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Abstract 

Atomic nuclei analyzed in the framework of the shell model provide a good example of a many-body quantum system 
with strong interactions between its constituents. As excitation energy and level density increase, the system evolves in the 
direction of very complicated (“stochastic”) dynamics. Energy levels and stationary wave functions obtained in realistic 
shell-model calculations are studied from the viewpoint of signatures of quantum chaos and complexity. The standard 
characteristics of local level statistics, such as nearest level spacing distribution or spectral rigidity, manifest chaoticity 
which agrees with the GOE predictions. Going beyond that, we analyze the structure of the eigenfunctions and the 
distribution function of the eigenvector components using basis-dependent quantitative criteria such as information 
entropy. The degree of complexity is shown to be a smooth function of excitation energy. The representation dependence 
provides additional physical information on the interrelation between the eigenbasis and the representation basis. The 
exceptional role of the mean field basis is discussed. The spreading width and the shape of the strength function of the 
original simple states are also studied. The generic wave functions in the chaotic region have similar observable 
properties which can be characterized by the average single-particle occupation numbers. Agreement with the 
Fermi-Dirac distribution manifests the correspondence between chaotic dynamics and thermalization. The information 
entropy in the mean field basis gives an equivalent temperature scale which confirms this correspondence. Pairing 
correlations display a phase transition to the normal state with a long tail of fluctuational enhancement above the level 
expected for a heated Fermi gas. 

PACS: 21.10.Ma; 21.1O.P~; 24.6O.L~; 21.6O.C~ 

Keywords: Quantum chaos; Nuclear shell model; Spreading width; Level statistics; Entropy; Pairing 
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1. Introduction 

Chaotic dynamics is one of the most rapidly developing subjects in physics. Classical determinis- 
tic chaos, which originates from the extreme sensitivity of a system to subtle variations of initial 
conditions or parameters, is well understood [l, 21, especially for a small number of degrees of 
freedom. In contrast, a rigorous mathematical definition of quantum chaos does not exist. The 
direct extension of classical results seems to be impossible because of the uncertainty relation, the 
linearity of the Schrodinger equation and the noncommutativeness of limiting transitions h + 0 
and t --t co. Therefore many physicists prefer to discuss quantum signatures [3,4] or quantum 
suppression [S] of classical chaos. 

The transition to the classical limit is straightforward in problems of the one-body type. 
Quantum billiards are the best known examples. Classically, regular or chaotic features of motion 
are determined by the shape of boundaries. Quantum level statistics [S-S] display specific local 
correlations and fluctuations of Poisson or Wigner type, respectively. This “one-body chaos” was 
thoroughly studied in experiments with microwave cavities [9, lo]. Recently similar studies were 
carried out [ 1 l] for acoustical chaos in three-dimensional geometry. 

In many-body quantum systems a clear semiclassical picture arises, as a rule, only in the mean 
field approximation. In this case a system is modeled by a gas of quasiparticles in the self-consistent 
field of a certain shape. Symmetry (or absence of symmetry) of the mean field determines regularity 
(or chaoticity) of single-particle motion. The diversity of the mean field configurations in atomic 
nuclei allows one to use nuclei as a good example of regular and chaotic single-particle dynamics. 
The transition between those extreme cases has been studied for nucleons in a deformed field as 
a function of perturbations violating the symmetry, see for example [12-141. Observable conse- 
quences of chaotic single-electron spectra were discussed long ago [15] in application to small 
metallic particles. Mesoscopic objects of solid state physics give another example where the 
essential features of underlying chaotic dynamics can be understood, mostly from the single- 
electron point of view [16]. 

Low-lying states of nuclei also manifest collective excitations. Truncating the nuclear Hilbert 
space to a small number of collective modes, as in the interacting boson model, one can consider 
corresponding quasiparticles (phonons) and their interaction in analogy to classical coupled 
oscillators. Here again chaotic or regular properties can be related to those of the semiclassical 
limit [17]. The natural generalization leads to chaotic dynamics of the interacting boson-fermion 
model [18] which can be viewed as one-body chaos for a billiard with vibrating boundaries. To 
model collective rotational motion, a rotating billiard was studied in [19]. All such models, being 
quite instructive, are not sufficient for understanding chaotic dynamics in actual many-body 
systems where the approximation of isolated single-particle or collective degrees of freedom 
becomes invalid very quickly as the excitation energy increases. 

Until now the manifestations of quantum chaos are associated mainly with the specific features 
of correlations and fluctuations of energy level positions on a microscopic scale. In nuclear spectra, 
the empirical analysis of level statistics started more than half a century ago [20]. The conjecture 
[S] of correspondence between the level spacing distribution and other local features of the 
sequences of levels, on one hand, and chaotic dynamics, on the other hand, is supported [6,7,21] 
by the empirical statistics of neutron and proton resonances. In the semiclassical limit this 
conjecture was in fact proven [22]. The nearest level spacing distribution P(s) is expected to 
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manifest a transition from regular (Poisson) to chaotic (Wigner) dynamics, the latter being in 
agreement with the random matrix predictions [6,7,21] of the Gaussian Orthogonal Ensemble 
(GOE) which is used for systems invariant under time reversal. Without this symmetry, the generic 
random matrix ensemble would be the Gaussian Unitary Ensemble (GUE) with stronger (quad- 
ratic) level repulsion at small spacings. The analysis [23] of data based on this difference allowed 
French and collaborators to put the upper limit of 0.1% on the admixture of time-reversal 
noninvariant forces. 

The statistics of the low-lying nuclear levels in the cases where complete spectroscopic informa- 
tion is available [24,25] show that the transition to the Wigner distribution occurs at excitation 
energy as low as about 4MeV. Model microscopic calculations [26] demonstrate that in the 
mixing of simple one particle-one hole (lp-lh) configurations it is sufficient to take into account 
the nearest exciton class (2p-2h) to obtain the chaotic function P(s). Similar conclusions follow 
from data on high spin levels above the yrast-line [27]. Unfortunately, in all practical cases, the 
experimental data are too scarce to make a quantitative analysis of the transition between regular 
and chaotic dynamics feasible. 

The new features which distinguish the complicated dynamics in many-body systems from the 
billiard-type problems are associated with the residual interactions of quasiparticles. As the 
excitation energy and level density increase, the residual interactions become more and more 
important. The number of excited quasiparticles is also growing and the mean field “billiard” is 
getting overcrowded. Incoherent collision-like processes as well as anharmonicity of collective 
modes make the lifetime of elementary excitations short. The actual stationary states become 
exceedingly complicated superpositions of original “simple” configurations. We will call this 
process “stochastization”. 

As a result of the increasing level density and the stochastization of the stationary wave 
functions, even small components of the residual interaction can lead to observable consequences. 
The most spectacular example can be found in the so-called “dynamic” (more precisely, statistical) 
enhancement of weak interactions 128,291. At the same time the local level statistics display 
typical features of chaos. This pattern of chaotic signatures mixed with the apparent failure of 
the independent quasiparticle model can be called “many-body chaos” [30]. In many respects 
this is nothing but Niels Bohr’s compound nucleus [31]. However at this stage we are interested 
in internal properties of a quanta1 system with a discrete spectrum rather than in reaction 
cross-sections. The influence of the continuum on the intrinsic states is assumed to be negli- 
gible. Chaotic dynamics in an open system is a very interesting and almost unexplored field 
[32,30]. 

The transition from elementary modes to quantum chaos is of course not specific for nuclei. In 
spin-fermion systems modeling high-temperature superconductivity, the transitional region seems 
to be abnormally narrow [33]. As known for a long time, atomic spectra manifest [34] the same 
universal level statistics. Recently the detailed analysis of compound states in a heavy atom was 
performed in [35] essentially along the same lines as we pursue in this paper. 

While local correlations and fluctuations of levels are considered to be understood, much less is 
known on structure and correlations of stationary wave functions and matrix elements in the 
intermediate and chaotic domains. Following the arguments by Percival [36], it is usually accepted 
that generic chaotic wave functions all “look the same” covering the entire available configuration 
space. For a many-body case, the multidimensional configuration space, as a rule, is not convenient 



90 V. Zelevinsky et al. JPhysics Reports 276 (1996) 85-I 76 

for realistic calculations, especially in the stochastic regime. Instead, one has to work usually with 
the stationary states in restricted Hilbert space. The empirical information available on the 
structure of complicated wave functions in realistic systems is rather poor. 

In systems with a small number of degrees of freedom, the remnants of regular behavior, “scars”, 
exist [37,38]. The analog of scaring in the many-body case supposedly can be found in simple 
modes of motion which up to a certain extent keep their identity in the stochastic environment. It 
was shown [39] that giant collective excitations associated with the shape vibrations of the mean 
field may coexist with chaotic single-particle dynamics. Turning on the residual interaction, one 
can see the progressive damping of collective modes due to their mixing with incoherent complic- 
ated states. Similar to the scars in the coordinate space, the reminder of the collective mode will be 
the concentration of the collective strength in a certain energy range of Hilbert space. 

To perform an analysis of the structure of the eigenvectors which can contain a large amount of 
significant simple components, one needs a quantifying tool. At this stage one has to select a certain 
basis in Hilbert space. There is no invariant measure for degree of complexity of wave functions 
(in the eigenbasis of the hamiltonian the stationary eigenvectors have no complexity at all). 
Therefore the problem of natural, or preferential, representation arises. 

One can argue [40] that such a basis is to be related to the mean field of the many-body system. 
The mean field naturally emerges [41,40] from averaging out random collision-like processes. It 
means that the mean field accumulates the most smooth components of many-body dynamics, 
providing the best framework for separating global (secular behavior) and local (correlations and 
fluctuations of individual eigenstates and eigenvalues) properties. The mean field representation 
allows one to trace in detail the transition from independent quasiparticle motion to complicated 
compound states. On the other hand, a reasonable measure of complexity is expected to be 
insensitive to the particular choice of details of the mean field basis provided it is stable with respect 
to collective modes. In any case, complexity of an eigenfunction in a given representation displays 
a mutual relationship between the eigenbasis of the hamiltonian and the representation basis, and 
therefore can provide additional physical information. 

In the mean field representation, the stochastization process manifests itself in developing 
delocalization of the eigenstates in Hilbert space. The number N of significant components of 
a typical wave function, or its localization length 1 in the given basis, can be used for qualitative, 
and sometimes quantitative, evaluation of degree of complexity. In the strong mixing regime 
(“stochastic limit” [42]), the N-scaling of matrix elements of simple (one- or two-body) operators 
for transitions related to compound states [28,29] gives an important guideline to physical 
estimates. Apart from the above-mentioned statistical enhancement of weak interactions, it was 
used for the general classification of nuclear reactions proceeding via the compound nucleus [43]. 

Looking at the complexity of stationary wave functions, one can imagine two opposite situ- 
ations. In the first case, the degree of complexity of eigenstates at approximately the same 
excitation energy strongly fluctuates from one state to another revealing the possibility that 
neighboring states in the region of high level density could have completely unrelated structure. In 
the second case, neighboring states are of similar degree of complexity which would display smooth 
energy behavior. In accordance with Percival’s arguments [36], we expect the second option to 
occur in the region of chaotic dynamics where only exact integrals of motion are kept intact and the 
wave functions are completely mixed to “look the same”. If this is the case, expectation values of 
macroscopic observables should not depend on a choice of a specific superposition of generic states 
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in the narrow energy window. However, this is nothing but the main property of statistical 
equilibrium. The question of correspondence between the signatures of quantum chaos in a many- 
body system and thermal equilibrium is of deep physical importance. 

As we already pointed out, the regime of stochastic dynamics is not expected to be structureless. 
The presence of single-particle and collective motion (shape vibrations, rotation and giant reson- 
ances in nuclei) associated with simple excitation modes displays the regular mean field component 
of dynamics persisting in the stochastic region. Of course, those states are highly fragmented and 
the concept of the localization length of an eigenstate can be translated into the conventional 
notion of the spreading width [21] of a basis state. Simple arguments related to the idea of 
stochastic limit show [30,42,44] that, in this limit, spreading widths cease to grow as a function of 
nuclear temperature, being determined by the original residual interaction rather than by the 
increasing level density. Apparently this is observed experimentally [45] as the saturation of the 
spreading width of giant dipole resonances excited in hot nuclei. A similar way of reasoning was 
successfully applied to isobaric analog resonances [46,47] where surprisingly small variations of 
the spreading width throughout the periodic table are well known [48]. 

We mentioned several areas where the idea of stochastic dynamics turned out to be quite 
productive. However, until now it lacks the essential “empirical” justification based on the analysis 
of statistically reliable data for wave functions and transition amplitudes in actual many-body 
systems. Apart from the nearest level spacing distribution, the only direct confirmation comes 
from the Porter-Thomas distribution of amplitudes connecting compound states to simple 
channels [6,7,21]. In the statistical analysis of complicated states generated by realistic calcu- 
lations for heavy atoms [35], the authors have found important regularities of the spreading widths 
and single-particle occupation numbers, although the statistics (about 200 levels) are not very 
good. 

Nuclear shell-model calculations appear to be one of the most promising candidates for 
theoretically probing the structure of complicated wave functions in quantum many-body systems 
with strong interactions. Encouraging studies have already been carried out using realistic models 
[51,52] and simplified schemes such as the Lipkin model [49,50]. 

Our goal in the present paper is to study various aspects of quantum chaos, its interplay with 
regular features and thermalization, using the realistic shell model as a testing ground. We start 
(Section 2) with a brief description of the model. The realistic semi-empirical hamiltonian and 
construction of basis states with exact quantum numbers of angular momentum and isospin are 
important elements of the approach. The distribution of off-diagonal many-body matrix elements 
is close to exponential which seems to be a generic, although not well understood, feature for 
realistic systems [35]. 

Having at our disposal the exact solution of the many-body Schrodinger equation, although in 
limited Hilbert space, we proceed to analyze the global level density and local correlations and 
fluctuations of energy levels (Section 3). The system turns out to reveal the standard GOE 
signatures of quantum chaos in the level statistics [nearest level spacing distribution P(s) and 
spectral rigidity d(L)]. Our hamiltonian does not contain any random elements. The chaoticity 
arises as a result of strong mixing of the “simple” basis states by residual interactions. We will 
explore the dependence of chaoticity on the relative strength of the interaction with respect to the 
mean field level spacing and the dynamics of the level crossings under the variation of the 
hamiltonian (the distribution of level curvatures). 
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In Section 4 we begin to study the structure of stationary wave functions which is more 
sensitive to deviations from the GOE limit. The evolution of complexity of eigenfunctions 
along the spectrum continues long after the level statistics signal onset of chaos. We use informa- 
tion entropy and the moments of the distribution function of the eigenvector components to 
quantify the degree of complexity of the eigenfunctions. These measures of complexity are 
representation dependent. They behave in a regular smooth way as a function of excitation 
energy provided they are expressed in terms of the “natural” mean field basis. The basis depend- 
ence is studied in detail, and the exceptional role of the mean field basis is confirmed by the 
results. 

Detailed behavior of the distribution function of the eigenvector components in the original 
basis as well as the spreading of the basis states are discussed in Section 5. We compare our results 
with the predictions of statistical spectroscopy by French and others [53-561 and with the 
“standard” (golden-rule) model of the strength function [21]. We discuss the behavior of the 
spreading width as a function of excitation energy which is closely related to the problem of the 
saturation of the giant resonance width with increasing temperature [42,44]. Another unresolved 
problem (see for example [35]) is the shape of the wings of the distribution function of the 
components. The routinely used Breit-Wigner distribution overestimates the weight of the remote 
admixtures, which influences weak interaction effects [57], and the spreading of the multiple- 
phonon excitations [SS, 591. We investigate this problem for our shell-model states and find 
evidence for the exponentially decaying tails of a generic strength function. The standard golden- 
rule model for the spreading width and the Breit-Wigner shape can be restored by an artificial 
reduction of the interaction strength, in accordance to the theoretical arguments presented in 
[59,44]. 

Section 6 is devoted to the discussion of the interplay between chaos and thermalization. We 
show that the eigenfunctions of the states close in energy in the chaotic region really “look the 
same”. This is the prerequisite which allows one to introduce the corresponding thermal 
equilibrium ensemble. The nucleon occupation numbers turn out to be a smooth function of 
excitation energy which agrees well with the equilibrium Fermi-Dirac distribution. This resolves 
the apparent contradiction between the Fermi-liquid theory and quantum chaos. In a suitable 
representation related to the quasiparticle energies in the mean field, the response of a many-body 
system even in the stochastic regime can be expressed in terms of heated quasiparticles. Another 
conclusion is that, in the same natural basis, information entropy of individual states increases in 
parallel to standard microcanonical entropy and to entropy of the heated quasiparticle gas. 
Therefore the degree of complexity can be used as an alternative temperature scale. We believe that 
further studies in this direction can shed new light on the problem of the foundation of statistical 
mechanics. 

In Section 7 we illustrate the process of stochastization of collective degrees of freedom by the 
evolution of pairing with the excitation energy. The lowest states reveal strong pairing correlations 
rapidly decreasing with temperature similar to the phase transition in superconductors. However 
one sees a long tail at higher temperatures and the constant level of pairing fluctuations in the 
“normal” phase which is in agreement with estimates by statistical spectroscopy and with the 
Fermi gas expectations. 

We conclude with the (certainly incomplete) list of open problems in the field of chaotic quantum 
dynamics in realistic many-body systems. 
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2. Shell-model calculations 

We base our analysis on the results of the exact diagonalization of the effective hamiltonian H in 
a large N x N Hilbert space spanned by a truncated set of shell-model nuclear configurations. Each 
configuration is characterized by the distribution of independent fermions over available spherical 
single-particle orbitals. Within a configuration, various ways to occupy the magnetic substates of 
the j-levels give rise to the “m-scheme” Slater determinants. 

Our hamiltonian H keeps rotational and isospin invariance. For a given configuration, there still 
exists a freedom of choice for the coupling of angular momenta (isospins) of individual particles 
into the total angular momentum (isospin). We construct our basis states designated below as 1 k) 

combining the m-scheme determinants in such a way that they have good quantum numbers of the 
total angular momentum J, its projection M, parity n, isospin T and its projection T3. Therefore 
the states 1 k) are far from being simple Slater determinants. 

The projection required by the exact symmetry of the system plays an important role in 
generating complexity. The necessity of using the appropriate J” T states instead of the simple 
m-scheme determinants was demonstrated already in the first studies of quantum chaos in the 
nuclear shell model [Sl]. This “premixing” is absent in the attempts to analyze the complexity of 
high spin rotational bands (“rotational damping” [60]) in the framework of the cranking model 
[61]. The cranking model does not preserve the angular momentum. It operates with quasiparticle 
configurations similar to those of the m-scheme of the spherical shell model but taken for 
a deformed uniformly rotating field. Absence of correct premixing (or angular momentum projec- 
tion) implies artificial mixing by the residual interaction since angular momentum selection rules 
are lifted. It is uncertain as to what extent the net result of this interplay distorts the final picture. 

We note parenthetically that the mixing of m-states due to the angular momentum coupling poses 
an interesting problem which apparently has not been addressed in the literature. Even in the 
restricted space of a single major shell, a specific choice of one of the large number of possible 
coupling schemes leads to a specific “geometrical chaoticity”. High-j (6j, 9j etc.) symbols related to the 
recoupling transformation between different schemes have almost random signs and behave similar 
to the elements of a very complicated matrix. Physically this justifies using the idea of random 
angular momentum coupling in the discussion of many-body level densities [62]. The degree of 
geometrical chaoticity was utilized as a specific parameter for discriminating the Feynman diagrams 
in the problem of strong coupling of a nucleon [63] or a giant resonance [64] with low-frequency 
quadrupole phonons. The angular momenta of virtual phonons are coupled randomly except for the 
coherent rainbow diagrams where the phonons are sequentially absorbed opposite to the order of their 
radiation [63]. This is the same class of diagrams (“pairwise contractions”) which survives [7] in the 
calculation of the average Green function and the level density in the large dimension limit of the 
random matrix theory. The question of geometrical chaoticity deserves to be developed more in detail. 

2.1. General formulation 

The effective shell-model hamiltonian H consists of the independent particle (one-body) part Ho 
and the residual interaction H’ of the two-body type: 

H = Ho + H’ . (1) 
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The unperturbed hamiltonian Ho = C,e,afan describes noninteracting fermions in the mean field 
of the appropriate spherical core. The single-particle orbitals 1 I) have quantum numbers i = (Ijmz) 
of orbital (1) and total 0’) angular momentum, projection j, = m and isospin projection z. The 
eigenvalues &k of Ho, 

H*lk) = c!%lk) > (2) 

are highly degenerate. They are the sums 

&k = sea% (3) 

of energies e, of all orbits 1 A) occupied in a many-body configuration 1 k) with occupation numbers 
nn(k), equal to 1 or 0. The spherical orbital energies e, = efj do not depend on m and Z. The energies 
&k are the same for all angular momentum coupling schemes allowed by a given configuration {n,}. 

In the basis 1 k), the residual interaction H’ has both diagonal, R, and off-diagonal, I?, matrix 
elements, H’ = R + n. The diagonal part fl already lifts some degeneracy of &k. Full diagonaliz- 
ation in each sector with given exact quantum numbers leads to the stationary states la), 

HIa> = -&la> > 

which can be represented by superpositions of unperturbed states I k), 

(4) 

lxx> = ~GIO . 
k 

(5) 

The amplitudes CE can be taken as real in the case of the interaction invariant under time reversal. 
Since the transformation from the unperturbed basis /k) to the eigenbasis /a) is unitary, the same 
coefficients (5) describe the spreading of the basis states lk) over the eigenstates 1~). The 
amplitudes satisfy the orthonormalization conditions 

A completely delocalized function would have a number of components, which contribute effec- 
tively to the normalization (6), close to the value of the dimension N. In this limit the typical 

magnitude of each component is l/@. In general, a number N, of principal components I k) 

characterizes the delocalization of a state I a) in the given basis (2). The corresponding amplitudes 

have an order of magnitude l/a. 

