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Microscopic calculation of double-dipole excitations
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The double-dipole mode of excitation is calculated for16O and 40Ca in a large shell-model basis space that
includes a full 2\v basis. The energies, distribution of strength and the spin, isospin splittings are computed.
Sum rules are obtained and compared to the shell model results.

PACS number~s!: 21.60.Cs, 21.10.Dr, 21.10.Hw
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I. INTRODUCTION

In the last decade experimental and theoretical rese
has led to the discovery of double giant resonances—a g
resonance built on top of another giant resonance.
double-dipole resonance was first identified in a pion cha
exchange reaction@1# and was predicted earlier@2#. Later the
double dipole was detected in Coulomb excitation in hea
ion reactions@3–5#. Properties of double dipole modes an
other types of double resonances were studied and are
viewed in several review articles@2–4,6#. Theoretical studies
have been mostly of the ‘‘macroscopic’’ type, introducin
collective coordinates in the description of double giant re
nances@2–4,6#. Some papers used semimicroscopic mod
in which the random phase approximation~RPA! was em-
ployed to define the collective phonon states. Some ex
sions of the RPA have also been suggested@7,8#. Truly mi-
croscopic calculations are very difficult. A shell-mod
calculation requires very large spaces involving configu
tions made up of particles excited to several major she
One must therefore truncate the space and limit the calc
tion to one-particle–one-hole (1p-1h) and two-particle–
two-hole (2p-2h) configurations involving particles an
holes in several major shells. Studies of this type were p
formed for some nuclei a few years ago@9#.

In this work we present shell-model calculations of t
double giant dipole state in16O and 40Ca. By choosing light
nuclei we are able to include a relatively large space
1p-1h and 2p-2h configurations and therefore are able
study in detail the distribution of strength and the splitting
strength into the various allowed spin and isospin com
nents. In the case of16O we are able to account for th
coupling ofJp501 and 21, 1p-1h states to the correspond
ing 2p-2h configurations. We also discuss energy weigh
sum rules~EWSR! and the relationship between these su
rules for the single and double giant resonances~see also
Ref. @10#!. The sum rules are evaluated in the shell mo
basis~numerically! and in a boson model.

II. SUM RULES

For the transition from an initial eigenstateuJi ,i ) to a set
of final eigenstatesuJf , f ), the energy weighted sum rule fo
0556-2813/2000/62~4!/044313~7!/$15.00 62 0443
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the dipole operatorD is defined in terms of reduced matri
elements by

(
Jf , f

~EJf , f2EJi ,i !
u~Jf , f uuDuuJi ,i !u2

~2Ji11!
5S1

(1) . ~1!

The dipole operator is given by a summation over the nuc
ons

D5(
a

ear aY(1)~ r̂ a!. ~2!

The notation forSm
(k) is for the nonenergy-weighted (k50)

and energy-weighted (k51) sums of the single (m51) and
double-dipole (m52) excitations. The summation over in
termediate states can be expressed as an expectation va
the initial state of the double commutator of the dipole o
erator with the Hamiltonian, and when the velocity depe
dence and exchange terms of the potential and residual in
action are ignored one obtains the well-known Thom
Reiche-Kuhn~TRK! sum rule value

S1
(1)~TRK!5

9

4p (
a

\2ea
2

2ma
. ~3!

The numerical value ofS1
(1)~TRK! for the dipole operator

with the standard effective charges for protons and neutr
is 14.82 NZ/A e2 fm2 MeV. It is usual to represent the
change in the TRK sum rule due to the velocity depend
and exchange terms in the Hamiltonian with the aid of
enhancement factork:

S1
(1)5S1

(1)~TRK!~11k!. ~4!

With the universal factork, the sum ruleS1
(1) is still inde-

pendent of the initial state. Assuming that the dipole tran
tion from the ground stateJ50 is saturated by a single gian
resonance~GR! stateJn51 at excitation energyE1, we get

E1u~1uuDu0!u253S1
(1) . ~5!
©2000 The American Physical Society13-1
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From the GR stateu1) there are transitions up to the tw
phonon statesu2;J), J50,2, with transition energiesE2;J
2E1 and the deexcitation transition to the ground stateu0)
with transition energy2E1. The sum rule~1! for the initial
stateu1) reads

S1
(1)5

1

9 H(
2;J

~E2;J2E1!u~2;JuuDuu1!u22E1u~0uuDuu1!u2J
~6!

or, using Eq.~5! again,

(
2;J

~E2;J2E1!u~2;JuuDuu1!u2512S1
(1) . ~7!

