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Microscopic calculation of double-dipole excitations

B. A. Brown and V. Zelevinsky
Department of Physics and Astronomy, and National Superconducting Cyclotron Laboratory,
Michigan State University, East Lansing, Michigan 48824-1321

N. Auerbach
Raymond and Berverly Sackler Faculty of Sciences, School of Physics and Astronomy, Tel Aviv University,
Ramat Aviv, Tel Aviv 69978, Israel
(Received 11 May 2000; published 14 September 2000

The double-dipole mode of excitation is calculated ¥® and*°Ca in a large shell-model basis space that
includes a full Zzw basis. The energies, distribution of strength and the spin, isospin splittings are computed.
Sum rules are obtained and compared to the shell model results.

PACS numbds): 21.60.Cs, 21.10.Dr, 21.10.Hw

[. INTRODUCTION the dipole operatob is defined in terms of reduced matrix
elements by

In the last decade experimental and theoretical research
has led to the discovery of double giant resonances—a giant |35, FIDI[3 D7y
resonance built on top of another giant resonance. The > (Ey, i—Ej i) 23+1) . 1)
double-dipole resonance was first identified in a pion charge et !
exchange reactiofl] and was predicted earli€2]. Later the . L .
double dipole was detected in Coulomb excitation in heavy- € dipole operator is given by a summation over the nucle-
ion reactiong3—5]. Properties of double dipole modes and ©NS
other types of double resonances were studied and are re-
viewed in several review articl¢2—4,6. Theoretical studies D= er.YO(F,) )
have been mostly of the “macroscopic” type, introducing a o2 o
collective coordinates in the description of double giant reso-
nanceg2-4,6. Some papers used semimicroscopic modelsThe notation forS{¥ is for the nonenergy-weighted € 0)
in which the random phase approximatidRPA) was em-  and energy-weightecké& 1) sums of the singleni=1) and
ployed to define the collective phonon states. Some extenfouble-dipole h=2) excitations. The summation over in-
sions of the RPA have also been sugge$®8]. Truly mi-  termediate states can be expressed as an expectation value in
croscopic calculations are very difficult. A shell-model the initial state of the double commutator of the dipole op-
calculation requires very large spaces involving configuraerator with the Hamiltonian, and when the velocity depen-
tions made up of particles excited to several major shellsgence and exchange terms of the potential and residual inter-
One must therefore truncate the space and limit the calculaction are ignored one obtains the well-known Thomas-
tion to one-particle—one-hole ptlh) and two-particle- Reiche-Kuhn(TRK) sum rule value
two-hole (2p-2h) configurations involving particles and
holes in several major shells. Studies of this type were per- 9
formed for some nuclei a few years af@. S(TRK) = yp >

In this work we present shell-model calculations of the T a
double giant dipole state it’O and“°Ca. By choosing light _ o _
nuclei we are able to include a relatively large space offNe numerical value of;”(TRK) for the dipole operator
1p-1h and 2p-2h configurations and therefore are able to ywth the standard effective charges for protons and neutrons
study in detail the distribution of strength and the splitting ofiS 14.82NZ/A € fm*MeV. It is usual to represent the
strength into the various allowed spin and isospin compochange in the TRK sum rule due to the velocity dependent
nents. In the case 0}60 we are ab'e to account for the and eXChange terms in the Hamiltonian W|th the a|d Of an
coupling ofJ7=0" and 2", 1p-1h states to the correspond- €nhancement factos:
ing 2p-2h configurations. We also discuss energy weighted
sum rules(EWSR and the relationship between these sum SiP=S(TRK) (1+«). (4)
rules for the single and double giant resonantee also
Ref. [10]). The sum rules are evaluated in the shell modeWith the universal factoik, the sum ruIeS(ll) is still inde-

202
heeg

2m,

()

basis(numerically and in a boson model. pendent of the initial state. Assuming that the dipole transi-
tion from the ground stat&=0 is saturated by a single giant
Il. SUM RULES resonancéGR) stateJ,=1 at excitation energ§,, we get
For the transition from an initial eigenstdt ,i) to a set ) (1)
of final eigenstates);,f), the energy weighted sum rule for Eq[(1[|D[0)[*=3s;". ®)
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From the GR stat¢l) there are transitions up to the two