2.2. Angular momentum and isospin projection 

Throughout the paper, our model hamiltonian almost exclusively describes a many-body system 
of valence particles in one major shell. Examples are the sd shell (24 states including Od,,,, Od,,, 
and lsliZ single-particle orbits) and the fp shell (40 states including Of,,,, Of,,,, 1~~~~ and lpi,, 
single-particle orbits). The one-body part (2) of the total hamiltonian (1) is due to an existing core 
(I60 for the sd shell and 40Ca for the fp shell). In addition we have an antisymmetrized two-body 
interaction of the valence particles, 

H’ = kCV,,;,,a~a:a,,a, . 
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To construct the many-body wave functions with good spin J and isospin T quantum numbers, 
we start with the m-scheme determinants which have, for given J and T, the maximum spin and 
isospin projection, 

lM=J,T3=T;m), (8) 

where m span the m-scheme subspace of states with M = J and T3 = T. One can introduce also 
configurations (partitions) 9 which are defined by the occupancies nL(k) of single-particle orbitals. 
All states 1 k) belonging to a partition 9 have the same set of n,(k). For all partitions, CAnA = A,, 
the total number of valence particles. 

The organization of the model space in partitions present two useful features. A subspace of the 
m-scheme states (8) defined by a given configuration 9 is invariant with respect to the projection 
onto good total angular momentum J and total isospin T, 

lJT;k c 9) = pJTIMT3;mk c 9) = 1 XiTkIMT3;m). 
mc8 

(9) 

This can be easily seen using the explicit expression for the projection operator: 

‘mu s-s?+ + j; + & - J(J + 1) TmaX F-p’, + F; + p3 - T(T + 1) 
hoTo = fl 

Jo(JO + 1) - J(J + 1) r-I 
J#Jo T # To To(To + 1) - T(T + 1) ’ 

(10) 

Secondly, the m-scheme states (8) and, as a consequence of the invariance of the projection, the 
projected states (9) also, are degenerate with respect to the one-body part of the hamiltonian (2). 

The projected states are used to build the matrix of the many-body hamiltonian: 

H;; = (JT;klHIJT;k’) . 

Here different partitions as well as the basis states within a partition are mixed by 
interactions. The matrix (11) is eventually diagonalized to obtain the eigenvalues 
eigenvectors (5) 

1 JT;C+ = CC;/ JT; k) . 

k 

(11) 
the residual 
E, and the 

(12) 

They represent the object of our investigation of chaotic properties of the quantum many-body 
system. 

Similar studies can be performed using the “proton-neutron” (p-n) formalism with no explicit 
isospin. Below we show some examples of such calculations. Since the space dimensions increase as 
compared to the calculations with the isospin projection, for such cases we take a smaller particle 
number (24Mg system of 4 protons and 4 neutrons). We use this opportunity also to check the 
stability of the results against slight variations of residual interactions. 

2.3. The model 

We have chosen as the main object of our analysis a system of A, = 12 particles in the sd shell 
which mimics (for T3 = 0) a subset of states in the 28Si nucleus. In some cases (as noted) we also 
show results of similar calculations for systems with a smaller number of valence particles. We use 
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the Wildenthal hamiltonian [65] which defines the single-particle energies eA and the interaction 
between the valence particles by fitting more than 400 binding energies and excitation energies for 
the sd-shell nuclei. In computations with the protonneutron scheme, we used, along with the same 
Wildenthal interaction rewritten for the p-n scheme (WPN), the interaction (WPNC) which 
explicitly violates isospin on the experimentally allowed level by including the Coulomb interac- 
tion and isospin-nonconserving isovector and isotensor nuclear forces [67]. All calculations were 
carried out with the computer program OXBASH [66], which uses the m-scheme basis states 
together with the angular momentum projection operators to construct and diagonalize matrices 
with good J and T in the isospin formalism and good J in the proton-neutron formalism. 

Taking into account total angular momentum and isospin conservation, there are 63 non- 
vanishing two-body matrix elements ((jJ,),r 1 H’ 1 (j3j,),,) in sd-shell space. They are listed in 
Table 1 classified according to the quantum numbers of the initial G3,j4) and final ul,j,) states of 
the nucleon pair and by the values of J and T conserved in the interaction. 

Being in general of the order of an MeV, the two-body matrix elements show significant 
attraction in the T = 1 states with even angular momenta. All the matrix elements for T = 1 and 
J = 0,2 and 4 (the only quantum numbers allowed for identical nucleons on the same j-level) are 
negative which is a clear signature of pair correlations. Another noticeable feature of the residual 
interaction is very strong diagonal attraction for isoscalar pairs (T = 0). All the matrix elements for 
the expectation values of H’ in the pair states with T = 0 are negative, being especially large for 
high angular momenta. This shows the tendency of the valence particles to create oblate deforma- 
tion. In contrast to that, the T = 0 nondiagonal (scattering) matrix elements are mainly of repulsive 
character. In Table 2 we give the dimensions N(J” T) for all total angular momenta J and isospins 
T = 0 and T = 1 allowed for 12 valence particles in the sd shell. In our calculations, we mostly use 
the 2’0 and O+O classes of states, although high angular momenta such as 9’0 will be used for 
comparison as well. 

2.4. Strength functions and fragmentation widths 

Prior to the actual diagonalization, we can study important characteristics of the system by 
analyzing the properties of the hamiltonian matrix. Long ago such analyses were carried out by 
statistical spectroscopy [53]. 

2.4.1. Strength function and centroids of the basis states 
Diagonal matrix elements are dominated by the one-body part Ho. The two-body diagonal 

contributions R split the degenerate levels within the partitions so that each partition covers 
a small region on the “unperturbed” energy axis (with the energy Hkk = &k + nkk of each individual 
basis state 1 k)) which partly overlaps with the regions of other partitions. In our A = 28 example, 
the diagonal part of the hamiltonian is spread from - 120 MeV to - 60 MeV. 

The basis states 1 k) will be mixed by the off-diagonal part I?. Two-body matrix elements 
between the many-body basis states are typically of the order of hundreds keV. The fragmentation 
of the basis states over the eigenstates 1 a) is determined by the matrix Ci of Eq. (5), namely by the 
weights of the components 

w; = (c;)* . (13) 
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Table 1 
Two-body reduced matrix elements (in MeV) of the residual interaction within the sd shell-model space 

T=lJ=O d&z d:,z 

$2 - 2.125 - 1.084 - 1.325 
d&z - 2.185 - 3.186 
d&z - 2.820 

T = 1 J = 2 d& d&z s1,zdv s1/z 5/z d dvzd3,z 

d&z - 0.067 - 1.622 - 0.515 - 0.404 - 0.615 
d&z - 1.002 - 0.620 - 0.862 - 0.283 
Slj2 d 3,2 - 0.406 - 1.941 - 0.525 
h/2 d 512 - 0.818 - 0.477 
dvdv - 0.325 

T=lJ=4 d:,z d,,zdqz 

d:,2 - 0.164 - 1.236 

ddw - 1.450 

T=lJ=l suzd3,z dvzd3,2 

s112 312 d + 0.607 + 0.187 

b&,2 + 1.033 

T=lJ=3 suzd,,, dvdvz 

Sl/2 5/Z d 

d5,2d3,2 

+ 0.762 + 0.674 
+ 0.589 

T=OJ=l 42 d:,2 d:,2 sl,2d3,2 d5,2d3,2 

$2 - 3.263 + 0.028 - 1.176 + 1.250 + 2.104 
d&2 - 1.415 + 0.722 + 0.398 + 0.565 
d:,, - 1.632 - 1.103 + 2.543 
%/2 d 312 - 4.293 - 1.710 
dvzd,,, - 6.506 

T=OJ=3 42 d:,z Q/Z 512 d dvzd3,2 

- 2.884 + 1.895 + 0.189 + 2.034 
- 1.501 - 1.242 + 2.222 

s1/2 d 5,2 - 3.860 + 1.203 
dvzd3,2 - 0.538 
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Table 1 Continued. 

T=OJ=5 

d::z 

d::z 

- 4.226 

T=OJ=2 swdw SW 512 d dwdw 

sl/Z d 3i2 - 1.819 + 2.066 + 0.283 
s1/2 d 512 - 1.447 + 0.097 
dwdwz - 3.825 

T=OJ=4 dd3;2 

dwd3,2 4.506 

Table 2 
Dimensions of subspaces J”T for 12 particles in the sd shell 

J 

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0 839 2135 3276 3711 3793 3278 2667 1848 1205 6.57 334 126 48 8 1 
1 1372 3985 5768 6706 6562 5755 4434 3097 1882 1023 462 178 48 9 0 
2 874 2319 3434 3804 3700 3059 2285 1462 844 393 160 44 9 0 0 

We characterize the fragmentation of the simple state Ik) over the energy spectrum by the 
strength function 

F,(E) = (k16(E - H)lk) = pv{6(E - E,) . 
OL 

(14) 

As follows from CGI IV: = 1, the strength functions are normalized by 

s 
dEF,(E) = 1 . (15) 

Without the full knowledge of the strength function, one can describe the fragmentation of 
simple states by the lowest moments [53] which do not require the actual diagonalization. The 
centroid & of the energy distribution of the original basis state 1 k) coincides with the unperturbed 
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energy Hkk, 

Ek f 

s 
dEEFk(E) = xE,W;: 

OL 

= c (kI$'(aIHld)(dIk) = Hkk =&k + H,& (16) 
aa’ 

where the completeness arguments were used. The spread of the unperturbed energies due to the 
diagonal elements of the interaction (no mixing at this stage) can be characterized by the rms 
deviation dE of the centroids & from the energy center E, 

(17) 

For the 2+0 states AE z 8 MeV. 

2.4.2. Energy dispersion of basis states 
We define the higher (central) moments of the strength function as 

&’ = 
s 

dE(E - &)nFk(E) = x(E, - &)nW;: . (18) 
Ix 

Using again completeness arguments, these quantities can be expressed in terms of the matrix 
elements Hkl of the original hamiltonian (1). For example, 

CJi2) = 1 (E, - Ek)2 W ; = c E,2 W ;: - j?,’ = 1 (H;k)2 = (8”),, , (19) 
a a !( # k) 

i.e. the energy dispersion ck = (ai2’)rj2 is equal to the square root of the sum of the squared 
off-diagonal matrix elements for a given unperturbed initial state. We will use the notation 

for the average dispersion of the states 1 k). The centroids and dispersions can also be obtained for 
a subclass of the states I k), for example, for each partition 9 separately. 

Fig. l(a) shows the distribution of partitions for 3276 states I k) with J”T = 2+0 ordered with the 
increasing unperturbed energy & The regular pattern of overlapped partitions spread out 
typically over 5-10 MeV is clearly seen. In Fig. l(b) the partitions are substituted by their centroids 
according to French and Ratcliff [53]. 

The energy dispersion (19) of individual 2+0 basis states turns out (Fig. 2) to be remarkably 
uniform, bk % 6 = 10 MeV over the entire space. The remnants of the partition structure are visible 
as tails of a slightly diminished dispersion at the low lying edge of the partition. This might be 
caused by a random choice of the initial simple states (8) in the beginning of the projection 
procedure. The dispersion ok is closely related to the spreading width defined more precisely in 
Sections 5. The uniformity of the dispersion supports the idea of saturation of the spreading width 
[42,44] which has important consequences for understanding the damping of giant resonances. 
For O+O states the partition pattern is essentially the same (Fig. 3) with the same value of the 
average energy dispersion 3 (Fig. 4), although the fluctuations are more significant. 
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Fig. 1. Diagonal matrix elements Hkk for 2+0 states of 12 particles in the sd shell (the states 1 k) are numbered in the order 
of increasing Hkk), (a) values for individual states, (b) energy centroids of partitions found according French and Ratcliff 
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Fig. 2. Energy dispersions CT~ of basis 2’0 states. 
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Fig. 4. The Same as Fig. 2 for the 0’0 states. 
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Since variations of the effective spreading (19) of the basis states around the mean value 0 are 
small, one can work out [69] a simple truncation method to reduce a huge shell-model hamiltonian 
matrix to a manageable size. The method was tested for the sd and fp shells and was proven to be 
very efficient. In the middle of the fp shell (JT dimensions of the order of a few million) the size of 
the matrix is effectively reduced to a few thousand. 

In a similar way one can compute the higher energy moments of the component distribution as 

ap = C(E, - &Jw; = (P),, - E,O,2 3 (21) 

of’ = C(E, - E/oWi: = (A”),, + r$(E; + (T?) + 2E’,(A(R - a))),, . (22) 

Physics of the spreading and related questions will be discussed more in detail in Section 5. 

2.4.3. Moments of the level density 

Valuable information concerning the spectrum of the exact stationary states (a) also can be 
obtained prior to the actual diagonalization. The primary characteristic of the spectrum is the level 
density 

p(E) = CW - Em) . (23) 

Following Wigner [68], the strength function F,(E) of Eq. (14) is sometimes called “local density of 
states”. It defines the contribution to the level density at energy E of a given basis state 1 k). The 
total level density of the eigenstates (23) 1 a) is given by the sum of the strength functions over all 

I k)> 

p(E) = x6(E - E,) = Tr 6(E - H) = xFk(E) . 
a k 

It is normalized to the total number of states, 

(24) 

s dEp(E) = N . (25) 

In a finite space one can define, similar to (17) and (18), the moments of the total level density (24). 
The average energy 

&- 
s 

dEEp(E) = E (26) 

coincides with the energy center introduced by Eq. (17). The total dispersion of energy 

0; = 4 
s 

dE(E - E)‘p(E) = 0’ + A; (27) 

consists of (added in quadratures) the spread (17) of centroids defined by the diagonal part of the 
hamiltonian and the fragmentation width (20) due to the off-diagonal part. With the above- 
mentioned values of 3 and AE for the 2+0 states we get (TE = 13 MeV. 



V. Zelevinsky et al. /Physics Reports 276 (1996) 85-I 76 103 

2.5. Banded properties of the hamiltonian matrix 

During the last few years much progress has been made in generalizing random matrix theory to 
banded (“bordered” by Wigner’s terminology) random matrices (BRM) [71,72]. In contrast to the 
canonical (orthogonal, unitary or symplectic) Gaussian ensembles with the distribution functions 
invariant under transformations preserving the corresponding symmetry, the BRM are given in 
a special basis. In this basis the basis states are ordered in such a way that a hamiltonian matrix has 
a band of nonzero matrix elements Hkl interconnecting the states within the band ( k - 1) I b 

around the main diagonal. The number b is called the width of the band. For the Gaussian 
distribution of the nonzero matrix elements, the properties of the ensemble are predicted [72] to be 
determined by the scaling parameter b’/N. 

The partition structure of our Hilbert space, which is revealed in the shell-model basis but can be 
lost after a transition to an arbitrary representation, gives rise to distinct band-like features. As 
a rule, the interaction between the unperturbed projected configuration states 1 k), which are widely 
separated in centroid energy Ek, is weaker than between the close configurations. This interaction 
energy range for the individual states can be measured using the definition [70] 

The smooth behavior, Fig. 5, of this quantity enables one to compare the shell-model hamiltonian 
matrix with the banded matrices. According to Fig. 5, the effective width of the band is 
o z 7.5 MeV both for the O+O states and for the 2+0 states. This corresponds to approximately 200 
to 250 unperturbed states within the band. In Fig. 6 the banded properties of the hamiltonian 
matrix are depicted in a different way (here for the O+O states). The dependence on the distance 
from the main diagonal displays the banded character with the width b M 250. 
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Fig. 5. The energy range of interaction between the unperturbed projected configurations, Eq. (28), for the O+O (a) and 
2+0 (b) states. 
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Fig. 6. Matrix elements H,, (in MeV) between the basis states as a function of the distance Ik - 11 for the O+O states 
numbered according to the increasing energy. For each value of 1 k - II the average values of all positive and all negative 
matrix elements are shown. 

The typical number 2b of states coupled to a given state ) k) in the middle part of the spectrum 
can also be directly estimated from (19). For the 2+0 states, 2b z O’/I? z 400 where we use 
E?I z 0.5 MeV as an rms value of the off-diagonal many-body matrix element. The parameter b2/N 
is therefore very large in our case which implies that the localization properties of the eigenstates 
are different from those considered in [72]. The standard BRM theory considers matrices in which 
the diagonal matrix elements do not increase monotonically. In the nuclear case the presence of the 
monotonically increasing diagonal part generated by the mean field (centroids E,) is crucial for 
many statistical regularities. 

The banded structure of the shell-model hamiltonian is the reflection of the selection rules 
specific for the two-body interaction (exact selection rules related to conservation of angular 
momentum and isospin are already accounted for by the projection inside a partition). The 
emerging structure of interpartition links is clearly seen in Fig. 7. At the same time there is no 
distinct order for the submatrix of the hamiltonian within a given partition. As shown in Fig. 8, the 
off-diagonal matrix elements in the largest O+O partition cover the field of the matrix more 
uniformly (only matrix elements with magnitude greater than 0.5 MeV are shown). 

Another theoretical model which has some similarity with our system is the two-body random 
ensemble of Brody et al. [7]. Again we have to stress that our hamiltonian matrix is neither random 
nor banded in the strict meaning of this term because, due to the two-body selection rules, it is 
impossible to reach a precisely banded form by reordering. 
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Fig. 7. The hamiltonian matrix for the O+O stares. 
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Fig. 8. Off-diagonal matrix elements of the magnitude larger than 0.5 MeV between the O+O states within the largest 
partition, the dimension is N = 103. 



106 V. Zelevinsky et al. /Physics Reports 276 (1996) 85-176 

2.6. Distribution of matrix elements 

The random matrix theory usually considers matrix elements of the hamiltonian as random 
normally distributed variables. In the canonical Gaussian ensembles, the matrices have no 
regularly increasing diagonal elements. Therefore these ensembles have nothing to do with the 
evolution along the spectrum (“secular” behavior) and can properly account for the local correla- 
tions and fluctuations only. In our case of a time-reversal invariant system, we shall use for 
comparison the GOE. We write down the pair correlation function for matrix elements of the 
hamiltonian in the GOE as 

f&z Hk’z’ GoE = (a2/4N) (6z’kdk’z + dk’ki&‘z) (29) 

where the center of the spectrum is taken as the origin of the energy scale, Hkl = 0. Here and below 
the bar stands for the ensemble average. Due to the orthogonal invariance of the GOE, Eq. (29) is 
valid in an arbitrary basis. Since in the GOE case there is no subdivision into parts analogous to 
Ho and H’ in (l), all matrix elements have the same variance (29) with the only difference in a factor 
two for the diagonal matrix elements compared to the off-diagonal. 

The normalization used in (29) implies the idea of N-scaling [29,43, 30,421. If, in a given ordered 
basis 1 k), the expansion (5) of generic stationary functions 1 a) is concentrated in a compact region, 
the number of principal simple components corresponds to the localization length 1 in Hilbert 
space [S, 711. This language comes from the theory of disordered solids where localization has its 
direct meaning in the coordinate space. However, one should keep in mind that in the solid state 
case the coordinate localization manifests chaoticity, since the hamiltonian of a perfect crystal 
would have completely delocalized Bloch waves as its eigenstates. A closer analogy can be found in 
the quantum chaotic systems as kicked rotor [5] where classical diffusion is saturated on a finite 
level by the quantum interference of the components of the wave function. This phenomenon is 
typical for banded hamiltonians [3,72] and reflects the finite energy range of interaction. 

As the level density increases and the basis states get strongly mixed, the eigenstates become 
exceedingly complicated superpositions of the basis states (in the Introduction this process was 
called stochastization). The typical matrix elements of simple operators (for example, those of the 
one-body operators or two-body residual interaction) between the complicated states on average 
decrease - I- ‘I2 [29,43]. At the same time, the energy range r N ID (D N p- ’ is the average level 
spacing) characterizes the spreading width of simple states with their strength fragmented among 
the eigenstates (5). In the stochastic regime, the typical magnitude of mixing matrix elements can be 

estimated as m II t1/1-“~, where v is the characteristic strength of original matrix elements of 
the residual interaction between simple states. In the GOE limit of complete delocalization, generic 
wave functions cover the entire finite Hilbert space, 1 II N. Then we come to the estimate 

I2 N v2/N, and Eq. (29) shows that the parameter a should be of the same order of magnitude 
as typical matrix elements 2). 

The Gaussian ensemble of banded random matrices (BRM) can be defined as a straightforward 
generalization of (29). For each matrix element, the distribution function is still Gaussian with the 
mean value equal to zero but the variances depend now on the “distance” between the states in the 
matrix element, 

Hkt f&a BRM = (a2/4N) (dk’zbz’k + ~k’ki$‘z)~kz (30) 
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where qkz reflects selection rules which effectively confine nonzero matrix elements to the band 
1 k - 11 N b. The band can be taken to have a sharp boundary with &r = 0 for 1 k - 1) > b but the 
exact way in which the matrix elements decrease is not significant [72]. Now the orthogonal 
invariance is lost, and the representation (30) with a distinct band structure takes place in a specific 
ordered basis only. 

The analysis [35] of the similar shell-model problem for a heavy atom showed that the actual 
distribution of off-diagonal matrix elements fikl is far from being Gaussian. It can be written in the 
form analogous to the Porter-Thomas distribution, 

P,(Ak,) = +[(2@“+‘r(K + I)]-‘[ E?kl lKe-‘Rki,,“2w (31) 

where r stands for the r-function and K is a numerical parameter. For the distribution (31) taken 
literally for all values of fikl, the mean absolute value of flkl is 2(1c + l)A. The power K found in 
[35] is close to the Porter-Thomas value KpT = - 3 (compare with Eq. (51) below). The distribu- 
tion of matrix elements found in the shell-model calculations by Wambach [73] also agrees with 
(31). A similar distribution was found by Kusnezov [74] in the interacting boson model. Since our 
study reveals a very similar picture (see below), the conclusion is plausible that this class of 
distributions is generic for the many-body interactions in heavy atoms or nuclei. 