Eliminating S1
(1) , we obtain a relation between the obser

ables~transition strengths and transition energies!

(
2;J

~E2;J2E1!u~2;JuuDuu1!u254E1u~1uuDuu0!u2. ~8!

For the double-dipole excitation we are able~after simple
algebra! to derive a relationship for the ratio of the excitatio
to theJ52 andJ50 ~double-dipole! states

S2
(1)~J52!

S2
(1)~J50!

55. ~9!

S2
(1)(J) is the energy weighted sum rule to the double-dip

state for a given final spinJ defined by

S2
(1)~J!5(

2
~E2,J2E0!

u(1~2;JuuDuu1!~1uuDuu0!u2

3
,

~10!

where the sum(2 is over all two phonon states with a give
J, and the(1 is over all single phonon states.

The above equations are in terms of the reduced ma
elements. We now express some of the results in term
reduced transition probabilities which~with our definition of
the reduced matrix elements! are given by

B~Tl ; i→ f !5
1

2Ji11
u~ f uuTluu i !u2. ~11!

Our results expressed in terms of reduced transition p
abilities are

u~1uuDuu0!u25B~0→1!53B~1→0!, ~12!

u~2;JuuDuu1!u253B~1→2;J!5~2J11!B~2;J→1!.
~13!

Equation ~8! can now be written in two equivalent form
~excitation or deexcitation!

(
2;J

~E2;J2E1!B~1→2;J!5
4

3
E1B~0→1!, ~14!
04431
-
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(
2;J

~E2;J2E1!~2J11!B~2;J→1!512E1B~1→0!.

~15!

In the harmonic phonon limit when

E15v, E2;J52v ~J50,2!, ~16!

we obtain

(2;JB~1→2;J!

B~0→1!
5

4

3
,

B~2;J→1!

B~1→0!
52. ~17!

For independent bosons of multipolarityl, the normalized
one-boson and two-boson states are

u1;lm&5blm
† u0& ~18!

and

u2;JM&5
1

A2
(
mm8

Clm lm8
JM blm

† blm8
† u0&,

J50,2, . . . ,2l ~even!. ~19!

If the transition operator is proportional to the boson coor
nateTlm}(blm

† 1blm̃), the ratio of reduced deexcitation prob
abilities for all two-boson states is the same and given by
Bose factor

B~2;J→1!

B~1→0!
52. ~20!

For excitation transitions, the ratio

RJ5
B~1→2;J!

B~0→1!
5

2

~2l 11!2
~2J11! ~21!

is proportional to the statistical weight (2J11) of the two-
boson stateuJM). For the total reduced probability of a
two-boson states, we obtain

(
J

RJ5
2

~2l 11!2 (
J

~2J11!. ~22!

For the sum in Eq.~22!, whereJ is even, one finds(J(2J
11)5(2l 11)(l 11) and hence

(
J

RJ5
(JB~1→2;J!

B~1→0!
5

2l 12

2l 11
. ~23!

For dipole excitations wherel 51 this ratio is 4/3. The gen-
eral boson model results of Eqs.~20! and~23! agree with the
specific results of Eq.~17! obtained above with the dipole
sum-rule model.

Up to now we did not specify the isospin quantum nu
bers of the excitation. Since we will be working in a give
N5Z nucleus and discussing the dipole excitation within t
states of this nucleus, our excitation operator is an isove
3-2
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MICROSCOPIC CALCULATION OF DOUBLE-DIPOLE . . . PHYSICAL REVIEW C 62 044313
DT51, with projection DT350. Then the double-dipole
states withJ50 or 2 can haveT50 or 2 andT350, and in
the simple boson model, the intensities of the branches w
T50 or 2 are predicted to differ by the squared Clebs
Gordan coefficient@C10 10

DT0 #2. Therefore the intensity of the
branchT52 should exceed that forT50 by a factor of 2.
The isospin dependence of the strength for nuclei with
neutron excess has been discussed in Ref.@15#.