phonon stateg2;J), J=0,2, with transition energie&, ; 223 (E23—E1)(23+1)B(2;J—1)=12E,B(1—-0).
—E; and the deexcitation transition to the ground stéte ’ (15)
with transition energy- E,. The sum rulg1) for the initial
state|1) reads In the harmonic phonon limit when
1 Ei=w, E;=20 (J=0,2, (16)
SP=g1 2 (E2u—E(2:3][DI|1)[*~ E4|(0]|D]|1)[?
2 we obtain
© >,.3B(1—2;J) 4 B(2;J—1
or, using Eq.(5) again, 20B(12219) -, (23-1) . (17)
B(0—1) 3’ B(1-0)
> (Ez.;—Ep)|(2;3]|D||1)[2=128V. ) For independent bosons of multipolarltythe normalized
23 one-boson and two-boson states are
Eliminating SV, we obtain a relation between the observ- |1;Im>=b|Tm|O) (18)

ables(transition strengths and transition energies
and

; (E2,,—Ep)|(2;3]ID]|1)[*=4E,|(1]|D][0)[?.  (8) 1
’ |2;‘JM>:E E; Ci]n':/llm’brmbrm’|0>a
For the double-dipole excitation we are akédter simple m
algebrato derive a relationship for the ratio of the excitation J=0,2,...,2 (even. (19)
to theJ=2 andJ=0 (double-dipole states
If the transition operator is proportional to the boson coordi-

sH(I=2) nateT,,o (b +bj=), the ratio of reduced deexcitation prob-
5(21)(320) =9 © abilities for all two-boson states is the same and given by the
Bose factor
SiM(J) is the energy weighted sum rule to the double-dipole B(2:0—1)
state for a given final spid defined by — -2, (20)
B(1—0)
=.(2;J]|D]|1)(1]|D]|0)|? - . :
5(21)(3):2 (Ez,J—Eo)l 1(2:J]] ||3)( IB110) , For excitation transitions, the ratio
2
(10 B(1—2;J) (2341) 21
)= =

where the sunk, is over all two phonon states with a given B(0O—1) (21+1)?

J, and theX is over all single phonon states. ) ) o )
The above equations are in terms of the reduced matril€ Proportional to the statistical weight 2 1) of the two-

elements. We now express some of the results in terms ¢10SOn statgJM). For the total reduced probability of all
reduced transition probabilities whictith our definition of ~ tWo-boson states, we obtain
the reduced matrix elementare given by

> RJzL > (23+1). (22)

1
BT, i 0 =5 (T A @412 9

For the sum in Eq(22), wherelJ is even, one find&;(2J
Our results expressed in terms of reduced transition prob+1)=(2l+1)(I+1) and hence
abilities are
> C2B(1-2) 21+2
|(1]|D][0)]?=B(0~1)=3B(1~0), (12 > R="gi=0 a2t @3

(2;3]|D[[1)|*=3B(1—2;J)=(2J+1)B(2;J—1). For dipole excitations where=1 this ratio is 4/3. The gen-
(13 eral boson model results of Eq0) and(23) agree with the

. , ) ) specific results of Eq(17) obtained above with the dipole
Equation(8) can now be written in two equivalent forms g,m-rule model.

(excitation or deexcitation Up to now we did not specify the isospin quantum num-
bers of the excitation. Since we will be working in a given

> (E,;—E)B(1—2;J) =fElB(OH1), (14  N=Znucleus and discussing the dipole excitation within the

2,3 ’ 3 states of this nucleus, our excitation operator is an isovector
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TABLE I. Transition strengths and average energies for theand the energy-weighted matrix element to a specific final

single states. The quantities are defined in the text. state is
B(1—0) s s E, SH=E4(17,f]|D||0")|2. (25)
e? fm? e? fm? e? fm?> MeV MeV
1% We define the ground state energyEgs;=0.
0s-Op-1s0d-1p0f 149 4.48 106 25 The double-dipole strength to a specific final sthtis
160 Op-1s0d 1.49 4.48 106 25 given by
4Ca 1s0d-1pOf 4.60 13.80 268 20
J,T.f|ID[[1, (1, |D[|0")[?
@ m-s TPl n§< (IDIOTE
AT=1, with projectionAT;=0. Then the double-dipole n

states withJ=0 or 2 can havd =0 or 2 andT;=0, and in ) i N .
the simple boson model, the intensities of the branches wit{ "€ spin of the final state can beé 017, or 27. The corre-

T=0 or 2 are predicted to differ by the squared ClebschSPonding energy-weighted double-dipole strength to a given

