fully vindicates this previous treatment. This is
important because diagonalization of the ground-state correlations, i.e., expansion
of Eq. (54) to include 24w terms in the final state as in

(sd)* =1 " fp)" > ao[(sed)* 1"+ fp)" M T+ sy [(sd)* 107" 1 (fp)" 1], (55)

is beyond our capabilities and so we must reply on perturbative estimates of this
effect. It is indeed gratifying that the observed quenching of the unique rates is in
qualitative agreement with the estimates of ground-state correlations made by
Towner et al. This means that the net effect of all other effects is predicted to be
relatively small compared to the large overall factor of (0.510) 2 left unexplained
after correlations in the initial state are included.

3. J — J First-Forbidden Decays

As shown in Table VI, the RO contribution dominates A4J=0 decays in the
A ~40 region just as it does at 4~ 16 [10]. Thus, these decays are a potential
source of information on the mesonic enhancement of M. However, the known
decays are rather weak. As shown in Table VI, the B{®) values are of order 0.1-0.2
of the single-particle estimate of ~90fm for a 1d,, — 2p,, transition (Table II).
Thus these decays are not too informative. Nevertheless, they do seem to support

595/187/2-17
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the need for mesonic enhancement found much more convincingly near 4 ~ 16. The
calculations of unobserved decays summarized in Table IX do reveal one interesting
transition; namely **Ca(0; ) — **K(0; ). This is predicted to have log fot=5.52.
Using the relationship [see Section E.4]

M© =[9.15/f,1]"2x 10* (56)

we find M {9 =53 fm for the predicted RO beta matrix element. This is ~ a single-
particle 1ds, —2p,, transition and thus its observation would provide an
interesting possibility for study of mesonic enhancement.
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