III. NOTATION FOR SHELL-MODEL DIPOLE
MATRIX ELEMENTS

The microscopic results presented in the next section
discussed in terms of the following notation which is spec
for dipole transitions. We use the^ & matrix element notation
to distinguish these microscopic results from the sum-r
and boson model results expressed in terms of ( ) ma
elements. We also introduce an explicit indexf for the final
states. The dipole matrix element from the 01 ground state
to a specific single-dipole final stateu12, f & is given by

S1,f
(0)5u^12, f uuDuu01&u2, ~24!

TABLE I. Transition strengths and average energies for
single states. The quantities are defined in the text.

B(1→0) S1
(0) S1

(1)
Ē1

e2 fm2 e2 fm2 e2 fm2 MeV MeV

16O 0s-0p-1s0d-1p0 f 1.49 4.48 106 25
16O 0p-1s0d 1.49 4.48 106 25
40Ca 1s0d-1p0 f 4.60 13.80 268 20
04431
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and the energy-weighted matrix element to a specific fi
state is

S1,f
(1)5E1,f u^12, f uuDuu01&u2. ~25!

We define the ground state energy asEg.s.50.
The double-dipole strength to a specific final statef is

given by

S2,f
(0)~J,T!5(

n

u^J,T, f uuDuu1n
2&^1n

2uuDuu01&u2

3
. ~26!

The spin of the final state can be 01, 11, or 21. The corre-
sponding energy-weighted double-dipole strength to a gi
final state is

S2,f
(1)~J,T!5E2,f(

n

u^J,T, f uuDuu1n
2&^1n

2uuDuu01&u2

3
.

~27!

The strength summed over all final states for the sin
(m51) and double-dipole (m52) states is given by

Sm
(k)5(

f
Sm, f

(k) . ~28!

We define the average energy of the single and double di
state as

Ēm5Sm
(1)/Sm

(0) . ~29!

Finally we introduce the reduced transition probabilities

e

es are
TABLE II. Transition strengths and average energies for the double-dipole states. The quantiti
defined in the text.

Nucleus J T B(2→1) S2
(0) S2

(1)
Ē2

model space e2 fm2 e4 fm4 e4 fm4 MeV MeV

16O 012 012 5.30 26.4 1176 44.6
0s-0p-1s0d-1p0 f 1 0 0.33 0 0

0 012 2.65 4.4 189 43.7
2 012 2.65 21.9 984 44.9

012 0 2.43 12.1 492 40.7
012 2 2.88 14.3 684 48.0

16O 012 012 4.68 23.6 1048 44.4
0p-1s0d 1 0 0.28 0 0

0 012 2.37 3.9 171 43.6
2 012 2.31 19.7 876 44.5

012 0 1.80 9.1 354 39.0
012 2 2.88 14.5 694 47.8

40Ca 012 012 16.3 233 9200 39.3
1s0d-1p0 f 1 0 0.36 0 0

0 012 8.2 39 1522 39.1
2 012 8.1 195 7677 39.4

012 0 5.9 85 3135 36.9
012 2 10.4 148 6064 40.8
3-3
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B~1→0!5(
f

u^12, f uuDuu01&u2

3
5

S1
(0)

3
~30!

and

B~2;J,T→1!5(
f

u^J,T, f uuDuu1n
2&u2

~2J11!
, ~31!

wheren is taken to be the 12 which has the strongest single
dipole excitation from the ground state. In our examples
isospin quantum numbers areT50 andTz50 for the ground
state, T51 and Tz50 for the single-dipole states andT
50,1,2 andTz50 for the double dipole states.

IV. SHELL-MODEL CALCULATIONS

The shell-model calculations are carried out in a ba
whereu01& is the closed-shell 0\v configuration,u1n

2& are
the 1p-1h 1\v configurations, anduJf

1& are the 1p-1h and
2p-2h 2\v configurations. This is equivalent to a Tamm
Dancoff ~TDA! truncation of the dipole excitation from th

FIG. 1. Single and double-dipole strength distributions in
0s-0p-1s0d-1p0 f model space for 16O. The double-dipole
strength is summed overJ501 and 21 and is shown as a function
of various isospins of the double excitation. The units aree2

fm2/MeV for single-dipole excitation ande4 fm4/MeV for the
double-dipole excitation.
04431
e

is

ground state and the dipole excitation from the single-dip
state.