Gordan coefficienf C21%J2. Therefore the intensity of the (Inal state is

branchT=2 should exceed that fofr=0 by a factor of 2. |
The isospin dependence of the strength for nuclei with a S(z?f)(‘]!T):EZ,f;

(3,T,f[ID|[1,)(1,]|D][0")[?
neutron excess has been discussed in [Hé&i. '

3

(27)

The strength summed over all final states for the single
(m=1) and double-dipolerg=2) states is given by
The microscopic results presented in the next section are
discussed in terms of the following notation which is specific SK= s
for dipole transitions. We use tHe) matrix element notation T ot
to distinguish these microscopic results from the sum-rule
and boson model results expressed in terms of () matriyve define the average energy of the single and double dipole
elements. We also introduce an explicit indefor the final  state as
states. The dipole matrix element from thé ground state

IIl. NOTATION FOR SHELL-MODEL DIPOLE
MATRIX ELEMENTS

(28)

to a specific single-dipole final statg™~,f) is given by Em:qul)/S(ﬁ)- (29)
si¥?=[(1".f|[D[[0")/?, (24 Finally we introduce the reduced transition probabilities

TABLE Il. Transition strengths and average energies for the double-dipole states. The quantities are
defined in the text.

Nucleus J T B(2—1) s s E,
model space e? fm? e* fm* e* fm* MeV MeV
%0 0+2 0+2 5.30 26.4 1176 44.6
0s-0p-1s0d-1p0f 1 0 0.33 0 0
0 0+2 2.65 4.4 189 43.7
2 0+2 2.65 21.9 984 44.9
0+2 0 2.43 12.1 492 40.7
0+2 2 2.88 14.3 684 48.0
150 0+2 0+2 4.68 23.6 1048 44.4
Op-1s0d 1 0 0.28 0 0
0 0+2 2.37 3.9 171 43.6
2 0+2 2.31 19.7 876 44.5
0+2 0 1.80 9.1 354 39.0
0+2 2 2.88 14.5 694 47.8
4ca 0+2 0+2 16.3 233 9200 39.3
1s0d-1pOf 1 0 0.36 0 0
0 0+2 8.2 39 1522 39.1
2 0+2 8.1 195 7677 39.4
0+2 0 5.9 85 3135 36.9
0+2 2 10.4 148 6064 40.8
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FIG. 1. Single and double-dipole strength distributions in the FIG. 2. Single and double-dipole strength distributions in the
0s-0p-1s0d-1p0f model space for*®0. The double-dipole 0s-Op-1s0d-1p0f model space for*®0. The double-dipole
strength is summed ovér=0"* and 2" and is shown as a function strength is summed ovar=0 and 2 and is shown as a function of
of various isospins of the double excitation. The units afe various spins of the double excitation. The units atem?/MeV
fm?/MeV for single-dipole excitation an@* fm*MeV for the  for single-dipole excitation and* fm*/MeV for the double-dipole
double-dipole excitation. excitation.

|(17,f||D]j0*")2 S? ground state and the dipole excitation from the single-dipole
|3(1H0)=2f — 3 (30 state.
For %0 one set of calculations was carried out in a model
and space which included thesQ Op, 1s0d, and IpOf shells.
The Hamiltonian is the WBP interaction from Rdfl1]
(3, T,f]|D||1,)|? which was determined by a least-squares fit of the particle-
B(2;J,T— 1)22 (2J+1) ' 3D hole two-body matrix elements to the binding energies and
excitation energies of nuclei in thd=10—20 mass region.
wheren is taken to be the 1 which has the strongest single- There are five 4w 1~ T=1 states, 630 @-2h 2% o states,
dipole excitation from the ground state. In our examples the@nd 36 P-1h 24w states(with J7=0", 1%, and 2" and

isospin quantum numbers afe=0 andT,=0 for the ground  With T=0, 1, and 2 For A=16 we use harmonic-oscillator
state, T=1 and T,=0 for the single-dipole states anfl  radial wave functions withh v =13.92 MeV for the dipole

=0,1,2 andT,=0 for the double dipole states. matrix elements. The double-dipole strength arises ftAm
two “parallel” 0 p— 1s0d transitions from the closed shell
IV. SHELL-MODEL CALCULATIONS Ieading to the b'Zh 2h w states, OI(B) from a q:)—> 1s0d

transition from the closed shell followed by &-06-0p or a
The shell-model calculations are carried out in a basisisod— 1p0f transition to the p-1h 2% o states.
where|07) is the closed-shell ®w configuration,|1,) are We also carry out the calculation in a reduced model
the 1p-1h 1% o configurations, antl){ ) are the p-1h and  space which includes only thepGand 1s0d shells. In this
2p-2h 2% w configurations. This is equivalent to a Tamm- model space the72v basis does not include the 3¢-lh
Dancoff (TDA) truncation of the dipole excitation from the 2w states(excitation path B. Comparison of the results in