Note that the Porter-Thomas distribution for the reduced widths y of the resonances follows 
[7,21] from the Gaussian distribution for the decay amplitudes A if the proportionality y cc I A I2 is 
assumed. Therefore Eq. (31) implies that the normally distributed quantities in the realistic case are 
not the off-diagonal matrix elements themselves, as would be the case in canonical Gaussian 
random matrix ensembles but rather some quantities resembling square roots of them. The 
underlying physical reason might be related to presence of the dominating multipole-multipole 
forces. This is by construction the case in the interacting boson model. The Coulomb interaction in 
atoms is actually determined by a small number of low multipoles. The specific role of the pairing 

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5-4-3-2-10 1 2 3 4 5 

H H 

Fig. 9. (a) The distribution of off-diagonal matrix elements between the 2+0 states (histogram), dashed line-pure 
exponential fit, Eq. (31) with K = 0, solid line-fit with K = -2; (b) the same with solid line as fit with K = - 1. 
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Fig. 10. The distribution of off-diagonal matrix elements between the O+O states (histogram), pure exponential fit, 
Eq. (31) with K = 0 (dashed line), fit with K = - 1 (solid line). Panel a takes into account all O+O states, panel b is limited 
by the states of the largest partition. 

and quadrupole interactions in nuclei is also well known. The case of the factorizable forces leading 
to the distribution of type (31) is outlined in Appendix A. 

The distribution (31) diverges at small values of the matrix elements if K I - 1. In the actual 
analysis it is difficult to make a precise fit to this region. Fitting the rest of the histogram we allow 
all values of K. The distribution function for 5.36 x lo6 off-diagonal matrix elements between the 
2+0 states of the sd shell model is shown in Fig. 9. Except for the above-mentioned region around 
zero and extreme wings corresponding to the exceptionally big elements, the distribution is in good 
agreement with expression (31) for K = - 2, see panel a; this value gives a better fit than K = 0 or 
K = - 1, panel b. The fit covers a change of matrix elements by four orders of magnitude. The 
fitted value of B is equal to 0.25 MeV. Under similar conditions, the off-diagonal matrix elements 
for the O+O states, Fig. 10(a), agree with the distribution (31) at K = - 1 and fl = 0.27 MeV. 

For comparison, Fig. 10(b) shows the distribution of the matrix elements taken for the subset of 
103 O+O states belonging to the largest partition. Here again we see the exponential fall of the 
probability but the preexponential factor is now absent, K z 0. We can conclude that such a factor 
presumably comes from the weak transitions between partitions. The origin of the apparent 
difference in the preexponent factor for different classes of states is not clear at this point. 

3. Level statistics 

In this section we begin to present the analysis of our “empirical” data obtained via the 
diagonalization of the shell-model problem. The results of the exact solution for the Schrodinger 
equation with the fixed hamiltonian acting in the finite space are to be compared with the 
predictions of random matrix ensembles. This comparison is based upon an assumption of 
ergodicity. For sufficiently high dimensionality N, we expect that the eigenvalues and eigenfunc- 
tions taken from the different parts of the actual spectrum can be treated similar to different 
members of a statistical ensemble. This turns out to be the case locally, for small fragments of the 
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spectrum which still include a large number of levels. However, this hypothesis of self-averaging 
does not account for the secular behavior of physical quantities which depend smoothly on 
excitation energy in actual systems. Thus, low-lying shell-model states supposedly have a simpler 
structure than highly excited states with developed mixing. The increasing complexity reflects the 
stochastization of dynamics and represents one of the goals of our studies. This feature is absent in 
canonical random matrix ensembles where degree of complexity is uniform over the spectrum. 

Another general issue to be considered is that the states in the model calculations suffer from the 
artificial truncation of mixing with states outside the model space. Such a distortion should 
influence mainly the highest states. Accordingly, the procedure can be twofold: either consider the 
entire set of all states available as a model for a system with finite Hilbert space [49], or cut off some 
part of high-lying states as an artifact of the model. The second option is the only one appropriate 
for comparing the model with actual experimental data. The procedure of unfolding [7], which 
locally rescales energies taking into account the secular behavior of the level density, can be 
a compromise between those two approaches. Unfolding is necessary if the local properties of 
different parts of the spectrum are superimposed in order to get rich statistics, as will be discussed 
below for the study of local level correlations and fluctuations. However the global properties of the 
finite shell model having no counterpart in realistic nuclear structure might be, in turn, of specific 
theoretical interest (see for example the study of the 3-level Lipkin model in [49]). 

3.1. Level density 

The simplest characteristic of the spectrum of the eigenvalues E, is the total density p(E) of states 
with given values of exact integrals of motion. In Section 2.4 we have introduced this function, 
Eq. (24), with its lowest moments, Eqs. (26) and (27). In our finite Hilbert space p(E) vanishes at 
lower and upper boundaries of the spectrum, being maximum in the middle. As usual in the 
problems with the pure discrete spectrum, the original set of the b-peaks &3(E - E,) converts into 
a continuous function p(E) when averaged over several adjacent levels. 

The behavior of p(E) can be compared with the GOE predictions. By our normalization of the 

GOE correlators defined with the aid of the parameter a in (29), the trace Tr HZ, which is equal to 
Ca Ez, increases linearly with N as Na2/4 for large N. This shows immediately that a provides 
a scale for the whole energy range covered by the GOE spectrum. In fact, for N $ 1 the GOE 
predicts the Wigner semicircle rule for the level density with the radius equal exactly to a, 

p(E) = N-$/~O(a2 - E2) (32) 

where the normalization (24) was used. 
Many ways exist to derive the semicircle rule (see for example [7]). One of the simplest versions 

calculates the average level density as an imaginary part of the average Green function (E - H)- 1 

in the limit of N --f 00. Then the main diagrams are nonintersecting (rainbow), and their contribu- 
tion is directly given by the correlator (29). The summation of this class of diagrams leads to the 
semicircle rule (32). Such a derivation shows that the validity of the semicircle rule is not limited to 
the pure GOE case. It is rather associated [7] with the domination of binary correlations in the 
limit of large N. 
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The BRM theory predicts, both numerically and analytically [71,72], the semicircle level density 
for a sufficiently broad band. At b % 1 but 2b/N < 1, the summation of the same class of diagrams 
for the average Green function leads to the semicircle level density with the compressed radius, 

CX+r=LZJT~ 2b N. Of course, it agrees with the direct estimate for the trace TrH2. Even in the 
presence of the nonrandom part H,, which has a uniform level density of unperturbed states 
&E) N N/2ao, the random perturbation (30) leads to the semicircle-like average density of 
stationary states with 

r z JaE + (2b/N)a2 (33) 

if the strength a/N-‘12 is not small compared to the unperturbed level spacings. For the semicircle 
density with radius r, the energy dispersion defined by Eq. (27) is CJ~ = r2/4. Therefore the BRM 
result (33) agrees with the exact result of statistical spectroscopy (27). The regular part a0 from (33) 
is analogous to the contribution of the average diagonal field, dE in Eq. (17); and quantities a in (33) 
and 5 in (27) are related mostly to the off-diagonal interaction. For the 2+0 states we obtain 

a0 FZ 16 MeV, a z 56 MeV, Y z 26 MeV = 2~~. 
On the other hand, we deal with a realistic hamiltonian (1) which has no random elements. We 

have already mentioned that, due to the two-body character of interaction and exact conservation 
of angular momentum, there is a noticeable number of vanishing matrix elements of H’ in the 
truncated configuration space. All many-body matrix elements are determined by a rather small 
number of the two-body interaction matrix elements. What is even more important, the realistic 
interaction strongly mixes configurations but it is not strong enough to destroy completely the 
partition structure. In such cases, according to simple arguments given in [7], we should expect the 
level density p(E) to be closer to the Gaussian shape than to the semicircle shape. The transition 
from Gaussian to semicircle level density occurs [75,7] when many-body forces are introduced, 
lifting the selection rules for interactions between the partitions. One should mention also that the 
two-body matrix elements are the same for all classes of states with various J and T which can 
induce correlations between the classes. 

Fig. 11 shows the cumulative level number 

s 

E 

J’“(E) = dE’ p (E’) (34) 
-ZX 

for the J” T = 2+0 states. Fig. 1 l(b) and (d) corresponds to the absence of the off-diagonal mixing 
interaction I?. The staircase pattern is determined by the partitions. Fig. 1 l(a) and (c) is obtained for 
the full hamiltonian. As a consequence of strong mixing, we see a more smooth behavior. The 
remaining irregularities at low excitation energy come partly from the weak remnants of the 
partition structure and partly from the pairing effects, Section 7. A similar picture is found for the 
O+O states, Fig. 12. The resulting curves Jr/-(E) for different classes are clearly correlated. 

The local level density p(E) reveals fluctuations of various scales (“wavelengths” [7]) depending 
on the range of averaging. This can be seen in Fig. 13 where p(E) for O+O states was taken as the 
average inverse level spacing on a segment including 5 levels to the left and 5 levels to the right from 
a given energy E for the panel a and f 20 levels for the panel b. In the second case the edge 
behavior is distorted by the large averaging range. Depicting the level densities for O+O and 2+0 
states as histograms we can fit both of them, Figs. 14(b) and (c) respectively, by the Gaussians with 
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Fig. 11. The cumulative level number for the 2+0 states with no off-diagonal interaction fi (b); the same for the full 
hamiltonian (a), dashed line shows the fit according to Eq. (35). Expanded parts of (a) and (b) are shown in parts(c) and(d) 
respectively. 

the same values of the centroid E,, = - 90 MeV and the dispersion BE = 13 MeV predicted by the 
simple consideration of Section 2.4. For comparison, Fig. 14(a) shows the density of the unpertur- 
bed energies Hkk of the O+O states. In this case with no off-diagonal interaction, the Gaussian shape 
of the level density with the dispersion dE x 8 MeV is entirely due to the combinatorial nature of 
the fermionic excitation spectrum. The origin of this shape is discussed in [7]. The level density p(E) 
is very different from the semicircle, in agreement with what is expected for the two-body residual 
interaction [7]. 

Performing similar calculations in the p-n formalism, we get practically the same results for the 
level density of the superpositions of the states with different (all) isospins. This means that different 
isospin sectors have similar properties defined by a common two-body interaction. This point is 
illustrated in Fig. 15 by the level density for 1161 O+O states in the valence system of 4 protons and 
4 neutrons (24Mg). The histograms for p(E) are identical, except for a shift as a whole, for both 
versions of the interaction, WPN (panel a) and WPNC (panel b). The Coulomb interaction present 
in the WPNC version mainly pushes up the entire set of levels. 

To clarify the origin of the Gaussian level density in our case of the strong interaction, we have 
carried out several numerical experiments. As we discussed in Section 2.5, the actual distribution of 
the matrix elements is exponential with the preexponential power law. One can generate the 
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Fig. 12. The same as Fig. 11 for the O+O states. 
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Fig. 13. Level density for the O+O states averaged over f5 levels, panel a, and +20 levels, panel b. 
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Fig. 14. Level densities for the O+O (panel a corresponds to the absence of the off-diagonal residual interaction and 
panel b shows the result of the diagonalization of the full hamiltonian), and for the 2+0 states, full solution (panel c). The 
results of calculations are shown by the histograms and Gaussian fits by the dashed lines. 
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Fig. 15. Level densities for the O+O states in the system of 4 valence protons and 4 valence neutrons (histograms) and the 
Gaussian fits (dashed lines); panels a and b correspond to the calculations in the pn scheme with the isospin conserving 
Wildenthal interaction (WPN) and with the interaction (WPNC) of Ref. [67] including Coulomb and isospin-violating 
nuclear parts, respectively. 

random matrix ensemble defined by such a distribution. We have to underline that here the 
many-body matrix elements are uncorrelated. For the dimension N = 400 and the matrix elements 
of the hamiltonian generated according to the distribution (31) with K = 0 and random signs, the 
level density agrees with the semicircle law, Fig. 16. 

For another numerical experiment we considered the single largest O+O partition (N = 103). As 
seen from Fig. 17(a), using the same exponential distribution function (31) with random signs for 
the off-diagonal matrix elements and the actual diagonal matrix elements Hkk, the level density is 
already close to the semicircle structure. On the other hand, the largest partition level density in the 
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Fig. 16. Level density for the random matrix ensemble with the exponential distribution (31) of the off-diagonal matrix 
elements (histogram) and the semicircle fit (solid line). The Gaussian distribution with the r~ = 10 MeV is assumed for the 
diagonal matrix elements. 
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Fig. 17. Level densities for the largest partition, N = 103, of the O+O states (histograms), semicircle fit (solid lines) and 
Gaussian fit (dashed line). Panel a corresponds to the off-diagonal matrix elements generated by the exponential 
distribution function (31) with random signs, and the diagonal matrix elements are taken from the Wildenthal 
interaction. Panel b gives the results of the diagonalization with the many-body matrix elements calculated from 63 
two-body matrix elements taken randomly from the range ( - 5, + 5) MeV. 

case of the two-body interaction given by 63 random matrix elements taken from the range 
between - 5 and + 5 MeV is much closer to the Gaussian, Fig. 17(b). The difference between the 
empirical Gaussian level density and the semicircle should be ascribed to the correlations within 
the many-body hamiltonian determined by a relatively small number of two-body matrix elements 
regardless of their regularity or randomness. 
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Fig. 18. Level densities for the O+O states calculated with the actual interaction matrix elements (histograms), semicircle 
fit (solid lines) and Gaussian fit (dashed lines) for the largest partition, N = 103, panel a, and for the three largest 
partitions, N = 237, panel b. 

The development of the full Gaussian level density can be illustrated by Fig. 18. Fig. 18(a) shows 
the results of the diagonalization using the actual interaction matrix elements for the largest O+O 
partition. Fig. 18(b) gives the results for the truncation to the three largest partitions N = 237. The 
mixing between the partitions gradually broadens the curve. The Gaussian variance is Q~ = 9 MeV 
in Fig. 18(a) and increases to 11.5 MeV in Fig. 18(b). Similar values for Q~ can be derived by the 
direct averaging of the off-diagonal matrix elements according to Eq. (27). 

It is worth mentioning that the difference between Gaussian and semicircle level densities can at 
least partly be removed by a procedure similar to unfolding, used routinely in the analysis of local 
level statistics. Namely, using the “natural” smooth scale of cumulative level number J(E), 
Eq. (34), instead of energy E itself, we obtain (Fig. 19) the level density p(A) much closer to the 
semicircle shape. It is easy to see that the cumulative level number written as 

n(E - EcJ 2a 
C 1 

would precisely correspond to the semicircle level density in the M-scale 

(35) 

(36) 

The dashed lines in Figs. 11(a) and 12(a) show that Eq. (35) with a, = 28 MeV describes well the 
cumulative level number for both classes of states, O+O and 2+0, except for the edges. The effective 
semicircle level density with the same variance of energy as in the Gaussian fit of Fig. 11 would have 
a radius Y = 2aE = 26 MeV which is close to the value of a,. Below we use both the energy and 
M-scales (the latter called also a-scale) on equal footing for various quantities remembering that 
the Gaussian-like behavior in the first scale corresponds to the semicircle-like in the second one. 
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Fig. 19. Level densities from the full calculation for the O+O states with actual interaction matrix elements in function of 
energy, panel a, and in function of cumulative level number N, panel b (histograms). The solid lines correspond to 
Gaussian (panel a) and semicircle (panel h) fits, respectively; dashed line on panel a gives the Fermi-gas level density, 
Eq. (37). 

The initial part of the spectrum agrees also with the Fermi-gas level density [62,21], 

PJ(E) = 
a$14 bi” 2J + 1 

x- 487r 
Fexp(2$Z), (37) 

see the dashed line in Fig. 19(a) which corresponds to values of a0 = 1.4 MeV-‘, b0 = 0.24 MeV 
both for the O+O and 2+0 states. As well known, the parameters of the model are related to the 
single-particle level density at the Fermi surface go (in our notations a, = (7c2/6)go) and to the 
effective statistical moment of inertia, b. = h/21,rr which determines the thermal excitation energy 
E, = E - b,J(J + 1). The level density parameter a o is smaller than the Fermi gas estimate 
a0 z (7?/4) (A/+) z (A/14)MeV-‘. Th’ d’ff 1s 1 erence may reflect the presence of single-particle 
orbitals of both parities in the Fermi gas model. In our sd shell-model space the average single- 
particle angular momentum projection is (m2) z 2. This would result in b. = IT”/ 
(12ao(m2)) z 0.2 MeV with a0 = 2 MeV ’ and b. = 0.3 MeV with the empirical value of ao. The 
conventional statistical assumption of random coupling of angular momenta implied in the 
derivation of (37) agrees qualitatively with our arguments of “geometrical chaoticity”, Section 2. 
For high excitation energy the whole Fermi-gas approach breaks down due to limitations of the 
finite Hilbert space. 

3.2. Level spacing distribution 

The degeneracies caused by the shell structure in the spherical mean field are lifted by the 
residual interaction. In the stochastic limit, the mixing by the off-diagonal hamiltonian leads to the 
level repulsion and to a more uniform level spacing distribution. It results in the nearest level 
spacing distribution close to the Wigner surmise: 

Pw(s) = in: se-(X/4)sZ . (38) 
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The linear repulsion and Gaussian tail in Eq. (38) are the distinctive features of chaotic level 
statistics in contrast to the Poisson distribution of random events 

Pp(s) = e-’ . (39) 

which is characteristic for integrable systems. Here s = (E,, 1 - E,)/b = &, + I - 6, is the nearest 
neighbor spacing in units of the local average spacing i5. This resealing, or unfolding [7], E, -+ 6,, 
is important to separate local level correlations from the global secular behavior. All the results 
discussed below were obtained by the procedure of unfolding using the relevant average local level 
density. 

Fig. 20 shows the nearest level spacing distribution P(s) for O+O states calculated for the 
degenerate case (for the single-particle energies en = 0), Fig. 20(a) and for the realistic en, Fig. 20(b). 
The intermediate situations with the realistic single-particle spectrum eA and a residual interaction 
which is gradually turned on are shown in Figs. 21(a)-(c), which correspond to the relative intensity 
of the off-diagonal matrix elements fikl equal to i = 0.0, 0.1 and 0.2, respectively. In Fig. 20 the 
chaotic behavior is in qualitative agreement with the Wigner distribution (38), especially for the 
degenerate case. With the realistic single-particle energies, onset of chaos is delayed, with respect to 
increasing 2, by persistence of the shell-model structure. The noninteracting case of Fig. 21(a) 
reveals the Poisson-like distribution. However, the transition to the Wigner distribution occurs 
already at a relatively weak strength of the interaction, about 0.2 of the realistic value. The level 
spacing distribution is universal as can be seen from Fig. 22 for the 2+0 states. 

An important factor for establishing the Wigner level spacing distribution is the interpartition 
interaction. Diagonalization within the single largest partition alone both for O+O states, Fig. 23(a) 
and for 2+0 states, Fig. 23(c), results in a level spacing distribution with an excess of small and large 
spacings which is still far from the Wigner level spacing. Qualitative features of 
distribution appear only after the diagonalization is performed in the model space 
largest partitions, Fig. 23(b) for the Of0 states. 
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Fig. 20. Nearest level spacing distribution (histograms) and Wigner surmise, Eq. (38), (solid lines) for the O+O states in the 
system with degenerate single-particle orbitals (a) and in the realistic case (b). 
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Fig. 21. Nearest level spacing distribution (histograms) compared to the Wigner surmise (solid lines) and the Poisson 
distribution for the O+O states at different interaction strength, 3, = 0, 0.1, 0.2 (panels a, b, c, respectively). 

0.0 

Fig. 22. Nearest level spacing distribution (histogram) and Wigner surmise (solid line) for the 2+0 states 

In consideration of the nearest level spacing distribution, the proton-neutron formalism gives 
results distinctly different from those for the single isospin states. This is expected [7] for the case of 
a superposition of spectra belonging to nonoverlapping sectors of Hilbert space. The histogram of 
Fig. 24, computed in the p-n formalism for the O+O states of the 4 proton + 4 neutron system, 
reveals the nearest level spacing distribution intermediate between the Wigner and Poisson 
functions due to the absence of mixing and repulsion between levels with different isospin. As 
shown first in [76], the superposition of independent level sequences quickly gives rise to the 
Poisson limit. The picture is qualitatively similar for both versions of the interactions, panels 
a (WPN) and b (WPNC). However, panel b is closer to the Wigner limit giving reduced values of 
P(s) at small s. 
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Fig. 23. Nearest level spacing distribution (histogram), Wigner surmise (solid line) and Poisson distribution (dashed line) 
for the diagonalization within the largest partition (N = 103) of the O+O states (a) and within space of three largest 
partitions (b). Panel c presents the same results for the largest partition (N = 390) of the 2+0 states. 
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Fig. 24. Nearest level spacing distributions for the O+O states (N = 1161) in the 24Mg (4 valence protons and 4 valence 
protons): results of diagonalization in the pn formalism (histograms), Wigner surmise (solid lines), Poisson distribution 
(dashed lines) for the WPN interaction (a) and for the WPNC interaction (b). 

3.3. Level repulsion at small spacings 

An interesting unresolved theoretical problem is related to the precise form of the level repulsion 
law at small distances s. The GOE, eq. (38), and regular dynamics, Eq. (39), predict the behavior 
P(s) cc sB, s --t 0, with /I = 1 and /3 = 0, respectively. The repulsion becomes stronger for the 
Gaussian unitary and Gaussian symplectic ensembles (/? = 2 and p = 4, respectively). 

In the pure independent particle shell model with no residual interaction, the level spacings are 
quantized according to the single-particle excitation spectrum (3). Including the diagonal part R of 
the residual interaction we come to the case of the integrable dynamics. Here the adjacent states are 
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not mixed and one expects the random (Poisson) distribution (39) of the nearest level spacing. 
There is no consistent theory explaining how the Poisson level spacing (39) evolves into the Wigner 
distribution (38) as the stochastization occurs and levels repel each other. Based on the estimates of 
the regular and chaotic volume fractions of the classical phase space, the Berry-Robnik theory [22] 
predicts P(s = 0) = const. The value of this constant is supposed to go from 1, Eq. (39), to 0 as the 
dynamics become more and more chaotic. 