For 16O one set of calculations was carried out in a mo
space which included the 0s, 0p, 1s0d, and 1p0 f shells.
The Hamiltonian is the WBP interaction from Ref.@11#
which was determined by a least-squares fit of the parti
hole two-body matrix elements to the binding energies a
excitation energies of nuclei in theA510– 20 mass region
There are five 1\v 12 T51 states, 630 2p-2h 2\v states,
and 36 1p-1h 2\v states~with Jp501, 11, and 21 and
with T50, 1, and 2!. For A516 we use harmonic-oscillato
radial wave functions with\v513.92 MeV for the dipole
matrix elements. The double-dipole strength arises from~A!
two ‘‘parallel’’ 0 p→1s0d transitions from the closed she
leading to the 2p-2h 2\v states, or~B! from a 0p→1s0d
transition from the closed shell followed by a 0s→0p or a
1s0d→1p0 f transition to the 1p-1h 2\v states.

We also carry out the calculation in a reduced mo
space which includes only the 0p and 1s0d shells. In this
model space the 2\v basis does not include the 36 1p-1h
2\v states~excitation path B!. Comparison of the results in

FIG. 2. Single and double-dipole strength distributions in t
0s-0p-1s0d-1p0 f model space for 16O. The double-dipole
strength is summed overT50 and 2 and is shown as a function o
various spins of the double excitation. The units aree2 fm2/MeV
for single-dipole excitation ande4 fm4/MeV for the double-dipole
excitation.
3-4
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MICROSCOPIC CALCULATION OF DOUBLE-DIPOLE . . . PHYSICAL REVIEW C 62 044313
the 0p-1s0d and 0s-0p-1s0d-1p0 f model spaces will
show the importance of including the 1p-1h 2\v states
which incorporate the giant monopole and quadrupole re
nances.

The results for40Ca were obtained in the 1s0d-1p0 f
model space using the WBMB interaction from Ref.@12#. In
this model space there are eight 12, T51 1\v states and
3386 2p-2h 2\v states. The harmonic-oscillator parame
for A540 is \v511.02 MeV. For 40Ca a model space
which incorporates the 1p-1h 2\v states is not available. In
the above model spaces the Hamiltonian was diagonal
and the quantities defined in the previous section w
evaluated.

V. RESULTS AND DISCUSSION

In Tables I and II we present the values of the basic qu
tities defined in Sec. IV. In Figs. 1–5 the distributions
Sm, f

(0) vs excitation energy are shown. In Figs. 1, 3, and 4,
comparisons are made in terms of specific final isospinsT of
the double dipole~summed overJ). In Figs. 2 and 5 the

FIG. 3. Single and double-dipole strength distributions in
0p-1s0d model space for16O. The double-dipole strength i
summed overJ501 and 21 and is shown as a function of variou
isospins of the double excitation. The units aree2 fm2/MeV for
single-dipole excitation ande4 fm4/MeV for the double-dipole ex-
citation.
04431
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comparisons are made in terms of specific final spinJ
~summed overT).

The energy weighted sumS1
(1) for the single-dipole

strength~Table I! is about a factor of 2 larger than the TR
sum rule values of 59e2 fm2 MeV for 16O and 148e2

fm2 MeV for 40Ca. However, it is well known that the resul
of the TDA ~used also in Ref.@8#! and the RPA differ sig-
nificantly for the states with a high degree of collectivit
The TDA truncation which we employ does not conserve
TRK sum rule. One must use the RPA or a larger sh
model space which includes ground state~RPA-type! corre-
lations. For the single-dipole excitation we can inclu
2p-2h configurations in the ground state and 3p-3h con-
figurations in the 12 states. In16O this brings the energy
weighted sum rule down to about 82e2 fm2 MeV. The en-
hancement factor is thus aboutk50.4 which is typical of
those found with realistic interactions~see page 714 in Ref
@13#!. Although we cannot carry out the equivalent ‘‘RPA
extension of the shell model for the double-dipole states,
expect that there will be an equivalent TDA to RPA redu
tion in the double-dipole sum rules. The other caveat in
comparison between experiment and theory is that our

FIG. 4. Single- and double-dipole strength distributions in t
1s0d-1p0 f model space for40Ca. The double-dipole strength i
summed overJ501 and 21 and is shown as a function of variou
isospins of the double excitation. The units aree2 fm2/MeV for
single-dipole excitation ande4 fm4/MeV for the double-dipole ex-
citation.
3-5
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culations do not include the spreading width or decay wid
Thus our theoretical strength distributions must be fold
with another distribution which will beJ and T dependent.
We will concentrate in this discussion on ratios of t
strengths and how they depend onJ andT.