044313-4



MICROSCOPIC CALCULATION OF DOUBLE-DIPOE . .. PHYSICAL REVIEW C 62 044313

10 T T T T 100 T T T T

_ 160 op-1s0d i [ 40ca 1s0d-1pof ]
5 — double T=2 =] 50 — double T=2 |
0 1 o .
5 double T=0 _ 50 — double T=0 ]

C O 1 | M ‘ i ;fJL ]
0 0 i
5 - double T=0+2 ] 50 — double T=0+2 —
0 o 0 - ]
4 - ] u ]

- ingle T ] 10 & -
3 single T=1 ] - .
2 — 5 :— _:

- B C single T=1 .
0 C n ” . . . ] 0 alla . L '

2 4 1
0 20 40 60 80 100 0 0 0 60 80 00
Ex (MeV)
Ex (MeV)

FIG. 4. Single- and double-dipole strength distributions in the
1s0d-1p0f model space for*%Ca. The double-dipole strength is
summed oved=0" and 2" and is shown as a function of various
isospins of the double excitation. The units &efm?/MeV for
single-dipole excitation and* fm*/MeV for the double-dipole ex-
citation.

FIG. 3. Single and double-dipole strength distributions in the
Op-1s0d model space for'®0. The double-dipole strength is
summed oved=0" and 2" and is shown as a function of various
isospins of the double excitation. The units aefm?/MeV for
single-dipole excitation and* fm*/MeV for the double-dipole ex-
citation.

comparisons are made in terms of specific final spins
the Op-1s0d and Gs-Op-1s0d-1pO0f model spaces will (summed ovefl).

show the importance of including thep-ZL‘Lh 2hw states The energy Weighted Sunsg_l) for the Sing|e_dipo|e
which incorporate the giant monopole and quadrupole resastrength(Table ) is about a factor of 2 larger than the TRK
nances. sum rule values of 5%2 fm?MeV for %0 and 148¢?

The results for*°Ca were obtained in thesDd-1p0f  m2? MeV for “°Ca. However, it is well known that the results
model space using the WBMB interaction from Ref2]. In  of the TDA (used also in Ref[8]) and the RPA differ sig-
this model space there are eight,1IT=1 1% states and npjficantly for the states with a high degree of collectivity.
3386 2-2h 2fiw states. The harmonic-oscillator parameterThe TDA truncation which we employ does not conserve the
for A=40 is iw=11.02 MeV. For “Ca a model space TRK sum rule. One must use the RPA or a larger shell-
which inCorporates theﬁ.— 1h 24 w states is not available. In model space which includes ground Sta@A_type corre-
the above model spaces the Hamiltonian was diagonalizegitions. For the single-dipole excitation we can include
and the quantities defined in the previous section werep-2h configurations in the ground state an@-3h con-
evaluated. figurations in the I states. In®0 this brings the energy

weighted sum rule down to about &8 fm?MeV. The en-
V. RESULTS AND DISCUSSION hancement factor is thus abowt=0.4 which is typical of
those found with realistic interactiorisee page 714 in Ref.

In Tables | and Il we present the values of the basic quanf13]). Although we cannot carry out the equivalent “RPA”
tities defined in Sec. IV. In Figs. 1-5 the distributions of extension of the shell model for the double-dipole states, we
S vs excitation energy are shown. In Figs. 1, 3, and 4, theexpect that there will be an equivalent TDA to RPA reduc-
comparisons are made in terms of specific final isospiné  tion in the double-dipole sum rules. The other caveat in our
the double dipole(summed overd). In Figs. 2 and 5 the comparison between experiment and theory is that our cal-

044313-5



B. A. BROWN, V. ZELEVINSKY, AND N. AUERBACH PHYSICAL REVIEW C62 044313

100 o ' ' ' Tables | and Il where the average enefgyis at 25 MeV
Ca Osta-Opif while the E, is at 44.6 MeV, about 5 MeV below the har-
5 double J=2 monic limit of 2E;. The upper two parts in Fig. 1 show the

distribution of strength separately for the two isospin com-
ponents. One can see that the 2 is stronger thalT=0 and
that they are shifted by about 7 Meléee Table . The

0 spreading is greater in tHe=0 state than in th& =2 state.