In contrast to the Berry-Robnik theory, a recent study [77] of a large number of levels in 
a chaotic billiard shows that in the transitional region between regular and chaotic dynamics the 
small spacing behavior agrees with the fractional power law P(s) - sB, 0 < /? < 1. Various interpo- 
lation formulae with the power law were suggested [7,5] and used with variable success. The 
parameter fl is supposed to change from 0 (Poisson distribution) to 1 (Wigner distribution) in 
parallel to the onset of chaos. The correlation of this parameter with the degree of localization of 
wave functions was pointed out in [S]. 

The fractional power repulsion is seemingly in contradiction with the simple perturbation 
theory. Assuming that in the limit of s --f 0 it is sufficient to consider the mixing of the two nearest 
neighbors, one can use the standard expression for the level spacing 

s = J(H11 - &)2 + 41H1212 (40) 

in terms of the interaction matrix elements. When applied to the time-reversal invariant case, the 
mixing matrix element Hi2 is real so that s --) 0 requires that two quantities x = Hi 1 - Hz2 and 
y = 2Hi2 go to zero simultaneously. For a uniform measure in the xy-plane this leads to the linear 
repulsion. If the mixing interaction has matrix elements of the order y - y,, one expects the linear 
repulsion at spacings s I y,. According to this way of reasoning, the Poisson distribution (39) is 
valid in the completely integrable case only. Any perturbation destroying the integrals of motion 
gives rise to a region of linear repulsion which has a size proportional to the magnitude of the 
perturbation. 

Here one can mention that an interesting scenario takes place in the case when a chaotic system 
with the Wigner level spacing distribution is allowed to decay [32,78]. Interaction. with the 
continuum creates the repulsion of complex energies E - (i/2)r. On the real energy axis (E) the 
nearest neighbor behavior can be approximated [78], similar to the Berry-Robnik conjecture, by 
the superposition of the Wigner (38) and Gaussian distributions with finite P(0) depending on the 
ratio r/D of the decay width to the level spacing in the closed system. In an open system with small 
widths r of isolated resonances, interaction with the continuum removes [32] the linear repulsion 
at the spacings s 2: r. 

The perturbative arguments do not take into account that, as a rule rather than the exception, 
there is an accumulation of small mixing matrix elements which destroys the uniformity in the 
xy-plane. In the semiclassical domain it can occur if the classical phase space should consist of 
separated parts. The possibility of degeneracies between the states localized in different areas would 
lead to the Poisson distribution of level spacings (39). However, the quantum tunneling restores the 
communication between those areas. The corresponding matrix elements are concentrated at small 
values of y. As we discussed in Section 2.6, the relative abundance of small off-diagonal matrix 
elements seems to be a generic feature of realistic many-body systems even with no tunneling 
effects. 
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The mechanism for the emergence of fractional power level repulsion 
the two-level model (40). Considering x and Y as random variables with 
p(x,Y) we have 

P(s) = 
s 

dxdYp(x,Y)d(s - ,,/m) = s 
s 

dep(scos0, ssin6). 

121 

becomes clear already in 
the distribution function 

(41) 

For a function p(x, Y) which is regular near the origin, Eq. (41) gives the linear repulsion at small s. 
However, for the empirical distribution of the type P,(y), Eq. (31), and assuming that the smooth 
dependence on the diagonal elements x introduces only a constant factor, one obtains P(s) cc s”+ ‘. 
Thus, the Porter-Thomas distribution of the off-diagonal matrix elements, K = - f, leads to the 
fractional power repulsion with fi = 3. In contrast to that, the depressed probability of small matrix 
elements as in (A14) at 4 > 2 would result in a stronger repulsion than in the Wigner distribution. 
This enhanced repulsion can mimic the transition to the unitary or symplectic ensembles. 

It is not clear to what extent the naive two-level estimates resembles the actual small distance 
behavior. As an example one can take the case [79] of the simplest ensemble of 3 x 3 random 
matrices with the Gaussian distribution of all matrix elements except for Hi 3 = Hjl which is kept 
equal to zero. This singular feature gives rise to the nearest level spacing distribution P(s) N 
sln(l/s) at small s. Logarithmic behavior was also found [SO] when the tail of exponentially small 
mixing matrix elements y N exp( - t/to) is present; as might be the case, for example, due to the 
tunneling between classically forbidden regions. This can be understood in the two-level model, 
assuming that the range t of tunneling is uniformly distributed up to t FZ N. Then the probability 
density p(O,Y) and the resulting P(s) can be estimated as 

J 

N 

P(O?Y) cc (42) 
0 

dt~(y-yue-‘/t~)=~, e-N/‘o<i< 1, 

P(s) - P(0) + Ins . (43) 

This estimate is expected to be valid for small s which are still larger than the smallest tunneling 
matrix elements y. exp( -N/t,). 

To study the region of s < 1 with high precision, one needs statistics much better than we have 
currently at our disposal. It can be achieved combining properly the data for different classes of 
states. Below we present the first results in this direction. Fig. 25 shows the magnified nearest level 
spacing distribution in the region s < 0.2 which shows no deviations from linear repulsion at the 
realistic interaction strength. 

The whole question of transition from Poisson to Wigner level spacing distribution is far from 
being solved. 

3.4. Spectral rigidity 

It is known [7,81] that chaotic dynamics lead to rather rigid spectra. The level repulsion creates 
a sequence of levels which “crystallize”; they have fluctuations which are strongly suppressed in 
comparison with a pure random sequence. The mechanism of crystallization and its relation to the 
semiclassical theory of periodic orbits was elucidated by Berry [82]. As an appropriate quantitative 
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Fig. 25. Nearest level spacing distribution in the region of small s I 0.2 (histogram), linear fit P(s) = const x s (dashed line) 
and the Wigner surmise (solid line). 

Fig. 26. The spectral rigidity d(L) for the 2+0 states, squares (calculations) and solid line (the GOE prediction). 

measure, the spectral rigidity A(L) is conventionally used, 

d(L) = Fi; 
C s 

X+L q [N(&) - AG - L?,Z> . (44) 
’ x x 

Here the average is taken of integral deviations of the cumulative unfolded level number N(E) 
from the best linear fit over various (overlapped) segments of length L. 

For regular dynamics, and therefore a random level sequence with the Poisson nearest level 
spacing distribution (39), the deviation grows linearly, d(L) = L/15. For the chaotic case and 
Wigner nearest level spacing distribution (38), the spectra are rigid. Starting at small L with the 
same linear behavior as in the regular case, the deviation only grows logarithmically at L 8 1, 

d(L) z (1 /x2) In L - 0.007 . (45) 

As follows from the analysis by Berry [82], in the semiclassical limit A (L) is expected to saturate at 
a nonuniversal value of L = L max II 27Cti/t,i”D determined by the shortest periodic orbits with 
a period tmin. The number L,,, measures the Weisskopf recurrence time of a wave packet, 2&z/D, 
in units of the shortest period which provides a natural scale. At large L > L,,, one expects 
pseudooscillatory behavior with constant A(L). If the period tmin is related to the major shell 
structure with a typical energy interval 6s w 10 MeV, the Berry estimate would give 
L - h/D N 300 for the 2+0 states. max - 

Using the large matrix of the 2+0 states we can trace the behavior of A(L) up to very large L. 
Previous to this study the largest value of L considered was about 100 [lo, 521. The results shown 
in Fig. 26 display an agreement with the GOE prediction with no evidence of saturation up to 
L N 150. 
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Fig. 27. The spectral rigidity d(L) for the 2+0 states in the limit of large L, L < 1200 (panel a) and L < 2000 (panel b); 
squares (calculations) and solid line (the GOE prediction). 

At higher L, the spectral rigidity decreases revealing the upbend from the GOE curve. Such 
behavior is known in “one-body chaos” (anisotropic Kepler problem [83], Sinai billiard [S4] or the 
experiment with a superconducting stadium billiard [to]) where the deviations start at much 
smaller L. According to Mottelson’s conjecture [SS], the remnants of regular behavior determine 
dynamics at times too short to resolve the signatures of chaos. It was shown explicitly that for the 
stadium billiard [lo] the effect is due to the contribution of the marginally stable “bouncing ball” 
orbits. In [84] the upbend point Ld was associated with the inverse Lyapunov exponents which 
give the time scale for the development of classical chaos. The upbend of the curve d (L), Fig. 27(a), 
starting at L z 200 corresponds to the energy interval &s 21 7 MeV. Remarkably, this behavior 
lasts (Fig. 27(b)) up to the highest values of L z 2000 attainable for our computations. 

In many-body dynamics within one major shell, the available regular energy parameters are the 
single-particle level spacings 6s z 3 to 7 MeV which would give Ld 1: 100 to 200. One could also 
think of the “scars” in the partition space related to the quasiperiodic motion induced by the most 
coherent two-body matrix elements. This role can be played by pairing which will be discussed in 
Section 7. The reversible transfer of a pair between the subshells generates such motion which is 
destroyed after some time by incoherent parts of the interaction. The corresponding energy scale is 
rather low, 6s N 4-5 MeV. In this case one would expect the saturation of the spectral rigidity at 
Ld N 100 to 150. 

On the other hand, the inverse lifetime of the simple configurations can be estimated by the 
fragmentation width of Eq. (20), 0 N 10 MeV. The initial simple configuration I/C) evolves in 
time governed by the total hamiltonian H. The evolution can be described by the survival 
amplitude 

Ak(t) E (k(t)] k) = (kJeiHt)k) (46) 

which is the Fourier transform of the strength function (14). At small times the decrease of the 
absolute value of Ak is given by the energy uncertainty of the basis state (k) which is nothing but 
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the energy dispersion (19), 

(47) 

One can argue that at times shorter than td 2 $!/S the chaotic component of the evolution is still 

of minor importance. It would lead to the upbend of the spectral rigidity at Ld 1: a/$D = 200 
which approximately agrees with the observation. 

Let us note however that the time interval td cannot in general be identified with the inverse 
Lyapunov exponent. In contrast to the exponential decay, the survival amplitude, due to the 
hermiticity of the hamiltonian, decreases as a Gaussian function. To have an exponential decay at 
short times, one needs the Lorentzian wings of the strength function and, hence, an infinite second 
moment of the energy distribution. The decrease (47) takes place even in the case of regular 
dynamics if the initial state is not an eigenstate of the hamiltonian. 

Another plausible explanation of the upbend can be associated with the range of the interaction 
between the simple configurations. We measured this range by the parameter wk, Eq. (28) which 
determines the effective band width - 7.5 MeV and the corresponding value of Ld between 200 and 
250. At shorter time intervals, the band boundaries are not resolved so that motion in the 
configuration space is analogous to that in the full GOE matrix. The more detailed study of the 
influence of various parameters is necessary in order to pin down definitively the mechanism 
responsible for the deviation of the spectral rigidity from the GOE behavior. 

To illustrate the role of hidden integrals of motion in the level rigidity, we again give an example 
of calculations in the p-n formalism. Fig. 28 shows A(L) for the O+O states (dimension 1161) in the 
system of 4 protons and 4 neutrons. Here we do not discriminate the states by isospin. As a result, 
the level rigidity is intermediate between the GOE and Poisson predictions. Comparison of panels 
a and b shows stability of the conclusions with respect to slight modifications of the residual 
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Fig. 28. The spectral rigidity A(L) for the 0’0 states in the system of 4 valence protons and 4 valence neutrons calculated 
in the pn formalism with the WPN interaction (a) and the WPNC interaction (b); squares (calculations), solid line (the 
GOE prediction) and dashed line (Poisson level distribution). 



V. Zelevinsky et al. JPhysics Reports 276 (1996) 85-176 125 

interaction. The small fraction of the isospin violating forces slightly shifts the resulting curve in the 
GOE direction. 

3.5. Level dynamics 

Classical chaotic trajectories are unstable with respect to variations of initial conditions [l, 21. 
The straightforward analogy with classical chaos would lead to the expectation of strong sensitivity 
of chaotic quantum spectra to small changes of the hamiltonian parameters. There have been many 
suggestions of quantifying this sensitivity [3,4]. The actual situation in the initial stage of the 
stochastization process (measured by the evolution of the parameters from the regular to the 
chaotic region) is determined by the level dynamics (for the introduction into the subject see [3] 
and references therein). Multiple avoided crossings [86-881 create on average a rigid “crystalline” 
structure. Once this structure is formed, the pattern is stabilized so that the rate of crossing 
decreases at larger values of the hamiltonian parameter. 

Each individual pairwise level crossing is similar to a particle collision in a gas. It can be 
described by the level velocities (slopes U, = dE,/dL), the distance of the closest approach (crossing 
gap [SS]), the range of the forces (the correlation function of levels (E,(O)E&)) [89]), and the 
scattering angle (the level curvature K, = d2E,/dA2 [90,91]). Here 1 is a variable parameter in the 
hamiltonian. 

The distribution functions of the crossing parameters for the canonical Gaussian ensembles can 
be found exactly [SS, 91,921. As an example, we discuss here the level curvature distribution P,(k) 
which is predicted in the limit of N + co as 

w + P/2) 
PC(k) = &r((l + 8),2) (1 + w(2+8)‘2 

with the standard identification of p = 1,2,4 for Gaussian orthogonal, unitary and symplectic 
ensembles, respectively. 

To compare with our data, first the level energies are unfolded, E,(1) + 8&l), to get rid of secular 
behavior (the “collective flow” of the bundle of levels). Then the actual curvatures K, of unfolded 
eigenvalues &&) are resealed so that the dimensionless curvature k = K/(@(v2)) eliminates the 
local variations of the slopes v. 

The rigidity of the chaotic spectrum results in the fact that the most probable curvatures are 
small. Moreover, contrary to expectations, the probability of finding a large curvature k B 1 is 
smaller in the chaotic case than for regular dynamics (fi = 0) when the close level collisions, which 
are very sensitive to the changes of parameters, are more frequent. The limiting behavior at large 
k in (48), P,(k) cc k- (2+p) directly follows from the power law P(s) - sp for the nearest level 
repulsion in the Gaussiai ensembles, see for example (38) for B = 1. Indeed, the asymptotics of 
large k presumably correspond to a pairwise interaction of two levels when the influence of remote 
levels is negligible. Then the curvature is determined by the small energy denominator, and the 
distribution of the level spacings s is translated into the curvature distribution, P,(k % 1) 
-+ P(s = 1 /k)/k2. The fractional power level repulsion -SO, Section 3.2, would give the asymp- 
totics PC(k) - l/k2+B with 0 < p < 1. In all cases with p I 1, the decrease of P,(k) is rather slow so 
that the second moment of the distribution diverges, logarithmically for the GOE. 
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The natural parameter ;1 in our shell-model calculations is the strength of the residual interaction 
changing from 0 to 1. We already saw in Figs. 11 and 12 how the global level density reacts to 
switching on the interaction. Fig. 29(a) shows a total spectrum of 326 O+O states for 8 valence 
particles (24Mg nucleus) as a function of /z (in percent) taken as a common factor in front of the 
interaction hamiltonian H’. Fig. 29(b) shows the same set of levels on an unfolded number scale, 
and a magnified fragment containing about 30 levels in the middle of the spectrum is shown in 
Fig. 29(c). The avoided crossings, being very frequent at 1 I 0.4, become more rare at larger ,J.. As 
was discussed in [91], as /z increases, the level gas with finite N is expanding. This general expansion 
is clearly seen in Fig. 29(a). It goes approximately linearly with 1. In this region the increase of 
i mainly rescales the energies rather than mixing the states. 

In Fig. 30 we display the empirical curvature distribution for 50 central unfolded levels c?‘~,, 
CI = 138 to 188. To get more statistics, the data for the intervals Ail = 0.2 are grouped together. At 
small ,J < 0.2 there is an excess of small and a deficit of larger curvatures. The small k behavior is 
determined mostly by a presence of gaps in the irregular Poisson-like chain of levels in a weakly 
interacting system. A purely random sequence of levels with a weak random interaction would 

generate a singularity m l/& at small k. However, the range 1 = 0.2 to 0.4 gives good agreement 
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Fig. 29. The level spectrum of the O+O states for 8 valence particles, panel a, the same spectrum after unfolding, panel b, 
and the fragment of the middle part of the unfolded spectrum, panel c. 
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Fig. 30. The level curvature distribution in the unfolded spectrum; the histograms correspond to calculations for 50 middle 
levels a = 138 to 188 of Fig. 29 for various ranges of 1. The solid line gives the GOE prediction, Eq. (48) with /I = 1. 
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with the GOE result (48), fi = 1. This is the same value, of strength which manifests the onset of 
chaos in the nearest level spacing distribution, Section 3.2. A further increase of A signals the gas 
expansion regime which is getting more pronounced at larger 2. 

The work studying other correlation functions for the shell-model eigenvalues and eigenvectors 
is in progress and will be reported elsewhere [93]. 

4. Complexity of wave functions 

4. I. Distribution of components 

In the random matrix ensembles, amplitudes CE of 
Distribution functions for these amplitudes are known 

eigenstates (5) become random variables. 
for canonical Gaussian ensembles [94,7]. 

The GOE case corresponds to complete delocalization, that is when all N components Ci for 
various k contribute equiprobably to the total normalization (6), and all N eigenfunctions 1 ct) have 
the same distribution of components. We are interested in the limit N 9 1 when the individual - 
amplitudes are normally distributed with C = 0 and C2 = 1 /N so that the exact GOE distribution 
function 

w/2) 
Rmn,(C) = yl;Er[(N _ 1),2, (1 - c2)(N-3)‘2w - C”) 

reduces to the Gaussian distribution 

Pcom,(C) = (N/2n)‘12 exp -T C2 . 
( > 

Weights W = C2 of the components in the limit (50) obey the Porter-Thomas distribution 

Pw(W) = (N/2x)“‘+ exp 
d- 

(49) 

(50) 

(51) 

The same amplitudes C$ describe the fragmentation of the simple state Jk) over exact eigenstates 

1%). 
Due to the orthonormalization (6), the amplitudes in the GOE are slightly correlated [94, 71. 

Thus, in the limit N + 1 

W:Wf = (1/N2)(1 + 26%,,), (52) 

kfl, (53) 

whereas the similar correlation function of weights for unrelated components, a # p, k # 1, is 2/N2. 
According to the pattern of a gradual transition from regular to stochastic dynamics, one should 

expect the number N, of principal components of the stationary wave function 1~) to increase 
along with excitation energy towards the limit of complete delocalization. In a given energy range, 
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E z E,, the distribution of components C,” presumably is similar to the Gaussian one, Eq. (50), but 

with the local width (Ct)2 = l/N,, 

P”(C”) = (N,/2n)‘12 exp -J+(Ca)zl . 

This hypothesis was successfully utilized in statistical spectroscopy [53, 541 of nuclear levels even 
for relatively low-lying states as long as N, $ 1. A similar assumption is used in the semiclassical 
theory [95], where the wave functions $“(q) in configuration space are used instead of our Hilbert 
space representation (5) in terms of amplitudes Ci. In this case N, is substituted by the area &‘a of 
the classical configuration space at energy E,. The importance of using the projected states, with 
good exact quantum numbers instead of the m-scheme determinants, in studying the amplitude 
distribution was stressed in [Sl]. 

Using (54) and approximating sums by integrals over C extended to infinity, we can evaluate 
local ensemble averages by 

c F(G)-+ N, s cc dCF(C)P”(C) . 

k -m 

(55) 

This approximation is justified for large N, when the contribution to the integral from the 
unphysical region of C > 1 is negligible. 

4.2. Information entropy 

Postponing the analysis of the distribution of the components of eigenvectors to Section 5, we 
introduce here the integral measures of complexity which characterize each eigenfunction as 
a whole. As mentioned in the Introduction, in contrast to the invariant signatures associated with 
the eigenvalues, we need to fix a representation in order to study the increasing degree of 
complexity of the eigenvectors. Using the mean field (in our case shell model) basis of Ho we can try 
to quantify the complexity emerging from complete diagonalization [96]. The basis dependence 
provides an additional physical insight as we show below. 

Information entropy [97,98,5,40] seems to be a suitable candidate for measuring the degree 
of complexity of individual wave functions. It can be defined for a given normalized function la), 
and expanded as in Eq. (5) with 
components, 

Being dependent on the choice of the reference basis 1 k), this quantity reflects a complicated 
mutual relationship between the eigenbasis and the basis of representation. The entropy of 
eigenstates in their own eigenbasis, W,” + Sg, vanishes. The formal maximum of the functional (56) 
corresponds to the “microcanonical” distribution with equal weights, IV: = const = N- i. In that 
case S” = const = In N. But the orthogonality conditions do not allow a significant fraction of the 
states to reach this limit. 

the aid of a given basis 1 k), in terms of the weights (13) of the 

(56) 



130 V. Zelevinsky et al. /Physics Reports 276 (1996) 85-176 

In the local Gaussian approximation (54), the weights fluctuate around (N,)-i which implies [S] 
that the average over the ensemble value of entropy is smaller than the “microcanonical” value: 

F = ln(0.48N,) + 0(1/N,) . (57) 

This result can be easily derived with the aid of (54) and (55) 

F ---2 
Jr 

ZN, adCC21nCexp 
7c 0 

After the change of variable x = l/iv,/2C, one obtains 

where 4 does not depend on N,, 

(58) 

(59) 

where C = 0.577 is the Euler constant. This coincides with (57) being in perfect agreement with 
calculations for the GOE [S] where the results are uniform over the spectrum, N, --f N. 