In the boson model, one cannot haveJ511 for the
double dipole. The totalB(1→2) strength we obtain to the
11 is much smaller than to 01 and 21 ~see Table II!, and the
energy weighted double-dipole strengthS2

(1) to each 11 state
turns out to be identically zero, as well as theB(1→2) and
double-dipole strength to allT51 states~see also the discus
sion in Ref.@8#!.

We first discuss the results of the 0s-0p-1s0d-1p0 f
model space shown in Figs. 1 and 2. In the bottom par
Fig. 1 we show the distribution of theJ512, T51 single-
dipole strength. In the parts above it, is the double-dip
strength broken down into various final isospin values~and
summed over all final spin values!. We see that the tota
double-dipole strength distribution is broader than the sin
dipole but is still rather well concentrated. The double-dip
energy in 16O is lower than twice the energy of the sing
dipole. This departure from harmonicity can also be seen

FIG. 5. Single and double-dipole strength distributions in
1s0d-1p0 f model space for40Ca. The double-dipole strength i
summed overT50 and 2 and is shown as a function of vario
spins of the double excitation. The units aree2 fm2/MeV for single-
dipole excitation ande4 fm4/MeV for the double-dipole excitation
04431
.
d

f

e
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Tables I and II where the average energyĒ1 is at 25 MeV
while the Ē2 is at 44.6 MeV, about 5 MeV below the ha
monic limit of 2Ē1. The upper two parts in Fig. 1 show th
distribution of strength separately for the two isospin co
ponents. One can see that theT52 is stronger thatT50 and
that they are shifted by about 7 MeV~see Table II!. The
spreading is greater in theT50 state than in theT52 state.
In addition the decay width of theT50 should be much
larger than forT52. This means that a concentration
double-dipole strength observed experimentally is likely
represent only theT52 fraction of the total distribution.

In Fig. 2 we show the results of the16O
0s-0p-1s0d-1p0 f calculation with the strength separate
into theJ501 and 21 components. The summed results
Table II can be compared with the sum-rule and boson m
els. The ratio ofJ52 to J50 energy-weighted strength i
5.2, very close to the value of 5 from Eq.~9!. The expecta-
tion that theB(2→1) value is independent ofJ from the
boson model, Eq.~20!, is exactly satisfied in the calculation
The calculated value of 1.78 for the ratioB(2→1) to B(1
→0) is a little smaller than the value of two expected fro
Eqs. ~17! and ~20!. Thus we do not find any significant de
viations from the analytical results.

In Fig. 3 we show the results of the smaller 0p-1s0d
space calculation of16O. In this case the double dipole doe
not contain the 1p-1h configuration in which the particle is
lifted two shells into a 2\v excitation to formJ501 and 21

T50 states which are admixed into the 2p-2h configura-
tions. The effect of these is to increase the double-dip
strength by about 15% but not having any substantial ef
on location and width of the distribution.

The results for40Ca are shown in Figs. 4 and 5. Th
single dipole distribution is characterized by a single stro
peak at 20 MeV. The peak energy of the combinedT50 and
T52 strength of the double dipole is at 40 MeV, at twice t
energy of the single-dipole. The same is true for the aver
energies in Table II. The harmonic limit ofĒ252Ē1 is
obeyed much better than in16O. It has been pointed out in
Ref. @14# that anharmonicities decline quickly with increa
ing mass number. The comparison of the total streng
given in Table II to the analytical models is quite similar f
the 16O 0p-1s0d and 40Ca 1s0d-1p0 f calculations.

In Table II we also present the isospin decomposition
the double-dipole strength. We see from Table II that
0p-1s0d calculation for16O and the 1s0d-1p0 f calculation
for 40Ca give a ratio of about a factor of 2 for theT52 to
T50 strength in agreement with that expected from the ra
of isospin Clebsch-Gordan coefficients discussed in Sec
For the complete 0s-0p-1s0d-1p0 f model-space calcula
tion of 16O only theT50 transition strength is changed b
the inclusion of the 1p-1h 2\v ~B-type! states since they
can only couple toT50 ~or T51). The strength of thisT
50 component is increased by about 25% making the t
strength more equal for theT50 andT52 channels.
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