In addition the decay width of th& =0 should be much
larger than forT=2. This means that a concentration of
double-dipole strength observed experimentally is likely to
represent only thd =2 fraction of the total distribution.

In Fig. 2 we show the results of the'®O
0s-0p-1s0d-1pO0f calculation with the strength separated
0 N into theJ=0" and 2" components. The summed results in
Table 1l can be compared with the sum-rule and boson mod-
els. The ratio ofJ=2 to J=0 energy-weighted strength is
5.2, very close to the value of 5 from E(®). The expecta-
tion that theB(2—1) value is independent of from the
boson model, Eq20), is exactly satisfied in the calculation.
The calculated value of 1.78 for the rafi&{2—1) to B(1
0 —0) is a little smaller than the value of two expected from
Egs.(17) and(20). Thus we do not find any significant de-
viations from the analytical results.

In Fig. 3 we show the results of the smallep-0s0d
space calculation of®0. In this case the double dipole does
not contain the p-1h configuration in which the particle is
NN . . . lifted two shells into a 2w excitation to formJ=0" and 2*

0 0 20 10 60 50 100 T=O states which are admlxed _mto thep-2h conﬂgurai

Ex (MeV) tions. The effect of these is to increase the doub!e-dlpole
strength by about 15% but not having any substantial effect

FIG. 5. Single and double-dipole strength distributions in theOn location and width of the distribution.
1s0d-1p0f model space for'®Ca. The double-dipole strength is ~ The results for*°Ca are shown in Figs. 4 and 5. The
summed oveiT=0 and 2 and is shown as a function of various single dipole distribution is characterized by a single strong
spins of the double excitation. The units afefm?/MeV for single-  peak at 20 MeV. The peak energy of the combified0 and
dipole excitation an@* fm*/MeV for the double-dipole excitation. T=2 strength of the double dipole is at 40 MeV, at twice the
energy of the single-dipole. The same is true for the average

culations do not include the spreading width or decay widthenergies in Table 1l. The harmonic limit d,=2E; is
Thus our theoretical strength distributions must be foldecPbeyed much better than itfO. It has been pointed out in
with another distribution which will bed and T dependent.  Ref. [14] that anharmonicities decline quickly with increas-

We will concentrate in this discussion on ratios of theind mass number. The comparison of the total strengths
strengths and how they depend dandT. given in Table Il to the analytical models is quite similar for

16, 40, .
In the boson model, one cannot hade-1* for the e O Op-1s0d and *"Ca 1s0d-1p0f calculations.

double dipole. The totaB(1—2) strength we obtain to the In Table Il we also present the isospin decomposition of
1* is much smaller than to0and 2* (see Table I, and the the double-dipole strength. We see from Table Il that the

, : 0p-1s0d calculation for'®0 and the $0d-1p0f calculation
energy weighted double-dipole stren@fl) to each 1 state 0 . .
turns out to be identically zero, as well as thé¢l—2) and foi Ca give a ratio of about_a factor of 2 for tfle=2 to .
double-dipole strength to all=1 stategsee also the discus- T_.O stre ngth in agreement with fch_at expe_zcted from_ the ratio
sion in Ref.[8]) of isospin Clebsch-Gordan coefficients discussed in Sec. II.
We first. dis.cuss the results of thes®p-1s0d-1pOf For the complete §0p-1s0d-1p0f model-space calcula-

I ion of %0 only theT=0 transition strength is changed by
model space shown in Figs. 1 and 2. In the bottom part o lon o : .
Fig. 1 we show the distribution of the=1, T=1 single- [he inclusion of the p-1h 24w (B-type) states since they

dipole strength. In the parts above it, is the double-dipolecan only couple tor=0 (or T=1). The strength of thig

strength broken down into various final isospin valgasd =0 component is increased by about 25% making the total
summed over all final spin valuesWe see that the total strength more equal for thie=0 andT=2 channels.

double-dipole strength distribution is broader than the single
dipole but is still rather well concentrated. The double-dipole
energy in %0 is lower than twice the energy of the single  This work was supported by the U.S.-Israel Binational
dipole. This departure from harmonicity can also be seen irScience Foundation and by NSF Grant No. PHY-9605207.

50 double J=0
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