The entropy S” (56) or the corresponding length in Hilbert space 

1: = expS” , (61) 

characterizes the degree of delocalization of a given eigenfunction la) with respect to an original 
basis. The deviation of 1: from the GOE limit 0.48N indicates the incomplete mixing of basis states. 
For a similar purpose one can use [98] the moments of the distribution of amplitudes, 

(62) 

which are also related to the number of principal components of a given eigenstate. The zeroth 
moment is equal to the size N of the matrix, and the first moment follows from normalization, 

My = 1. The second moment (“participation index”) M; determines the average W2; in the 
microcanonical case it coincides with the inverse number 1 /N”, whereas the Gaussian average, see 
Eqs. (52) or (55), gives 3/N”. For higher moments in those two cases one has M,” = l/(N”)“-’ and 
M,” = (2n - l)!!/(N”)“- I, respectively. The entropy (56) (or 1:) emphasizes the small components of 
the eigenfunctions, whereas the higher moments (62) emphasize the larger components - they are 
all average measures of delocalization. 

Fig. 31 shows the calculated information lengths 1; for all 839 states O+O ordered on the energy 
scale. We see, Fig. 31(a), the same qualitative behavior as that of the level density p(E) shown in 
Fig. 14. The transformation to the “natural” a-scale, Fig. 31(b), is also very similar to what was 
observed for p(N), Fig. 19. This comparison shows the strong correlation between our information 
entropy and conventional thermodynamic entropy -In p defined by the level density, see below 
(Section 6). Note that in the most chaotic (middle) part of the spectrum the information entropy 
does not yet reach the GOE value (57) with N, = N which would give 1: = 0.482N = 404 in the O+O 
case. The entropy of the most “chaotic” states is about 90% of that in the GOE. The same situation 
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Fig. 31. Information length, Eq. (61), of the O+O states as a function of energy (a) and in the cc-scale (b). The horizontal 
solid line corresponds to the GOE value 404. 
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Fig. 32. The same as Fig. 31 for 2’0 states, the GOE value is 1578. 

is observed for 3276 states 2’0, Fig. 32. The fluctuations are weaker compared to the O+O case due 
to the increased statistics. In both cases, the regular behavior of information entropy allows one to 
consider this quantity as a function of the excitation energy and, therefore, as a thermodynamic 
variable. However, if one goes to the case of degenerate single-particle orbitals by artificially setting 
to zero the single-particle energies e 1, the chaotic limit is reached for a significant portion of O+O 
and 2+0 (Fig. 33) states. In this case information entropy ceases to be sensitive to the spectral 
evolution. 

The distribution function of the information length 1s is shown with the help of histograms in 
Fig. 34. For the set of all 2+0 eigenstates, Fig. 34(a), the distribution of 1, has a maximum at the 
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Fig. 33. Information length for the 2+0 states for the degenerate model of single-particle orbitals. 
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Fig. 34. The distribution function of the information length, Eq. (61), for all 2+0 states calculated with actual hamil- 
tonian (a) and for 1600 2+0 states in the middle of the spectrum calculated with the degenerate single-particle orbitals. 

localization length which is less than the GOE value. A noticeable tail corresponds to the more 
localized states. For 1600 states 2’0 in the middle of the spectrum calculated in the degenerate 
model, Fig. 34(b), the centroid of the obtained distribution is still shifted to the values less than 
unity, although the tail is strongly suppressed. 

It is of some interest to see how information entropy is gradually accumulated as the coupling 
between the partitions is turned on. Solving the diagonalization problem exactly in the truncated 
space of the largest O+O partition (N = 103) with the realistic interaction gives, Fig. 35(a), the 
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Fig. 35. Information length of the O+O states calculated within the truncated largest partition (a) and within space of 
three largest partitions (b); the GOE values (solid lines) are 50 and 114, respectively. 

localization length 1: close to but lower than GOE limit of 50. The mixing is rather uniform within 
the one-partition space and statistical fluctuations are large because of the low dimension. Only the 
6 lowest states have small information entropy, supposedly due to the approximate conservation of 
the integrals of motion like seniority. The uniformity of complexity is a consequence of the 
degeneracy of the basis states within the partition. The interaction is too strong on the scale of 
narrow splitting due to the diagonal matrix elements H,,. A similar situation will be discussed in 
Section 6.4, in connection with thermalization. 

The typical pattern of the regular bell-shape behavior of information entropy is formed due to 
the interpartition interaction, which takes place on the background of the nondegenerate single- 
particle orbitals. The initial stage of the formation process is seen (on an energy scale) in Fig. 35(b) 
where information entropy is calculated for the space including the three largest partitions of total 
dimension N = 237. It corresponds to the GOE limit of 114 which is reached in the middle. It is 
clear that the intrapartition interaction does not support any selection rules except for those related 
to the two-body character of the hamiltonian. The two-body forces govern the coupling between 
the partitions and give rise to the observed regularities. 

Information entropy behaves similarly in different isospin sectors. This can be seen from Fig. 36 
where it is presented for the O+O states of 24Mg in the p-n formalism. Here the GOE value of the 
entropy is 560. To clarify this picture, the dimensions of the classes of states with various isospins 
are shown in Table 3, along with the absolute energies of the lowest states in every class. Regardless 
of the computational procedure, the eigenstates have a certain isospin. However, their information 
entropies are calculated in the p-n basis where the basis states are mixed in isospin. Therefore the 
GOE limit refers to the total dimension of N = 1161, rather than to the partial dimensions of the 
O+ T classes. Fig. 36(a) allows one to distinguish the families of the states belonging to different 
isobaric classes by following the sequences starting at the corresponding threshold energies of 
Table 3. A small number of the 0+4 states with the highest possible isospin have rather different 
structure, and therefore their mixing in the basis p-n states is comparatively weak. The results are 
not sensitive to slight variations of the residual interaction (Fig. 36(a) for the WPN case and 



134 V. Zelevinsb et al. JPhysics Reports 276 (1996) 85-I 76 

-90 -70 -50 -30 -10 -75 -55 -35 -15 5 

E (MeV) E (MeV) 

Fig. 36. Information length of the O+O states for a system of 4 valence protons and 4 valence neutrons calculated in the 
p-n formalism with the WPN interaction (a), and the WPNC interaction (b); the solid line corresponds to the GOE value. 

Table 3 
Dimensions N(T) and the lowest energies E,,,(T) of the 0’0 states for a system of 4 protons and 4 neutrons; calculations 
are carried out in the p-n formalism with the WPN interaction 

T Dim E,,“(T) 

0 325 - 87.09 
1 482 - 77.55 
2 287 - 71.66 
3 59 - 54.56 
4 9 - 41.05 

Fig. 36(b) for the WPNC case), although the admixture of isospin violating forces in Fig. 36(b) 
slightly smears the isobaric families. 

The overall suppression of the interaction strength changes the results drastically. The onset of 
chaos in the local level statistics occurred at a relatively weak interaction strength, Section 3.2. The 
information entropy of the O+O states is shown in Fig. 37 at ;Z = 0.4 (this is the common factor in all 
off-diagonal residual interaction matrix elements as used in Section 2.4). We still see the regular 
evolution of information entropy as a function of energy but the localization length is strongly 
diminished roughly in proportionality to A. We will return to this question in discussing the 
spreading width, Section 5.2. 

Finally, we would like to show that the behavior of information entropy found in the above 
example is generic, and that the resulting pattern is qualitatively the same in quite different model 
spaces. Fig. 38 shows the information entropy for N = 1183 O+O states in r2C. The calculations 
were performed in a model space of the first four harmonic oscillator major shells, taking into 
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Fig. 37. Information length for the O+O states at the strength of the off-diagonal matrix elements of the residual 
interaction, suppressed by a factor 0.4. The solid line shows the GOE value. 
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Fig. 38. Information length for 1183 2+0 states in r2C calculated with the WarburtonBrown interaction [99] in 4 major 
oscillator shell space for (0 + 2)ho excitations; panel LI is given in the energy scale; panel b is given in the cc-scale where 
states with and without center-of mass motion are differentiated. The solid line shows the GOE value. 

account (0 + 2)Ao excitations. This space is complete for the center of mass excitation in Op-shell 
nuclei. The interaction used in the calculation was that of Warburton and Brown [99] which 
contains a cross-shell part. The information length KJ, Fig. 38(a), has a generic Gaussian energy 
dependence with the maximum at the GOE limit equal to 570. Depicting the same data in the 
cc-scale, Fig. 38(b), we can clearly differentiate the states with the lowest center of mass energy (first 
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arch) from those with the excited center of mass motion (second arch). They have the same degree 
of internal complexity. 

4.3. Representation dependence 

In the previous section all results were obtained using the shell-model basis as a reference 
representation. From the physical point of view, this representation reflects the main ideas of the 
mean field approach which starts with the independent constituents. Their residual interaction is 
responsible for the mixing of basis states and stochastization of the dynamics. Two important 
features of our results are to be stressed. 

(i) The information entropy was calculated in the original shell-model basis for all individual 
eigenfunctions with no averaging elements. The eigenfunctions, adjacent on the energy scale, could 
have very different intrinsic structure and localization properties. Therefore one could expect 
strong fluctuations of their degree of complexity or the localization length. Contrary to this 
expectation, our results, Figs. 31 and 32, show only modest fluctuations superimposed onto a very 
smooth function of excitation energy. The fluctuations around the average level are of statistical 
nature (in a rough approximation, their relative magnitude is cc N - ‘I2 as can be seen from the 
comparison of Figs. 31 and 32). 

We can conclude that the eigenstates presented in the mean field basis display on average the 
degree of complexity regularly evolving along the spectrum. This complexity reflects common 
features of neighboring eigenstates which are apparently unrelated in a direct dynamic sense. Being 
a function of excitation energy only, the degree of complexity can therefore be considered as 
a thermodynamic variable. We return to this question in Section 6. 

(ii) The resulting degree of localization of the eigenfunctions in the shell model basis depends 
strongly on the strength of the mixing interaction, compare Fig. 32(b) with Fig. 33 where the 
stabilizing influence of the mean field is turned off. This once more confirms the general trend of the 
mean field to quench the chaotic signatures of many-body dynamics. 

To illustrate the exceptional role of the mean field as a reference representation, we compare the 
results for the degree of complexity calculated with the aid of this “natural” basis with similar 
calculations using different representations. 

The Y@(3) hamiltonian is a popular model [loo] which explains from the group-theoretical 
viewpoint the appearance of quadrupole deformation and rotational bands. The attractive feature 
of this approach is that the angular momentum is strictly conserved which is not the case in the 
cranking model. The exact solution of the Y%(3) hamiltonian is well known. Apart from collective 
dynamics, it was used for the test of statistical spectroscopy [SS]. 

We computed the informational entropy of our exact eigenvectors, taking the basis of the 
eigenfunctions of the Y%(3) as a reference basis. The results shown in Fig. 39(a) clearly 
demonstrate that in the Y@(3) basis almost all eigenvectors are completely delocalized over 
the entire available Hilbert space. It means that the Y%(3) basis, invented to account for the 
collective rotational features of nuclei, is not able to probe the evolution of complexity along 
the spectrum. It turns out to be practically random with respect to the process of stochastization, 
quite analogously to a pure random basis which was taken as a representation basis in 
Fig. 39(b). 
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Fig. 39. Information length for 839 O+O eigenstates of the realistic hamiltonian in the eigenbasis of the ,P2(3) 
hamiltonian (a) and in the eigenbasis of the 839-dimensional random hamiltonian (b). The solid line gives the GOE value. 

One can speculate that the shortcomings of the Y@(3) basis for our purposes are connected with 
the unrealistic features of the single-particle level scheme and absence of the strong pairing-type 
interaction in the particle-particle channel. Its interference with the multipole interaction in the 
particle-hole channel should be helpful for the smooth increase of the degree of complexity. On the 
other hand, it might be important that the realistic interaction contain a fraction of incoherent 
scattering processes (“noise”). 

We can conclude that a certain degree of self-consistency between the representation basis and 
the residual interaction is necessary to achieve a meaningful description of stochastization. The 
mean field basis is the most appropriate for this purpose. 

4.4. Other measures of complexity 

As we mentioned, the use of the moments (62) of the distribution function of the components can 
give complementary information. The effective number of principal components (NPC) as defined 
from the participation index, 

(NPC)’ = (M;)- 1 , (63) 

is shown by Fig. 40 in the cc-scale for 2+0 states. Although the qualitative behavior is again strongly 
correlated with the level density and the information entropy, this quantity also does not reach the 
GOE limit N/3 = 1091. The deviation is about 12% for the middle part of the spectrum. It means 
that in the realistic shell model with no degeneracies the eigenstates have finite localization length. 
However their structure is close to the random superposition of N, basics states, as is visualized in 
Fig. 41 (a). One can eliminate the variable local average value of N, by calculating various ratios of 
moments, for example li/(NPC)a. For a Gaussian distribution of components (54), this ratio has 
the universal value li/(NPC)a = 1.44. As seen from Fig. 41, the results for the majority of the 2+0 
state vectors are close to this expectation. 
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Fig. 40. Number of principal components, Eq. (631, for the 2+0 states, the solid line gives the GOE value. 
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Fig. 41. Correlations of different measures of complexity for individual 2+0 states. (a) Ratio of the information length to 
the number of principal components, the horizontal line shows the GOE value 1.44. (b) Ratio of the information length 
to the level density. (c) Ratio of the information length to the squared level density. (d) Ratio of the number of principal 
components to the squared level density. 
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In the Gaussian BRM ensemble [72] the localization length of eigenstates is proportional to the 
square of the local level density p(E). This prediction is checked for both localization measures, 
exp(S”) and (NPC)a, plotting their ratios to p2(E) in Figs. 41(c) and (d), respectively. We see that 
the localization lengths drop faster than they would in the BRM ensemble. One should remember 
that the BRM ensemble [72] does not include the regular diagonal part of the hamiltonian which is 
more effective in the region of lower level density. Fig. 41(b) in comparison with 41(c) shows that, 
except for the edges of the spectrm, the localization length Is is approximately proportional to the 
density p(E) rather than to its square. This means the strong correlation between thermodynamic 
entropy w In p and information entropy, see below Section 6. 

4.5. Correlations of eigenvector components 

As we mentioned in Section 4.3, in the GOE the components of the eigenvectors are dynamically 
independent. The only source of correlations between those components is the unitarity of the 
transformation from the original basis Jk) to the eigenbasis la). In the N-dimensional space, 
N normalization conditions and N(N - 1)/2 orthogonality conditions still leave N(N - 1)/2 free 
parameters determining the amplitudes. Therefore the correlations of the weights IV:, Eqs. (52) and 
(53), are weak and die out in the limit of large N. In contrast to the GOE, the realistic strongly 
interacting system has dynamical correlations built in. The first obvious candidate in the nuclear 
case is the pairing correlation of the superconducting type which will be discussed in more detail in 
Section 7. Using the calculated eigenstates, we can examine the correlation functions of their 
components looking for comparison with the GOE and for remnants of regular collective behavior. 

The correlation function of the weights is presented for the O+O states in Fig. 42. We fix the 
eigenstates la) in the product IV$IVp, see Eq. (52), and average over all components k and 
1 keeping a certain value of the “distance” 1 - k where the basis states 1 k) are ordered according to 
their centroid energy &. The cyclic boundary conditions are assumed so that the state I k = 1) is 
the next one after the state ) k = N). The result of averaging is multiplied by N2 in anticipation of 
the order of magnitude of the correlation foreseen by the GOE (52). 

Figs. 42(a) shows the diagonal (1 = k) correlation function N2m for all eigenvectors 1~). In 
the middle of the spectrum it is constant and equal approximately to 3.6 for all I a). This number is 
close but still deviates from the GOE value of three, corresponding to the random distribution of 
the orthogonal unit vectors over the surface of the (N - l)-dimensional sphere in N-dimensional 
space. At the edges of the spectrum, the typical values are higher by almost an order of magnitude 
due to the smaller complexity and larger typical weight of components of these states. Of course 
this is just another representation equivalent to the calculation of the (NPC)” in the preceding 

subsection. Figs. 42(b)-(e) display the correlation functions N2 W,“WF of different components, 
1 - k = 1, 10,100, and 400. The majority of states reveal a correlation function close to unity in 
qualitative agreement with the GOE prediction (52). However, the shorter range correlations do 
still exist. The case of the adjacent components, 1 = k + 1, Fig. 42(b), displays a correlation pattern 
almost identical with that for the diagonal case 1 = k, Fig. 42(a), with the same enhancement 1.2 
with respect to the GOE. Figs. 42(a) and (b) differ merely by the overall factor of three originating 
from the close to Gaussian distribution of the components. 
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Fig. 42. The correlation function of the weights NZ W,” Wp, Eq. (52), for the O+O states; 1 = k, k + 1, k + 10, k + 100 and 
k + 400 for parts a, b, c, d, and e, respectively. The GOE values are equal to 3 in case (a) and to 1 in all other cases. 

The correlation function for 1 = k + 10, Fig. 42(c), is also enhanced by the factor 1.2 in the 
middle. This reflects the incomplete mixing. If the corresponding normalization factor in 
the definition of the correlation function were taken as Ni instead of N2, in the middle part of the 
spectrum one would receive N,/N = (1.2)) ‘I2 = 0 9 in agreement with what we extracted earlier . 
from information entropy and the NPC. 

The long range correlation functions, 1 = k + 100 (Fig. 42(d)) and 1 = k + 400 (Fig. 42(e)), are 
rather close to unity with correlational edges strongly suppressed. The correlation length of the 
order of 100 in the k-scale can be translated into the correlation energy interval of the order of 
10 MeV with the use of the typical level spacing 100 keV for the O+O states. This agrees with the 
magnitude of the energy dispersion of Eq. (20) which is related to the fragmentation of the basis 
states and the spreading width, see Section 5. 

The fact that the correlation functions evolve along the spectrum in a regular way can also be 
illustrated by direct comparison with the information entropy and the number of principal 
components. Fig. 43 shows the correlation function of the adjacent components WEWg+ 1 multi- 
plied by [exp(sn)/0.4812, Fig. 43(a), or by [3(NPC)‘12, Fig. 43(b). Both quantities would be equal 
to unity for all states in the GOE case; the result would be the same if one could use the Gaussian 
distribution with an effective local number of states N, in all characteristics of complexity of a given 
state. We see that these products approach unity in the middle part. However, they still depend on 
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Fig. 43. Interrelation between the decorrelation of the neighboring components and various measures of the delocaliza- 

tion for the O+O states: the correlation function W,f Wl+ 1 multiplied by [&/0.48]‘, panel a, and by [3(NPC)“]‘, panel b. 
The GOE value is 1. 

excitation energy. The effective number of components contributing to information entropy or to 
(NPC) is smaller than the decorrelation factor in (52), except for the most complicated states. It 
means that decorrelation occurs faster than the delocalization of the wave functions, and the actual 
distribution function of the eigenvector components systematically deviates from the local Gaus- 
sian distribution. 

4.4. Do we really measure complexity? 

The essential shortcoming of using such characteristics as information entropy or the moments 
of the distribution function of the components is their inability to distinguish a genuine chaotic 
behavior from the complexity (more precisely, delocalization) associated with collective motion 
or with the improper choice of the basis. Certainly, this is also related to the representation 
dependence discussed in Section 4.3. 

Collective excitations 1 c), as for example found in the framework of the random phase approxi- 
mation (RPA), of course also can be presented by superpositions (5). But in this case the amplitudes 
Ci are coherent with respect to a certain simple (one-body in the RPA) operator Q. The coherence 
means that the phases of the amplitudes Ci are synchronized with those of the matrix elements 
Qko for a transition between simple states, for example between the ground state (0) and a lp-lh 
state ) k). For a coherent linear combination Ic), the partial amplitudes add constructively so that 
the transition probability IO) --f ( c) is enhanced, as compared to the probability of the elementary 
shell model transition 10) --+ I k), by a factor N, which is a number of coherent components 
contributing to the wave function 1~). If N, is large enough, our measures of complexity will signal 
an appearance of a complicated state which definitely has nothing to do with chaos. For instance, 
a coherent state la) of a harmonic oscillator defined as an eigenstate of the annihilation operator, 
ala) = ala), is a quantum counterpart of regular semiclassical motion. For a large average 

number of quanta fi = la12, both exp(S”) and (NPC)” are growing cc$ (the exact result is 

(NPC)a = exp( -2cx2)Io(2cx2) z 2J” rcn w h ere lo is a modified Bessel function). 
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We should however keep in mind that (i) the actual degree of collectivization in nuclei NC is 
usually small compared to the degree of complexity of typical complicated states; only in the case of 
low lying quadrupole excitations of vibrational or rotational type in heavy nuclei one has 
NC 1: 102; (ii) the fraction of collective states is small (N l/N”) so their statistical weight is 
presumably negligible, (iii) as the excitation energy increases, the relative degree of complexity of 
such states actually decreases (in the example of coherent states (NPC)/ti oc ti- 112 as it is necessary 
for the transition to the regular classical limit), and (iv) in a realistic many-body system only the 
lowest collective states are approximately stationary, but in that energy domain there is no chaos 
anyway. Nuclear collective states at sufficiently high excitation energy are strongly mixed (dam- 
ped), so the only surviving signature of collectivity could be a nonstatistical excess of specific lp-lh 
basis components concentrated at a certain energy in the interval of the spreading width and 
manifested by a peak of the strength function of the operator Q. 

The problems associated with an inappropriate choice of the basis can be more dangerous. 
Considering, for example, a tight binding model of a particle in a periodic N-well potential and 
using the localized states as the basis states, we easily find for the stationary delocalized standing 
wave solutions (NPC) = (2/3)(N + 1) for all wave vectors. This complexity, being higher than in 
the GOE ensemble, is simply a manifestation of the uncertainty relation between the coordinate and 
the wave vector. (In our studies we never saw complexity which would considerably exceed the GOE 
limit). In many cases there exists a smooth evolution or phase transition of the mean field along with 
increasing energy (or temperature). Change of shape of the mean field, even if the new shape supports 
regular single-particle motion, can be misinterpreted as an onset of chaos due to the complexity of 
new stationary eigenstates expressed in the old representation. But in such cases the invariant 
measures of chaos connected to the level statistics unequivocally indicate absence of chaos. 

5. Fragmentation and spreading 

In the preceding section we discussed the average properties of the distribution of components of 
the stationary wave functions and found a qualitative overall agreement with the local Gaussian 
distribution along with small deviations revealed by the correlational analysis. In many physical 
problems it is important to study the fragmentation of simple states ) k) over the exact eigenstates 
la) rather than the inverse problem of localization discussed earlier. Of course, both questions are 
to be answered by means of the same matrix of transformation amplitudes Ci which are real in our 
case of time-reversal invariance. In this section we will be interested in details of the distribution of 
components for a given simple state and in generic features of this distribution. 

In a time-dependent picture, specific states 1 k) describe the initial stage of the excitation process 
induced by a simple (one- or two-body) external field. As in the Landau theory of Fermi-liquid, one 
can have a reasonable description of the response to an external perturbation in terms of 
undamped individual elementary excitations only on a relatively short time scale until the 
relaxation processes lead to the finite lifetime of simple modes. In our language of stationary states, 
this relaxation is nothing but mixing with more complex configurations. (Consideration of decay to 
the continuum [32] being an important issue both from practical and conceptual viewpoints is 
outside the scope of the present work). As the result of mixing, the strength of the original mode is 
fragmented over exact stationary states within an energy interval f (the spreading width). 
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5.1. “Standard model ” of the spreading width 

The definition of the spreading width traditionally assumes that the decomposition of the simple 
state in terms of the stationary components with energies E, has the Breit-Wigner shape. This 
would correspond to the pure exponential decay of a simple excitation with the mean lifetime 
r - ii/r. This is the case in the “standard” model [21] of the strength function, where a simple 
mode is coupled with the infinite picket fence of complicated background states via constant (or 
weakly fluctuating) matrix elements. As we discussed in relation to the spectral rigidity, in the 
discrete spectrum with the finite energy uncertainty of the initial state, its damping cannot be 
exponential on a short time scale which corresponds to the non-Lorentzian tails of the strength 
function. The question of how good is the Breit-Wigner approximation of the strength function 
has to be studied using the specific dynamical properties of the system. 

Let us consider fragmentation of the strength of a simple state Ik). In the standard model one 
acts in two steps. First, the state jk) z 11) is excluded and the (N - 1) x (N - 1) submatrix of the 
hamiltonian including the remaining original N - 1 basis states is fully diagonalized to give 
intermediate eigenvectors Iv) and eigenvalues E,, v = 2, . . . , N. This diagonalization defines the 
transformation matrix (k’ 1 v), k’, v 2 2. After the prediagonalization the transformed hamiltonian 
consists of the diagonal elements (Hkk = _& and E,) and the coupling matrix elements 

V,, FE (k)H’lv) = c I!&(k’I v) 
k’> 1 

in the kth row and the vth column, v # k. 
The second step is the explicit diagonalization of the intermediate hamiltonian, i.e. transforma- 

tion from the states (k) and{ Iv)) to the eigenstates la), Eq. (5). The exact energies E = E, are the 
roots of the secular equation (poles of the Green function G(E)) 

G-‘(E) 5 E - & - c V,&/(E - E,) = 0 . (65) 

Here the intermediate energies E, and the matrix elements (64) do depend on the choice of the 
removed state (k) but the roots E, do not. 

The eigenvectors can be represented by a superposition similar 
amplitudes D,“, 

ICC) = C,“lk) + V;k D;(v) = C,alk) + c C,$(vIk’)Iv) . 

k’, Y # k 

to that of Eq. (5) with the new 

(66) 

The amplitude Cp, which is of course the same as in (5), determines the fraction of the strength of 
a simple state I k) carried by an eigenstate (a), 

(67) 

The standard model assumes that (i) the “background” states Iv) have the rigid energy spectrum 
with mean level spacing D, (ii) this spectrum does not considerably change due to the removal of 
a single state I k), and (iii) the squared matrix elements V,“, are uncorrelated with the energies 
E, being of the same order of magnitude for all background states. For the dense uniform 
background characterized by the level density p(E) 2: D-l, one can introduce, instead of the 
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discrete set of the fragmentation amplitudes (67) the smooth strength function F,(E) of the state 
Ik), see Section 2.4, 

where the average is taken over several eigenstates in the vicinity of energy E. The assumptions of 
the standard model allow one to substitute V,‘, effectively by the appropriate average value ( V2). 
The following summation over the infinite picket fence of the background states implies the infinite 
energy dispersion. Under these conditions, Eqs. (65)-(68) lead [21] to the Breit-Wigner strength 
function, 

F,(E) = -!- r 
2n (E - .I?# + r2/4 ’ 

where the spreading width is given by the golden rule, 

(70) 

This value is widely used for the estimates of the spreading widths. Below we present the more 
general treatment, taking into account the finite spreading width of the doorway states. The 
arguments follow those of Ref. [44]. 

5.2. Spreading width in the stochastic regime 

Let us discuss the main ingredients of the standard model. The assumption (i) of the dense 
uniform background is quite reasonable in the stochastic regime we are interested in. However, in 
the region of strong mixing the spreading width can be large enough so that the level density p(E), 

which is an important factor in the strength function (68), changes significantly in the relevant 
energy range. Of course, as assumed in (ii), the properties of the background are not influenced by 
the omission of one of the basis states. However, the assumption (iii) of the coupling matrix 
elements uncorrelated with the energies of the background states can easily be violated. In general, 
the matrix elements are decreasing as one moves away from the centroid of the original state. This 
can be understood from the band-like structure of the shell-model hamiltonian, in contrast to the 
full GOE matrix. 

The shell-model selection rules define, for each basis state, its doorway states as those participat- 
ing in the first mixing step. In the exciton (particle-hole) language they belong to the same or to the 
next level of complexity. But the doorway states have their own finite spreading widths. Therefore 
their strength covers a finite range of energy AE. Outside of this interval the magnitude of the 
coupling matrix elements V,, decreases. As discussed in [SS, 591, this restricts the validity of the 
standard model, which corresponds to the limit AE -+ 00, and can bring the shape of the strength 
function closer to Gaussian. In particular, this effect can be responsible for the relatively narrow 

width of multiple giant resonances scaling as & with the phonon number n. Even small deviations 
from the Breit-Wigner shape for a single phonon strength function become more pronounced after 
the convolution in the double phonon excitation. In agreement with the central limit theorem, the 
resulting shape is driven in the direction of the Gaussian. In general, the strength function is not 
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necessarily of the Breit-Wigner shape even in the central part, and the “decay” of simple modes is 
not exponential. 

The standard model is valid if the resulting width r is less than the range dE of considerable 
interaction strength (the weak coupling case in terms of Ref. [44]). In the opposite (strong coupling) 
case the formally calculated spreading width (70) exceeds AE, and the assumptions of the standard 

model break down [SS, 59,441. Then the actual spreading width is proportional to dm instead 
of ( V2) as in Eq. (70). Apparently these two limits were first recognized by Wigner [68]. They were 
studied recently [loll in application to banded random matrices. 

A self-consistent theory for the strength function taking into account the coupling to the 
doorway states which, in turn, are fragmented in a similar way, was developed in [44]. It is valid for 
any ratio T/AE. The coupling matrix elements H ,& in the stochastic regime are uncorrelated with 
the components (k’lv) of the background states. Therefore the squared matrix elements (64) on 
average can be represented as 

k’ 

In the stochastic regime a randomly selected state Ik) is assumed to be similar to other 
background states. The case of a nongeneric, for example collective, state embedded into the 
compound background was considered in [44]. We expect all typical states I k) to be characterized 
by the same generic strength function F(z) depending only on the energy distance z = E - & from 
the corresponding centroid, 

(71) 

F,(E) * F,(E - &) = F&k) % F(zk) . (72) 

Under these approximations, Eqs. (65), (67) and (71) can be transformed into a set of coupled 
self-consistent equations [44] where the singular integral is defined via the limiting transition from 
the complex plane, 

F(z) = k Im 
1 

z - c (z) ’ 

C(z) = s s dx 
f’(y) 

dy f(x, Y) z _ x _ i. . 

(73) 

(74) 

The form-factorf(x, y) (the spectral distribution function) describes the distribution of magnitudes 
of the original off-diagonal matrix elements Hi, as a function of the distance between the centroids 
& and E, = & + 8. For a given state Ik) it is defined as 

(75) 

The form-factor in the stochastic regime is assumed to be the same for all generic states I k) and to 
depend only on the difference o = J!?[ - &. It decreases when o exceeds the range AE of the 
doorway strength. For the states 11) with the centroids within this range, the mixing intensity can 
be estimated with the aid of the average value ( IH;,12). The quantity pk(E) is the density of the 
doorway states, around unperturbed energy E, for the initial state Ik). In the standard model 
f(w) = ( V2 )/D z const. Note that the form-factor (75) is normalized to the sum of the squared 



146 V. Zelevinsky et al. /Physics Reports 276 (1996) 85-l 76 

off-diagonal matrix elements, and therefore gives the spectral decomposition of the fragmentation 
width (19) 

(76) 

As shown in Section 2.4, r~ k z 0 is practically constant as a function of Ek which would be the case 
for the uniform form-factor f(m). Comparison with (19) shows that the interaction range can be 
roughly estimated as BE z 2bD where b is the effective band width (AE z 12 MeV for our 2+0 
states). The characteristic value of the form-factor is C2/2bD z 8 MeV for the 2+0 states. 

Fig. 44 shows the histogram for the form-factor (75) summed over all O+O states. It has 
a Gaussian behavior as a function of w with the centroid at w = 0 and the dispersion 
us = 9.5 MeV. 

Eqs. (73) and (74) found for the stochastic regime allow analytical solutions in the two limiting 
cases. The weak coupling limit corresponds to the spreading width r well within the range AE of 
interaction. The self-energy C(z) is then a slowly changing function and can be taken at the origin. 
The integral over y in (74) is effectively confined to the region of the size r where the form-factor 
does not change significantly and can be taken outside the integral at the value near the origin. The 
remaining integral j dy F(y) = 1 by the normalization (15) of the strength function. In this case we 
get the Breit-Wigner strength function F(z), Eq. (69), with the universal spreading width 

r = 2rcf(O) . (77) 

The standard model expression (70) is a particular case of (77). The condition for the validity of this 
result is 2nf(O) < AE. For the parameters of the 2+0 and O+O classes of states this condition is 
violated. The quantity (77) exceeds also the energy interval where the level density can be 
considered as approximately constant. 
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Fig. 44. The spectral form-factorf(w), Eq. (73, for the O+O states (histogram) and Gaussian fit (dashed line). 
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In the opposite limit of the strong coupling r > AE, the effective range of integration is 
determined by the more rapidly decreasing form-factor. Then one can put the strength function 
F outside the integral over y in Eq. (74) and use the normalization condition (76). In this case the 
details of the form-factor play no role, and the result can be expressed in terms of the total 
fragmentation strength 6. The strength function given by the solution of Eqs. (73) and (74) turns out 
to be a semicircle with radius 20, 

F(z) =&@h. (78) 

The solution is consistent with the definition (18) and (19) of the second moment of the strength 

function which gives (T (2) = 5. The effective spreading width (FWHM) is here r = 2$5. Note the 
linear dependence on the magnitude of the residual interaction in contrast to the quadratic 
dependence of the golden rule (70). 

The wings of the strength distribution cannot be described by the limiting expressions, 
Breit-Wigner or semicircle. They depend on the precise shape of the form-factor. Assuming that 
the equations of the stochastic regime are still valid for the tails of the strength functions, one 
obtains the limiting behavior 

J’(z) Q(z)lz2 (79) 

at large z. For the Breit-Wigner form-factor used for illustrative purpose in [44], it would give the 
wings of the strength function F(z) cc zw4. 

As we will see, the actual situation in our shell-model calculations is intermediate between these 
two limits. The weak coupling limit is ruled out by the fact that the localization length increases 
with the interaction strength il much slower than proportional to 12. It was mentioned in Section 
4.2 in relation to Fig. 37 corresponding to 2 = 0.4. The strength function drops faster than in the 
Breit-Wigner case but slower than the semicircle rule so Eq. (78) would overestimate the average 
spreading width. A similar conclusion was reached [35] for the atomic states. However, the 
evolution of the eigenstates along the spectrum prevents using the limiting predictions of (79). 
A large value of r means that the strength functions cover the regions of the spectrum where the 
wave functions manifest different degrees of complexity. Therefore the assumption of global 
uniformity is broken. 

5.3. Strength functions of basis states 

In order to examine the fragmented structure of individual basis states lk), we group the weights 
W[ = (Ci)’ of several neighboring eigenvectors /a) for given k in bins and build a histogram as 
a function of an average bin energy. This corresponds precisely to the definition of the strength 
function F,(E) of the state Ik), Eq. (17). As shown by Fig. 45(la)-(9a), for 9 individual O+O basis 
states with the centroids & in the middle of the spectrum, the resulting histograms are very 
different in detail and display strongly fluctuating patterns, but they have similar widths. Following 
the idea of ergodicity and considering these histograms for various 1 k) as independent realizations 
of a statistical ensemble, we can average them out in order to extract the typical strength function 
for this class of states. 
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Fig. 45. The strength functions, Eq. (68), for 9 individual O+O eigenstates 1 a) in the middle of the spectrum (histograms) us 
the energy distance, E” - & (MeV), from the centroid of the unperturbed state 1 k), panels la-9a, and the strength 
function averaged over 10, 100, and 400 O+O states in the middle of the spectrum, panels lb-3b, respectively. The bin size 
is 1 MeV. 

The result of such averaging obtained by the superposition of 10,100, and 400 strength functions 
in the middle of the spectrum is given by Fig. 45(lb), (2b) and (3b), respectively. The fluctuations are 
smeared away and one can observe the generic shape. We could not find a simple parameterization 
which would satisfactorily fit both the central part and the wings of the distribution. Fig. 46(a) 
shows both the Breit-Wigner and the Gaussian fits to the central region. Beyond the half- 
maximum height, the data decreases much faster than the Breit-Wigner curve. This deviation is 
clearer from the logarithmic plot of Fig. 46(b). The Gaussian fit is in good agreement with data 
except for the wings where it falls off faster than needed. Again this shows up distinctly with the aid 
of the logarithmic scale. From the Gaussian fit for the main part of the strength function we get 
a dispersion AF = 8.9 MeV which is close to the value of 9.5 MeV discussed earlier (Fig. 44) for the 
form-factor f(u). It corresponds to a typical spreading width (FWHM) of the middle O+O states 
equal to r = (8 In 2)1124F = 21 MeV. 

Using this value, the level density p c 10 MeVI, and the Breit-Wigner relation (N,) = 
(7r/2)pr between the spreading width and the number of principal components of the wave 
function, we get (N,) z 330, which is roughly consistent with the value observed for the middle 
part of the spectrum in Fig. 31 obtained for information entropy. 
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Fig. 46. The Breit-Wigner fit (solid lines) and Gaussian fit (dashed lines) to the central part of the 400-state strength 
function (histograms), panel a, and the same fits on the logarithmic scale, panel b. The bin size is 100 keV. 

As we discussed in the preceding subsection, the behavior of the tails of the realistic strength 
functions can be governed by factors different from those determining the main shape. This is not 
the case in the simple BRM ensemble without the increasing diagonal. Here, we find good 
agreement with data in the tails using a simple exponential fit 

The localization energy length of the tails of the strength function is LF = 5 MeV, see Fig. 47. The 
agreement covers three orders of magnitude. 

According to (68), the strength function F,(E) is essentially a product of two factors, namely an 
average weight of components of a generic eigenstate and the level density. The level density is 
mostly of combinatorial nature, and the main effect of the residual interaction is in broadening the 
distribution with the Gaussian shape kept intact. We referred to this behavior in Section 3.1. The 
distribution for the effective level density which enters into the summation over 400 levels in the 
middle of the spectrum is shown in Fig. 48. The average weight of the components is directly related 
to mixing and complexity reached in the stochastization process. We remove the factor of the level 
density and show the “pure”, intermediate between the Breit-Wigner and Gaussian, behavior of the 
mixing probabilities in Fig. 49; the width is equal to 13.7 MeV. The long tails of (WE) as a function 
of E, - & are obviously responsible for the exponential wings of the strength function. 

As discussed in the previous subsection, for small spreading widths well within the interaction 
range AE, we are in the weak coupling limit. In this case the standard model is valid, and the 
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Fig. 47. The exponential fit of Eq. (SO), solid lines, to the wings of the 400-state strength function (histograms), panel a, 
and the same fit on the logarithmic scale, panel b. The bin size is 100 keV. 
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Fig. 48. Gaussian fit (solid lines) to the level density, p(E), for the 400-state strength function, panel a, and the same on 
the logarithmic scale, panel b. The bin size is 1 MeV. 
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Fig. 49. Breit-Wigner fit (solid lines) and Gaussian fit (dashed lines) to the average weight, ( Wl), for 400 O+O states, 
panel a, and the same fits on the logarithmic scale, panel b. The bin size is 1 MeV. 

strength function should have the Breit-Wigner shape. We performed Gaussian and Breit-Wigner 
fits to the strength function for the interaction strength reduced by an overall factor il = 0.2, 
Fig. SO(a) and (b). As expected, a Breit-Wigner shape describes our data with high accuracy but 
a Gaussian is no longer sufficient as a plausible distribution function. The width of the 
Breit-Wigner fit is 1.1 MeV. The evolution of the shape of the strength function as a function of 
interaction should be studied further. 

Now we are able to construct the realistic distribution function P_,,(Ci), see Section 4.1, of the 
components of the eigenvectors to be used in statistical spectroscopy [54,56]. Neglecting the 
correlations discussed in relation to Fig. 43, for the majority of states it can be taken as a Gaussian, 

where, according to (68), the local variance, Fig. 49(b), is given by 

<WE> = WE - E,)/p(E,) . 

The width (FWHM) of this distribution is roughly equal to 

(81) 

(82) 

(83) 
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Fig. 50. The Breit-Wigner fit (solid lines) and Gaussian fit (dashed lines) to the strength function averaged over 400 O+O 
states in the middle of the spectrum for 20% interaction strength, panel a, and the same on the logarithmic scale, panel b. 
The bin size is 100 keV. 

5.4. Two-step diagonalization and the spreading width 

In order to observe the spreading widths of individual shell-model states we performed the 
procedure of the two-step diagonalization described in relation to the standard model [21] in 
Section 5.1. For this purpose the set of O+O states was used. 

Taking out an arbitrary basis state Ik) and performing the diagonalization of the remaining 
matrix we obtain the intermediate basis (1 k), 1 v)} with energies {&, EY} and coupling matrix 
elements V,,. The distribution of these matrix elements for a given removed state 1 k) can be 
characterized by the spectral function analogous to that of Eq. (79, 

g@k&+~) =~Ibc,12@,-~v +4w%&t +NII/kv12). (84) 
Y 

Here we have defined the density of intermediate states p”(E) and the average value of the coupling 
matrix element. Similar to the form-factor f, we expect that the gk depend only on w and are nearly 
the same for different states I k), at least at close energies. Note that, due to the orthogonal 
invariance of a trace, 

where Ak is the projector onto the state Ik). Therefore the form-factor (84) is normalized by the 
same condition (76) as the original form-factor J; 

s 
dC0 g/@/‘, & + W) = f$ . (86) 
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As the interval of averaging increases, the average form-factor rapidly evolves to the Gaussian 
shape. The resulting Gaussian fit is shown in Fig. 51(a); the dispersion is equal to cg = 17 MeV. The 
fitted normalization (86) of the Gaussian gives 1 dco g(o) = 104 which agrees with the average value 
ck % C? = 10 MeV found in Section 2.4. 

Dividing out the level density of the intermediate basis states, we determine (Fig. 51(b)) the 
average coupling intensity (I I/ky12). Except for the excess corresponding to the coupling to 
the highest and, less pronounced, lowest states Iv), the matrix elements are nearly constant on 
the level 1 VI2 N 0.147 MeV2. It means that in this case the form-factor (84) is determined mainly 
by the Gaussian level density. In agreement with the idea of N-scaling, the matrix elements are 
bigger and display stronger fluctuations near the edges where the states of lower complexity are 
located. 

Using this value of the squared matrix element together with the average level spacing 
D z 0.1 MeV in the golden rule (70), we obtain a value for the spreading width r = 9.4 MeV. 
Evident disagreement with the actual value of 21 MeV found in the preceding subsection demon- 
strates that the golden-rule estimate based on the standard model is not justified when dealing with 
the fragmentation and spreading widths which are of the order or larger than the scale of the 
change in the level density. 

The wings of the strength function can presumably be calculated by perturbation theory. The 
exact energies E, are located intermittently between the intermediate energies E, and the small 
difference between E, and E, is of minor significance at large I& - E,I. Therefore we expect that 

-50 -40 -30 -20 -10 0 10 20 30 40 50 

0 (MeV) 

Fig. 51. The spectral form-factor g(w) averaged over 100 O+O basis states in the middle of the spectrum (histogram) with 
a Gaussian fit (solid line), panel a, and the coupling intensity (V,“) for those same basis states 1 k) in the middle of 
the spectrum (histogram), as a function of o = E, - Ek, panel b; dots correspond to the constant value of 
(V’) = 0.147 MeV’. 
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Fig. 52. Strength function F,(E) (panel a) compared with the perturbative result p:,(E) (panel b) from Eq. (87). The bin 
size is 1 MeV. 

the quantities 

are close to IV:. Fig. 52 shows, on a detailed logarithmic scale, that the peripheral 
strength function, Fig. 50(a), agrees with the results of perturbative calculations. 
theory is valid outside the central region of the order of the spreading width. 

6. Chaoticity versus thermalization 

region of the 
Perturbation 

We saw that the complicated wave functions representing exact stationary states in the shell- 
model with a finite Hilbert space display the conventional signatures of quantum chaoticity. The 
global level statistics are similar to those of the GOE. Local level correlations reveal Wigner 
repulsion. The spectra are rigid with no pronounced contribution from periodic orbits. The 
independent partition structure is significantly smeared, the stationary eigenstates are delocalized 
in Hilbert space and their information entropy (56) calculated in the original shell-model basis is 
close to the GOE limit. These signatures taken together give clear evidence that our system, at least 
the part of the spectrum located in the middle of the energy range, is near the stochastic limit. Along 
with this, there exists a noticeable change of the degree of complexity as a function of the excitation 
energy and level density. 
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In the usual description of excited states at high level density, the thermodynamic picture of 
a heated system is frequently used. The question arises [102]: what is the relation between the 
complicated structure of exact eigenstates and general principles of equilibrium statistical mechan- 
ics? To address this question we first discuss the general notion of statistical equilibrium as applied 
to an isolated mesoscopic system like a nucleus. 

6.1. Thermal equilibrium in a small closed system? 

The standard approach to the statistical description of a closed equilibrated system with 
a sufficiently high number of degrees of freedom implies that average (“thermodynamic”) proper- 
ties of the system are determined by its statistical weight Q(E) = p(E)GE, i.e. by a number of states 
with given values of exact integrals of motion within the energy range 6E. The latter is defined by 
the uncertainty of the total energy E due to the initial conditions, finite duration of preparing the 
system, interaction with the surroundings or just due to the lack of information. The exact value of 
6E is not important as long as 6E is small compared to the energy interval where the macroscopic 
properties of the system change considerably. Since the density of states p(E) grows very fast 
(exponentially in the thermodynamic limit of macroscopic systems) with energy E, the interval 6E 
can still contain many levels which makes the concept of the smooth level density meaningful. 

Having introduced the statistical weight, one can proceed to define thermodynamic entropy 
Slh(E) = In O(E) and temperature T according to 

aSth/i3E = l/T. 

Obviously, this concise description corresponds to the minimum information available. In fact, our 
knowledge of the microscopic state of the system at equilibrium is limited to what is given by exact 
integrals of motion. 

In a situation with incomplete information, a quantum system is described by the density matrix 
9 rather than by the pure wave function. Given the density matrix, the expectation value of an 
observable 0 can be found as an average, (0) = Tr(CoB). For a closed system, the only possible 
assumption about the a priori distribution of probabilities for the system to be found somewhere 
within 6E is that the density matrix is a constant equal to l/Q(E) inside the energy interval and 
zero outside. This is the usual way to introduce the microcanonical ensemble for the closed system 
and further proceed to the canonical or grand canonical ensemble for a subsystem of the closed 
system. All ensembles are equivalent for large systems in predicting thermodynamic properties but 
differ in defining the fluctuations. The canonical ensembles can be derived from the maximum of 
entropy 

S = - Tr(gln5B) (89) 

under additional constraints specified for a given ensemble. 
The overwhelming accuracy of the statistical approach implies that the results are absolutely 

insensitive to the actual microscopic state of the system. It is repeatedly stressed in the textbook on 
statistical mechanics by Landau and Lifshitz [103] that average over the equilibrium statistical 
ensemble should give the same outcome as an expectation value for a typical stationary wave 
function at the same energy. The main underlying assumption is that of similarity of generic wave 
functions in a given energy region. At the same time, equilibrium statistical averaging discards all 
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possible phase relationships between different components of wave functions: one deals entirely 
with probabilities (diagonal elements of the density matrix in the energy representation). This is 
justified if the phase coherence can appear with a very low statistical weight only. 

If we start with a highly coherent state, for example, as in a heavy ion collision where the entire 
excitation energy is initially concentrated in global synchronized motion of all constituents, this is, 
as a rule, a wave packet rather than a stationary state. We need to wait for some time to allow for 
the time evolution to destroy the initial coherence. In general the decoherence does not require the 
presence of the surrounding. It is sufficient to couple different degrees of freedom inside the system. 
The process of decoherence, called relaxation or equilibration, is practically irreversible because of 
the finite lifetime with respect to the decay into the continuum or the extremely long recurrence 
time for the revival of phase coherence in the case of the discrete but very dense spectrum. However, 
it does not necessarily mean that full statistical equilibrium requires “that each states included in 
p(E, N) be populated with equal probability” [ 1041. The point is that the vast majority of states in 
the region of high level density reveals very similar observable properties, so that the exact 
distribution of population probabilities among the close stationary states is not important. This is 
the microscopic counterpart for the second law of thermodynamics and the trend of entropy to the 
maximum value. Once the phase coherence is destroyed, the details of microscopic population 
become simply irrelevant for the macroscopic observables which corresponds to the maximum loss 
of information. The equiprobable microcanonical ensemble is just the simplest choice which gives 
correct results. 

In some cases, as in slow neutron scattering, the uncertainty interval 6E may shrink in fact to 
a single intrinsic state. A rather precise knowledge of energy is crucial for the scenario [29] of parity 
nonconservation in fission by polarized neutrons. However, it does not prevent one from using 
thermodynamic concepts for the description of the structure of a specific neutron resonance in 
terms of thermal particle-hole excitations [lOS]. The optical model average over the resonances 
implies their similarity rather than actual equipopulation. One does not need to explore the whole 
set of similar states to obtain statistically reliable information merely due to this similarity of the 
individual wave functions. 

6.2. Statistical equilibrium and stochastic dynamics 

Now we discuss briefly under which circumstances one can expect the majority of stationary 
states in a given small energy range to reveal analogous observable properties. 

The picture of the exceedingly large amount of states with very similar macroscopic features is 
obviously valid for perfect gases. One can easily see that the description of Section 6.1 of the 
equilibrium ensemble fits as well our limit of stochastic dynamics. In the classical case the 
correspondence between statistical equilibrium and chaotic trajectories exploring the whole energy 
surface is taken almost for granted by many authors, see for example [106]. As for the quantum 
case, the pioneering paper on the compound nucleus by Niels Bohr [31] already gives an equal 
footing to elements of both patterns, chaos and thermalization. The definition by Percival [36] of 
chaotic wave functions goes along the same line, stating that all of them look almost similar, 
covering more or less uniformly the entire available region of configuration space. According to 
Berry [95, 1071, in systems with the chaotic classical limit as a gas of hard spheres, the eigenfunc- 
tions should behave like random superpositions of plane waves. This conjecture is actually 
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equivalent to the statistical microcanonical ensemble and directly leads Cl081 to the standard 
(Maxwell-Boltzmann, Bose-Einstein or Fermi-Dirac) momentum distribution functions for indi- 
vidual particles. 

One can argue that the gas of hard spheres is a particular case of many-body dynamics where the 
interaction is reduced effectively to the exclusion of the inner volume of the spheres. This allows one 
to rigorously prove the conditions for chaoticity of the corresponding classical gas [109]. In fact, 
the onset of chaos in such a gas occurs at temperatures which are high enough to diminish 
a thermal De Broglie wave length of a particle to become less than the radius of the sphere. This 
ensures instability of classical scattering with respect to small variations of the impact parameter. 
The picture of chaos arising from the irregular scattering is literally applicable to the low density 
gas only when the interaction proceeds via rare pairwise collisions. However, long ago it was 
shown by van Hove Cl101 that a much broader class of gas-like systems displays quantum 
ergodicity. A random initial wave function of such a system evolves with time into a state which 
gives the same values of observables as the microcanonical thermodynamic ensemble. The assump- 
tion of randomness (phase incoherence of the components) is similar to Berry’s conjecture or even 
to Boltzmann’s molecular chaos (Stosszahlansatz). 

Self-sustained Fermi systems like nuclei behave, according to the Landau-Migdal theory of 
Fermi liquids, analogously to the gas of interacting quasiparticles. Empirical nuclear level densities 
are reasonably well described by slightly modified Fermi gas formulae. The effective residual forces 
used in the shell-model calculations should be considered a phenomenological result of renormaliz- 
ations, taking into account the hard-core - or more precisely - short-range part of the original 
nucleon-nucleon interaction, and the necessary truncation of fermionic space. The residual 
interaction cannot be totally reduced to rare pairwise collisions and is to be treated on exact 
quantum-mechanical basis. Therefore there is no clearly defined transition to the classical limit and 
the direct generalization of the results derived for hard spheres is hardly possible. 

Having at our disposal exact eigenfunctions of the Fermi system with strong interaction 
(although in a truncated space), we can compare their statistical properties with those of the 
equilibrium statistical ensemble. As discussed earlier, one can imagine two opposite situations: 
(i) adjacent states with very close energies which nevertheless have nothing in common in their 
structure so that their proximity is a matter of accidental degeneracy; (ii) neighboring states can be 
considered as a final stage of the mixing process which results in the stochastization and similarity 
of structure. Only option (ii) corresponds to the idea of the equilibrium ensemble. 

We have seen in Section 4 that the degree of complexity measured by information entropy of 
individual functions in the shell-model basis is the same for many states close in energy. Within 
small fluctuations, it changes smoothly with excitation energy, and therefore can be treated as 
a thermodynamic variable. A similar conclusion is valid for more refined measures like the 
distribution function of the components, Section 5. This gives a strong indication of the equilibrium 
mixing. It will be shown that under certain conditions a direct correspondence exists between 
information entropy and thermodynamic entropy. Another question to be addressed is the 
relationship between the actual wave functions and the Fermi-liquid picture of the heated 
quasiparticle gas. 

The shortcoming of the model comes from the same fact that makes the exact diagonalization 
feasible, namely a very small number of nondegenerate single-particle orbitals In). Still, we can 
draw some interesting conclusions. 
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6.3. Single-particle occupation numbers 

First, let us consider the thermodynamic definition of entropy and temperature (88) which can be 
directly applied to our empirical level densities. As expected for a model with a finite Hilbert space, 
the system is increasingly heated as excitation energy increases until the level density reaches its 
maximum which corresponds to maximum entropy and infinite temperature. For the Gaussian 
level density p(E) with the centroid at E0 and variance c g, the temperature (88), see Fig. 53 (solid 
lines), is 

T = o;/(Eo - E) (90) 

while for the semicircle distribution (32) one would obtain T = [a2 - (E - EO)‘]/(EO - E). The 
right half of the spectrum, E > E,,, is associated with decreasing entropy and negative temperature. 

To compare the global thermodynamic behavior with the features of the individual eigenfunc- 
tions, we calculate the evolution of single-particle occupation numbers (the isoscalar monopole 
component of the single particle density matrix) n: of the orbitals A = (1,j) along the spectrum of 
stationary many-body states 1 a), 

(91) 

The results are shown in Fig. 54 where the panels a-c correspond to O+O, 2+0 and 9+0 (N = 657) 
states, respectively. We observe a rather smooth regular change starting around the 20th level (in 
the atomic case [35] the fluctuations of the occupation numbers are considerably larger). This 
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Fig. 53. Temperature calculated from the global fit to the level density of the O+O states (solid line) and found from the 
occupation numbers of Fig. 54(a) (dots). 
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Fig. 54. Single-particle occupation numbers, Eq. (91), versus state number CI for states O+O (panel a), 2+0 (panel b), and 
9+0 (panel c). For all panels the three curves (sets of points) refer to sIiz, d,,, and d,,, orbitals, from bottom to top on the 
left-hand side. 

smooth evolution takes place in spite of the fact that the states are orthogonal and apparently have 
no common dynamical character, as would be the case, for example, for members of a rotational 
band built on a given intrinsic configuration. The regular component of dynamics which survives 
averaging over extremely complicated wave functions is closely related to the mean field 

c401. 
All three classes of states exhibit an identical average behavior of occupation numbers. It 

suggests that one can associate with each eigenstate la) a single-particle “temperature” T,4, defined 
by the (grand canonical) Fermi distribution 

.hy = (exp [ (e;j - p)/ T&] + 1 } - l . (92) 

In the center of the spectrum where one expects infinite temperature, all occupancies fi4 = 
r$j/(2j -t 1) indeed become equal to each other - the common value being one-half for our case of 
12 particles in the sd-shell of the total capacity Q = 24. 

T&, changes smoothly with energy, being almost the same for all complicated wave functions 
within the narrow energy interval as it should be for an intensive thermodynamic quantity. It 
becomes infinite simultaneously with the thermodynamic temperature (88) when the memory of the 
initial single-particle energies eL is lost. 

The effective single-particle energies e;j - p can be obtained from the slopes of the lines in 
Fig. 54. Assuming that the single-particle occupation numbers are described by Fermi statistics (92) 
with temperature T, their evolution along the spectrum is given by 

dfn/dT =$U -fd(4. - .4/T’ . 

The transition from the energy scale to the cumulative number (JV) scale used in Fig. 54 can be 
performed with the aid of Eq. (35) which is quite precise except for the very edges, Figs. 11 and 12. It 
determines dJlr/dT = (dN/dE)(dE/dT) where the derivative dE/dT is found from (90). Finally 
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we come to the slope of the lines of Fig. 54 in the &-scale, 

dh 4ac 4 - P -=- 
dJ1/‘ rtNog cos [n(E - &)/2a,] ‘(’ -‘) ’ 

(94) 

Therefore the slope of lines is directly related to (e; - p). Near the middle of the spectrum all 
occupation numbers are close to fn = i, and we have a constant slope 

d%/dM = (aJnN&)(e; - ,u) . (95) 

The resulting effective single-particle energies eij - p are -3.4, 0.0 and 4.7 MeV for ds12, slj2 
and d3,2 orbitals respectively (for comparison, the shell-model d-wave spin-orbit splitting near 
the ground state is 7.2 MeV). The same results can be derived with a straightforward overall fit. 

Using these energies, one can now extract the effective temperature T,“.,, Eq. (92), and check, with 
the aid of the actual occupation numbers fz for each level ICC), Fig. 54, that, despite the strong 
interaction, the “single-particle thermometer” on average measures the same temperature as 
T obtained from the level density. 

These results imply that the system can be considered as an equilibrated Fermi-liquid, and its 
properties can be expressed in terms of occupation numbers for a gas of interacting quasiparticles. 
They move in the effective mean field with orbital energies e;i which in our case are just slightly 
different from the bare energies elj. Note that we deal exclusively with the exact eigenstates 
performing no ensemble averaging. In accordance with our understanding of statistical equilib- 
rium, the eigenfunctions individually show the same distribution of occupancies as one would 
expect from statistical mechanics of the thermal ensemble described by the equilibrium density 
matrix. 

The microscopic mechanism of equilibration can be understood from the fragmentation of the 
projected shell-model states 1 PT; k). Applying the recipes of statistical spectroscopy [53], one can 
explain the approximately constant occupation of the slj2 orbital and the smooth evolution of 
occupation factors for d3,2 and d5,2 orbitals as a function of excitation energy. An artificial 
reduction by a factor 10 of the diagonal matrix elements implies (Fig. 55) constancy of occupation 
numbers (vanishing heat capacity). 

We conclude that the thermodynamics of the system are determined mainly by the stabilizing 
action of the mean field. Using the mean field basis we are able to segregate the incoherent 
processes leading to stochastization and local chaos from the regular evolution along the spectrum. 
The stochastic part of the dynamics is responsible for the complexity of the eigenfunctions and their 
similarity, which can be interpreted in terms of thermal equilibrium. The regular (mean field) 
features allow us to use a simple language of average occupation numbers for quasiparticles in 
a heated Fermi liquid. 

As was shown in our discussion of the characteristics of complexity, Section 4, a certain level of 
self-consistency between the mean field and the residual interaction is necessary in order to reach 
the optimal separation of local and global features. In the shell-model calculations it is ensured by 
the semiempirical construction of the hamiltonian. Only in this case we can expect a strong 
correlation between the standard thermodynamical entropy (lack of information about the precise 
microscopic state of the system) and information entropy (disorder of a given microscopic state 
computed in the mean field basis of simple quasiparticle configurations). A direct comparison 
indeed reveals such a correlation. 
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a 

Fig. 55. Single-particle occupation numbers for O+O states for diagonal matrix elements reduced by a factor 10 as 
compared to Fig. 54(a). 

6.4. Complexiq and thermalization 

Using the occupancies fi4 of individual orbitals one can calculate the single-particle entropy of 
the quasiparticle gas [103] for each state la), 

S:_, = - C(2j + l)[fPjlnfPj + (1 -fp)ln(l -fpj)] . (96) 
ljr 

The expression (96) comes from the Fermi-gas combinatorics. The maximum of the entropy, as 
a functional of occupation numbers at given average energy and total particle number, again leads 
to the Fermi-Dirac distribution function (92). 

Now we have three, apparently different, entropy-like quantities: thermodynamic entropy 
Sth(E) N In p (E), information entropy S” (56) and single-particle entropy S& (96), the latter two for 
individual eigenstates. In Fig. 56 we juxtapose the energy behavior of exp(S) for different physical 
situations, I, II and III (columns). Rows a, b and c present Sth, S” and S& respectively, for O+O 
states. 

Column I of Fig. 56 shows the limit of a relatively weak off-diagonal interaction (the diagonal 
matrix elements are amplified by a factor 10). The thermodynamic entropy la displays Gaussian 
behavior of a combinatorial nature typical for a slightly imperfect Fermi-gas in a finite number of 
states. Within the fluctuations related to the transition from the microcanonical to grand canonical 
ensemble, it is quite similar to the single-particle picture Ic. The information entropy Ib is low; only 
at high level density does one see some effects of mixing. This is an equilibrium picture of almost 
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Fig. 56. Entropy-like quantities plotted as a function of energy for O+O states. Columns correspond to the diagonal 
matrix elements multiplied by factors of 10 (I), 1 (11) and 0.1 (III); the latter case coincides with that of Fig. 55. Rows 
a, b and c correspond to (a) the total statistical weight Q(E) in units of the weight for the middle of the spectrum; 
(b) information entropy, Eq. (56), of individual states in units of the GOE entropy for the complete mixing, 
exp(S”,,,) = 0.48N; and (c) single-particle entropy, Eq. (96), of individual states calculated from the occupation numbers, 
in units of SF; = 224, respectively. 

noninteracting particles where the degree of complexity given by the information entropy, is only 
weakly correlated with thermalization. Using the language of kinetic theory, collisions (mixing) are 
necessary for equilibration but the equilibrium properties do not depend on the collision rate. 

The opposite case III corresponds to a strong off-diagonal interaction (as in Fig. 55, the diagonal 
matrix elements are reduced by a factor 10). Almost all states are strongly mixed and the 
information entropy IIIb is near its chaotic maximum (Section 4.2) of exp (S’)chaotic = 0.48N = 404 
for O+O states. S,SP (111~) is also at the maximum level corresponding to the equiprobable 
population of orbitals. Within the fluctuations, S” and S,9, coincide. However, as seen from IIIa, the 
system has normal thermodynamic properties governed by the level density. 

Thus, in the absence of the (diagonal) mean field (column III), the response to thermal excitation 
cannot be expressed in terms of quasiparticles. In both cases (I and III) the information entropy 
becomes irrelevant for thermodynamics, although it still characterizes degree of complexity of 
eigenstates in the mean field basis. 



V. Zelevinsky et al. /Physics Reports 276 (1996) 85-176 163 

The case of the realistic mean field and empirical residual interaction is shown in column II. With 
the normalized magnitudes, all three entropies are identical within fluctuations except for the edges 
of the spectrum. Near the ground state the Fermi surface is already smeared due to two-body 
correlations. In particular, pairing effects are considerably stronger as we illustrate in Section 7. 
For the low-lying states the single-particle occupation numbers and information entropy show 
deviations from the frozen Fermi-gas. The difference between low thermodynamic temperature and 
single-particle temperature, as measured for instance in particle knockout experiments near the 
ground state, was discussed in [40]. For the majority of states and for the mean field consistent 
with residual interactions, the thermodynamic entropy (defined either via the global level density or 
in terms of occupation numbers) behaves similar to information entropy. 

6.5. Discussion 

One can conclude that (i) equilibrium heating is correlated with the evolution of “many-body” 
chaos and the increase of complexity of individual eigenstates; (ii) equilibrium properties of 
a heated system with strong interactions can still be described in terms of quasiparticles and their 
effective energies in the appropriate mean field (this opens the way for explicit calculation of matrix 
elements between compound states [lOS]). 

Let us stress the special role of the mean field representation [40] both for studying the degree of 
chaoticity of specific wave functions (Section 4) and for the statistical description. With the 
artificially depressed or enhanced diagonal matrix elements, the level density and the thermodyn- 
amic entropy Sth are qualitatively the same as in the realistic case (Fig. 56(a)). As discussed in 
Sections 2 and 3, the off-diagonal residual interaction, apart from a possible overall shift, merely 
widens the level density - keeping its Gaussian shape which is determined mainly by combina- 
torics. 

However, with no mean field (Fig. 56 (III)) the increase of complexity measured by the Sa and the 
mixing of quasiparticle configurations measured by the St_,,, going together, are different from the 
heating measured by the level density and the “normal” entropy Sth. The interaction is too strong 
and the mixing does not depend on the actual level spacing. Almost all wave functions “look the 
same” regardless of level density, and the quasiparticle “thermometer” cannot resolve the spectral 
regions with different temperatures. In this case only the microcanonical description is possible. 

At this point we would like to give a more formal argument in favor of the direct correspondence 
between information entropy and thermalization. The density matrix 9 used for the description of 
a quantum system with reduced information has, in an arbitrary many-body basis (k), matrix 

elements Bkk, = C&c where the amplitudes are averaged [103] over the ensemble. If the ensemble 
is generated by interaction with the environment, the states of the entire system are 1 k;e), where 
e labels the states of the environment compatible with the state 1 k) of the subsystem under study. 
Then 

The corresponding statistical entropy, Eq. (89), is basis independent and equals zero for pure states 
of the isolated subsystem. For canonical equilibrium ensembles, S coincides with the thermodyn- 
amic entropy. 
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Let us consider a gas of quasiparticles in the ensemble generated by the residual interaction. This 
makes sense only after proper separation of global smooth dynamics from quasirandom incoherent 
processes. Such a separation defines the optimal basis, namely that of the self-consistent mean field 
[40] (our “simple” states lk)). Compound states 1~) mimic the “total” system (quasipar- 
titles + interaction field). The intrinsic interaction is responsible for decoherence and formation of 

the thermal ensemble of quasiparticles. The ensemble average of gkk, = C[C$ is to be taken over 
neighboring states 1 a). If the amplitudes C{ are uncorrelated and all neighboring states 1 a> are 
similar, only diagonal elements of gkk, survive and we come to the information entropy (56). In 
quite a different context similar arguments were discussed by Elze and Carruthers [ill]. 

The simplest example when such a statement is exact is given by the equilibrium gas of 
Bose-quanta as black-body radiation. A weak interaction with the environment or between quanta 
is needed only for relaxation towards the equilibrium. The “natural” basis 1 k) is that of the states 
with a certain number of quanta k of each mode. The modes are independent so that it suffices to 
consider a single mode. To characterize the macroscopic properties of a stationary state 1 a), we fix 
the average number k of quanta. The maximization of information entropy S” with respect to the 
weights IV,” for given k = & kWi is known [103] to lead to the normalized distribution 
IV; = i?/(K + l)k+i. For the mode with single-particle energy E, this is nothing but the thermal 
Planck distribution for temperature T = r-:[ln(l + l/k)] - ‘. The value of information entropy at 
maximum coincides with the thermodynamic value for this temperature. However it is useful to 
stress again that in our case we deal with a strongly interacting system. 

7. Pairing correlations and stochastization 

As discussed in Section 5.5, the residual interaction induces, along with incoherent collision-like 
mixing, processes corresponding to ordered regular modes of excitation. Table 1 showed that the 
large matrix elements of the residual interaction are mostly negative. The diagonal part, including 
the high-order contributions (for example virtual pair transfer), is responsible for the attractive 
interaction which shifts down the center of gravity of the whole spectrum. The off-diagonal part 
generates the excitations of coherent type. 

Leaving for the future the detailed studies of the collective phenomena in the model, we illustrate 
the general trends by an example of primary practical importance. Significant effects of the pairing 
correlations of superconducting type are seen throughout the periodic table. From the microscopic 
point of view, they are caused by the enhanced attractive matrix elements of the two-body residual 
interaction ((j$)j=~I Vl(jf)j=o) corresponding to the self-energy of the monopole pair or to the 
coherent pair transfer between the orbitals. This is clearly visible in our semiempirical hamiltonian, 
Table 1. 

To treat the pairing correlations in macroscopic systems or in heavy nuclei, the BCS or 
Hartree-Fock-Bogolyubov (HFB) approximations are used when this part of the interaction is 
substituted by the average pairing field [21] which serves as a source for pair creation and 
annihilation. It can be improved by the particle number projection. The phase transition destroy- 
ing superconductivity can be recognized by the disappearance of the mean pairing field. In our 
model space we have the exact eigenfunctions which contain all interaction effects including pairing 
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with the conservation laws strictly fulfilled. Therefore we do not need any additional approxima- 
tions. 

We analyze the energy spectrum and the wave functions to look for the microscopic signatures of 
the pairing correlations. Our advantage is the possibility to study all individual eigenstates and 
from their comparison to draw conclusions about quenching of correlations with excitation energy. 
Here it is worthwhile to mention that global characteristics such as the total level density are not 
very sensitive to subtle effects such as the possible local enhancement near the threshold E z 24 
of Cooper pair breaking. In the BCS model the two-quasiparticle levels are pushed out of the 
energy gap 24 and accumulated at the threshold with the (integrable) singularity of 
p(E) cc (E2 - 4A2)- 1/2 Our “empirical” level densities, Figs. 11-14, show only slight irregularities . 

in the low-energy region. The irregularities are small (compared to schematic models, see for 
example [112]) due to the small number of pairs in the condensate. The effect in the total level 
density is smeared by exact fulfillment of the conservation laws and by incoherent parts of the 
interaction, absent in the schematic models, which rapidly increase the degree of complexity of the 
eigenstates. But the smoothness of the level density does not contradict the existence of pairing 
correlations. 

We select as a probe the operator 

where the isovector pair annihilation (Pt) and creation (P{) operators with the isospin projection 
t are defined in terms of fermion operators an = arjmr and ui according to 

(99) 

Here the sums are taken over all single-particle orbitals lj. For each aA the time conjugate operator 
is defined as L?~ = (-)i-mU~j_m~. We use here the isospin invariant T = 1 pairing which is suitable 
for light nuclei with neutrons and protons occupying the same orbitals. The actual calculation of 
the expectation values (&) is facilitated by the fact that it can be considered as a specific residual 
interaction with the two-body matrix elements ((jz),, ) V,( ( jf)JT) = [(2j, + 1)(2j2 + l)] 1’26JO&1. 

In the BCS or HFB theory the mean pairing field is given by the nonvanishing (“anomalous”) 
expectation values of the operators P and Pt in the trial ground state, which is a coherent packet of 
states with different particle numbers. These expectation values are proportional to the energy gap 
and vanish together with the latter at the phase transition. In our case the diagonal elements of the 
operators (99) over exact stationary states indentically vanish, and the pair operators (99) charac- 
terize the strength of the pair transfer to the neighboring nuclei. However the expectation value of 
the bilinear operator (98) gives the total strength for all transitions from an initial state induced by 
the monopole pair transfer (analog of a sum rule). 

We have calculated the expectation value of XP for all individual O+O states in two systems, 
8 valence particles in 24Mg (N = 325 states) and 12 valence particles in 28Si (N = 839). The results 
are shown in Figs. 57(a) and (b), respectively. 

The qualitative picture is the same in both cases. At low excitation energies the states have 
considerably higher value of (JZ?~) than the states in the middle of the spectrum. This value drops 
very fast into a long smoothly decreasing tail. Only a relatively small number of states display 
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Fig. 57. Expectation values (I?,) of the operator (98) (dots) for all O+O states of A, = 8 articles (‘4Mg), panel a, and 
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Fig. 58. Expectation values (-X,) of the operator (98) as a function of thermodynamic temperature (dots). The solid lines 
correspond to the fit given by Eqs. (lOO)-(102) with parameters of Table 3. 

strong enhancement of (yi”p). The majority of states have approximately the same nonzero value of 
this quantity. Similar to what we have observed for other characteristics of individual eigenstates, 
the fluctuations of (&) are small, especially in the case of 12 particles, so that practically one can 
consider (98) as a function of excitation energy or temperature. 

Looking through a magnifying glass at the initial part of Fig. 57(b), we see, Fig. 58, more 
distinctly the presence of two components - fast and slow - which differ in the rate of decrease. The 
fast component can be related to the thermal depletion of the pair condensate and the Pauli 
blocking of the pair transfers by the broken pairs. In a small system this region covers a small 
fraction of all states only. However, the pairing correlations do not abruptly disappear; they still 
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slightly exceed the background level A? which can be inferred from the middle part of the spectrum. 
We can interpret this part as evidence of pairing fluctuations which are enhanced near the phase 
transition and survive long after the static superconducting condensate is destroyed. 

The simple fit to the observable energy dependence of Figs. 57 and 58 is given by 

(ZP> = .S + XC(E) + &r(E) (100) 

where X”(E) represents the condensate contribution and Y&(E) corresponds to the pairing 
fluctuations. These effects, in turn, can be described as 

z(E) = A 1 _ (E/E,) 
’ - (E’Ec) (j)(E, _ E) , (101) 

Zfl(E) = Bexp[ - (E - E,)/w] . (102) 

The condensate (101) disappears at E = E,, or, for the Gaussian temperature scale (90), at - 
T = T, = gi/(EO - E,). For the order parameter A cc JPc the parameterization 
behavior 

A=Ao 1-g 
J C 

(101) gives the 

(103) 

typical for the second-order phase transition in the mean field approximation [103]. The constant 
term SP describes the background value which would exist even with no attractive interaction in 
a normal Fermi gas. The fits for the case of 24Mg and 28Si are shown as a function of temperature 
T in Fig. 58. We see a clear signature of the phase transition in a small system. Of course, it is 
possible to recognize it only due to the fact that we are able to compare the properties of all 
individual eigenfunctions. 

Table 4 shows the best fit parameters E,, its translation into the Gaussian temperature scale T,, 
the condensate parameter A, the fluctuation range w, the fluctuation intensity at the transition 
point B, and the average background level 2 both for the 8- and 12- particle cases. 

The fluctuation term (102) can be presented as a function of temperature, 

where the specific heat related to the fluctuations of the pair condensate is 

cr, = -$ . 
c 

(104) 

(105) 

Table 4 
The fitted parameters (in MeV) for the description of the energy dependent pairing correlation, Eqs. (lOOt-(102) 

A” R A B W ECI EC TC 

8 3.0 22.0 8.0 16.0 - 47.0 - 72.0 6.0 
12 7.6 14.0 9.0 19.0 - 90.5 - 120.0 5.7 
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For our system of 12 particles, Eq. (105) with T, = 5.7 MeV and w = 19 MeV, see Table 4, gives 
Cr, = 1.6, which is only a relatively small part of the total Fermi gas specific heat. The high quality 
of the exponential fit is shown in Fig. 59(a) (for A = 28) as a function of energy. 

The average quantity (98) can be independently estimated in many ways. The maximum possible 
value of (I&) corresponds to the isospin invariant generalization [113] of the degenerate seniority 
model [ 1141. Operators P, and P! , along with the isospin components, belong to the generators of 
the O(5) group which allows one to find the eigenvalues of Y&. For the lowest J = 0, T state of 
A, valence particles in Sz degenerate spin-spatial single-particle orbitals, 

(J&)~ = +(2fi + 6 - A,) - T(T + 1) (106) 

where T is the total isospin of the many-body state. For the sd-shell with G = 12 the case of 
A, = 12 particles corresponds to (XP)O = 54; for 8 particles one gets (3(tP)0 = 44, both numbers 
being too large. The pair condensate can be a good approximation only for the lowest states; but as 
we have seen in Section 5.3, the real structure of those states is far from that in the degenerate model 
being strongly determined by the single-particle energies in the mean field. 

The average of the operator (98) over the whole Hilbert space (no restrictions by angular 
momentum or isospin) can be calculated with the help of the simple prescriptions of statistical 
spectroscopy [53], 

3 
(&) = 2(252 _ 1) A”@” - 1) . (107) 

This estimate, (&$) = 8.6 and 3.7 for A, = 12 and 8 respectively, is to be compared to the 
background term 2 in (100). The slight excess of the estimate (107) is partly due to the 
nonstatistical concentration of the pairing in the low energy states. 

An estimate quite close to (107) can be obtained by taking the average of the operator (98) with 
the single-particle density matrix characterized by the occupation numbersfn. Assuming the time 
reversal symmetry of the occupancies, 6 =fl, and their identity for neutrons and protons, we 
obtain 

ljm 

The equiprobable filling of all orbitals 1 in the middle of the spectrum, fL = l/2, A, = 12, and 
fn = l/3, A, = 8, 1 ea d s to the values ($L) = 9 and 4 respectively. The cooling of the system 
increases the occupancies of the lowest orbitals, and therefore gives higher values of (&“) than in 
the hottest middle region. This agrees with the increase of the fluctuational part (102) of the pairing 
to the edge of the spectrum. 

For the sharp Fermi surface at T = 0, the occupation numbers are equal to 1 or O,fn’ =&, and 
Eq. (108) would give (HP) = (3/2)A,. However in reality the Fermi surface is smeared by 
interactions including pairing. For the lowest states in the 12-particle case we have Fig. 54) the 
occupation numbers f(d5,2) z 2/3, f(s,,,) z l/2, f(~&,~) z l/4. Then the estimate (108) gives 
(XP) = 10.25. One can say that this part of the total value comes from the cooled Fermi gas, 
whereas the rest (for the low-lying states) is of dynamic origin due to the pairing forces. Fig. 59(b), 
solid line, shows the relation between the total pairing correlator and the single-particle effect (108) 
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calculated for the actual occupation numbers of Fig. 54(a) for the O+ 0 states of 28Si. The pairing 
fluctuations of Eq. (108) are overestimated because they include unphysical fluctuations of the total 
particle number (as well as other integrals of motion J,M and T) which are present in the 
Fermi-Dirac distribution. An approximate estimate of the particle number fluctuation diminishes 
the quantity (108) by (3/11) Cu, hjm(l -Fiji) E 0.8. 

8. Conclusions 

We have reported the first results of the analysis of the eigenvalues and the eigenvectors of the 
nuclear shell model from the viewpoint of order, chaos, complexity and thermalization. We have 
tried to discuss the physical meaning of our findings in the corresponding sections and stressed 
their interplay and interrelationships. Certainly, many questions are only touched upon and they 
deserve further investigation. Below we briefly summarize our main conclusions with emphasis on 
the open problems. 

(i) The nuclear shell model provides a realistic, exactly solvable example of a many-fermion 
system with strong interaction. The available dimensions are sufficiently high to allow for 
statistically reliable studies of the main features of the level statistics and structure of the wave 
functions. 

(ii) The construction of the complete set of states with the given values of exact integrals of 
motion is an important prelude to the analysis. The role of this premixing and “geometrical 
chaoticity” is to be further studied. 
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(iii) The exponential distribution of the off-diagonal matrix elements of the residual interaction 
seems to be a generic feature of the realistic many-body systems. The origin of this distribution is 
not clear at this point and presents a theoretical challenge. 

(iv) As excitation energy and level density increase, the local level statistics quickly reveal typical 
signatures of chaotic dynamics predicted by the GOE. This occurs even for a strength of the 
residual interaction much lower than its actual value. 

(v) The interesting problem of the transitional nearest-level spacing distribution in the region of 
onset of chaos and the fractional power law for level repulsion remains to be solved. 

(vi) The degree of complexity of stationary wave functions can be measured by the information 
entropy and the moments of the distribution function of the components. These measures depend 
on the representation which can be used to gain additional knowledge on the structure of the 
eigenvectors. 

(vii) The mean field (spherical shell-model) basis appears to be the preferred representation which 
allows for the optimal separation of the local spectral properties from the global secular dynamics. 

(viii) The structure of the wave functions presented in the mean field basis evolves in a very 
regular way along the spectrum. The measures of complexity can be considered as functions of the 
excitation energy; the accompanying fluctuations are small and decrease with the dimension of 
space increasing. 

(ix) The distribution of the components of the eigenvectors in the shell model basis is close to 
Gaussian although the correlational analysis reveals deviations. The Gaussian variance (localiza- 
tion length, or number of principal components) increases along with excitation energy. However, 
the GOE limit of the complete delocalization can be reached by the majority of the eigenvectors 
only with an artificially suppressed stabilizing action of the mean field. 

(x) The simple shell-model basis states are fragmented over the eigenstates with the strength 
function having a shape intermediate between the Breit-Wigner and Gaussian. The remote wings 
of the generic strength function display an exponential behavior characteristic for the localization. 
The actual value of the spreading width of basis states is larger than that given by the golden rule. 
As predicted by the theoretical arguments for the chaotic limit of dynamics, at smaller interaction 
strength, the validity of the standard model of the strength function is restored together with the 
golden rule and the Breit-Wigner shape. 

(xi) The single-particle occupation numbers of the shell-model orbitals regularly evolve along 
the spectrum, being nearly the same for different classes of states. They can be described by the 
Fermi-Dirac distribution with effective energies close to the bare ones. The similarity of the wave 
functions and occupation numbers of the states close in energy can be interpreted in terms of 
statistical equilibrium. 

(xii) In spite of the presence of strong interactions, the system behaves at high excitation energy 
as a heated Fermi gas of fermionic quasiparticles. This indicates the possibility of using the thermal 
ensemble for calculating matrix elements between the compound states. The apparent decoherence 
emerges here as a property of individual complicated wave functions in a closed mesoscopic system. 

(xiii) Different definitions of temperature, related to the thermal microcanonical ensemble, 
single-particle occupancies, and information entropy, practically coincide for the mean field 
representation used in the last two cases, where the temperature scale is extracted for each 
individual eigenstate. It gives new arguments for understanding the foundations of quantum 
statistical mechanics and its relationship to quantum chaos. 
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(xiv) Collective correlations of the pairing type display a regular thermodynamic behavior with 
a smeared second-order phase transition into the normal phase. A long tail of pairing fluctuations 
is seen above the transition temperature. It would be interesting to study the matrix elements for 
the pair transfer between the individual states of the adjacent nuclides (the closest nuclear physics 
analog of the superconducting current). 

(xv) The distributions of matrix elements of simple operators (primarily E2 and Ml), rotational 
correlations and damping of rotational bands should be studied in the present framework. Here the 
exact fulfillment of the angular momentum conservation is very important. 

(xvi) Another step of principal significance should be connected to the inclusion of continuum 
effects which can considerably modify all the conclusions. This will be of primary interest in 
application to unstable and loosely bound nuclei. 

(xvii) An analysis along the same lines for different mass regions, different interactions and 
different truncation schemes will allow one to make fundamental conclusions concerning the onset 
of chaos and its interplay with thermalization and regular dynamics in nuclear matter. The 
extension to molecular systems, condensed matter and quantum field theory models seems very 
promising as well. 
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Appendix 

Distributions of such type as (28) are typical for an ensemble of matrices with the factorizable 
elements. Let the matrix elements H;, of the residual interaction be modeled by a sum of separable 
terms 

Kit = c< +),QIQB 
P 

(AlI 

similar to multipole-multipole forces. Here p enumerates different “modes” of intermediate 
excitations. The additional factor ( + )p in (Al) allows the diagonal terms HLk to be repulsive or 
attractive. 

Among the actual multipoles there are those creating collective effects, first of all related to 
pairing (Section 7) and quadrupole deformation. Referring, as we did in Section 4.6, to the low 
statistical weight of collective states and the damping of collective modes in the stochastic region, 
we assume that the multipole matrix elements with different ,u for the majority of states k and 
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1 behave as random variables with zero mean and variance 

QBQB’ = (l/fi) 6”“‘&Ji~ . 642) 

We use in (A2) the same normalization of the matrix elements, see Eq. (A6) below, which was 
discussed in connection to the Gaussian ensembles and the N-scaling, Eqs. (26) and (27). Due to the 
geometrical premixing in the basis states lk), we expect (A2) to be approximately valid after 
averaging over several states from the same partition. By the same reasoning the states k # 1 

supposedly give rise to uncorrelated multipoles. 
The ansatz (A2) leads to the average matrix element of the hamiltonian (Al) 

(A3) 
P 

where the sign factors are included into &p = ( f ),hg. In this approximation, the off-diagonal 
matrix elements fikl have zero mean. We assume that for the diagonal elements there is no 
abnormal cancellation between attractive and repulsive hf; as seen from Table 1, the attractive 
diagonal elements prevail on the two-body level. It is convenient for the estimates to introduce the 

average magnitude & and the effective number q of significant multipoles contributing to the sum 
over p, 

(A4) 

Then (A3) takes the form 

H;, = (4/fi)h,&, . (A5) 

To estimate the matrix elements of the off-diagonal part E?, we assume, according to the general 
philosophy of random matrices [7] that the main contribution comes from the pairwise contrac- 
tions (A2) of the multipoles Qt. Then we arrive at the correlation function of the matrix elements 

646) 

The fluctuations of the diagonal elements are statistically small, 

m - (X)2 = (2/N) 1 (hp)2 = (2q/N) h2 . 
P 

(A7) 

The correlation of diagonal and off-diagonal matrix elements vanishes, 

HlJJ3~[’ = 0 . (A81 

The correlator of the off-diagonal elements is of the same order as (A7). It can be written in the form 
analogous to that for the banded ensemble (48), 

&,I?,.,, = (l/N)(&,6,., + Sk’&)C h;hr . (A9) 
P 
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The natural correspondence between the parameters of (A9) and the radius a and the form-factor 

qkl c q( (k - II) of the BRM ensemble (48) can be established via identification 

a2 = 4qh2 , qkl = ~&&%?~ , (AlO) 

P 

where we use the notation h2 defined in (A7). Eq. (A9) leads to a simple estimate for the average 
fragmentation width of Eq. (20) 

O= = (2bq2/N)71;i . (Al 1) 

The bandwidth 2b is defined as an average value of ‘& q() k - II). It gives (qh2)“= 2 28 MeV for 
the 2+0 states. From Eq. (113) we find the rms fluctuation of the diagonal elements equal to 

(2qh2/N)l’= z 0.7 MeV. The mean value of 0.5 MeV of the diagonal elements of Eq. (111) gives 

qh E qh, M 28 MeV. The corresponding value of the radius, Eq. (33), is a z 56 MeV. 
The statistical ensemble defined by the multipole factorization (A2) is different from the GOE 

and banded GOE, although the lowest correlator of matrix elements (A9) has the same form. 
Similar distributions were discussed in [7]; they appear also in the context of the generalized 
random matrix theory for unstable states [32] where the antihermitian part of the effective 
hamiltonian expressed in terms of the decay amplitudes has a separable form as in (Al). Assuming 
the Gaussian distribution of the multipoles QP, the probability density for the diagonal matrix 
elements is given by the chi-square law for q degrees of freedom, 

Pd(xk) = [r(q/2)2q’2]-1Xf’Z-1e-Xk’2 . 6412) 

Here the dimensionless variable xk = ,/%IJYkk/h,I is introduced with the mean value xk = q and 
the variance (Axk)= = 2q. As q increases, this distribution rapidly goes into the Gaussian form, 

Pd(?c) = [2~]-1e-(“-q)‘/4q. (Al3) 

As for the off-diagonal elements 8kL f (h2qkl/N)1’2 xkr, a similar consideration leads to the distribu- 
tion function 

6414) 

Here K stands for the modified Bessel function. The distribution (A16) agrees with the variance 

(Eikr)= = (1/N)qh2qkl given by (A9). All functions K,(x) have an asymptotic behavior 

- exp( - x)/A. Therefore Eq. (A14) is practically similar to the empirical fit (49). At small x, 
Eq. (A14) gives a constant or, for q = 1, a logarithmic singularity. However it is difficult to check 
the small x behavior with sufficient accuracy. 
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Note added in proof 

We have recently found that the results for the spectral rigidity A (L) at the large L, presented and 
discussed in Section 3.4, are very sensitive to the details of the unfolding procedure. In particular, 
we have found a new unfolding procedure for which the results for L < 150 (Fig. 26) are not 
changed, but the results for high L (Fig. 27) become in better agreement with the GOE prediction. 
We plan to present details of this new analysis elsewhere. 


