¢

Progress in
Particle and
Nuclear Physics

PERGAMON Progress in Particle and Nuclear Physics 47 (2001) 517-599

http://www.elsevier.com/locate/npe

The Nuclear Shell Model Towards the Drip Lines

B. A. BROWN

Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory,
Michigan State University, East Lansing, Michigan 48824-1321, USA

Abstract

Applications of the nuclear shell model to nuclei out to the proton and neutron drip lines
are presented. The assumptions and hamiltonians for the mean-field and shell-model configura-
tion mixing models are summarized. The properties discussed include binding energies, separation
energies, displacement energies, intruder states, proton and neutron halos, diproton decay, spectro-
scopic factors, interaction cross sections, E1 and E2 transitions, beta decay, quadrupole moments
and magnetic moments.
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1 Introduction

There are about 270 stable isotopes and about 50 naturally occurring radioactive isotopes. Nuclear
reactions with these isotopes found in nature have provided experimental information on about 2500
nuclei. There are about 4000 other more exotic nuclei whose properties remain largely unknown which
extend on the nuclear chart out to the proton drip line (where nuclei become unstable to proton decay)
and the neutron drip line (where nuclei become unstable to neutron decay). These exotic nuclei are
involved in stellar nucleosynthesis, and their properties are important for understanding of the rapidly
growing number of observations in astrophysics from ground and satellite based observatories.

The experimental methods for studying the properties of exotic nuclei have grown. New facilities
for producing radioactive beams are now available or are being built, and the designs for much larger
facilities are underway such as RIA (Rare Isotopes Accelerator) in the USA, and the GSI upgrade and
EURISOL (European Isotope Separation On-Line) in Europe. There is a large amount of data on the
nuclei near stability, and it is the mandate of nuclear theory to describe all of these in a way which is
fundamental and accurate enough to be able to extrapolate to more exotic nuclei. The extrapolation
is needed to guide experiments, to test nuclear structure models, and for direct application to nuclear
astrophysics where experiment is not known. In addition, nuclei provide one of nature’s most abundant
examples of mesoscopic systems. Nuclear theory provides the foundation for understanding the great
variety of nuclear structure properties which change rapidly as the number and type of constituent
nucleons are varied.

Theoretical solutions to the nuclear many-body problem are partly phenomenological, and thus
theory and experiment are closely tied together. Theory takes its inspiration from experiment in guiding
the structure of the models and their parameters; the nuclear shell model is the primary example [1],
[2], [3]. Nuclear experiment takes its inspiration from theory in helping to choose which experiments
are most important to prove or disprove model assumptions.

In this review I will examine how the nuclear shell model has been applied to the properties of
nuclei near stability, and how its applications are extended to nuclei out to the proton and neutron drip
lines. The shell model starts with the concept of closed-shell nuclei which are described by mean-field
models. I will discuss the applicability of mean-field models to binding energies, single-particle energies
and radii. The shell model allows for configuration mixing beyond the mean field I will describe the
assumptions which go into configuration mixing calculations, and how they will be affected by their
application to nuclei near the drip lines.

I will restrict myself mainly to a region of medium-light nuclei for which the most work on configu-
ration mixing has been carried out. This will include nuclei up to Z = 30 and N = 50. For these nuclei
we can expect many new experimental results out to the proton and neutron drip lines over the next
decade. I will not emphasize the very lightest nuclei below about A = 10, for which more exact models
have been recently developed and are being applied. These include the “no-core” calculations involving
many oscillator shells, [4], [5] and the Green’s function Monte Carlo and variational methods [6], [7].
It is important to compare the results for the standard shell-model methods (which must be used for
heavier nuclei) with these more fundamental results for light nuclei in order to better understand the
foundation of the nuclear shell-model.

Isospin symmetry is quite good in nuclei. It is broken by the long-range Coulomb interaction and
by small charge-dependent parts of the strong interaction. Thus, the structure of a given proton-rich
nucleus is similar to its isospin mirror in which the roles of protons and neutrons are interchanged (e.g.
8Ne with Z = 10 and N = 8 compared to 80 with Z = 8and N = 10). Also there are associated isospin
multiplets (e.g. the T = 1 triplets in *Ne, '8F and !#0). In this review I will discuss the properties of
nuclei with N > Z (neutron-rich and N = Z nuclei) out to the neutron drip line. A separate section
is devoted to the special models and features which apply to proton-rich nuclei. Due to the repulsive
Coulomb interaction, proton-rich nuclei are less stable than their mirrors. The configurations of mirror
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nuclei are similar except in situations where low-£ orbitals become loosely bound. (In the above example
the Thomas-Ehrman shift of the 1/2% (1s,5) state in 'F relative to 70 is important for the structure
of 8Ne relative to 120.)

The region of nuclei covered in this review is shown in Fig. (1). The drip lines in this chart are
determined experimentally except for the proton-rich nuclei with Z > 28 which is taken from (8], [9],
and for the neutron-rich nuclei with N > 22 which is based upon [10]. Until recently the experimental
information on nuclei was dominated by reactions on the stable nuclei found in nature — the dark boxes
in Fig. (1). Radioactive beam facilities will provide a means for studying reactions and properties of
essentially all of the nuclei out to the drip lines in Fig. (1).

I begin with a review of those nuclear properties which are relevant to the shell-model magic numbers.
The magic nuclei are indicated by the filled circles in Fig. (1). Next, I discuss the assumptions which
go into the mean-field and configuration mixing models. As a guide to the ordering of the single-
particle states which are discussed, I show in Fig. (2) the single-particle energies for nuclei with N = Z
obtained from the SKX Skyrme Hartree-Fock model [11]. Finally, I discuss the comparison of a wide
variety of experimental data to the models, starting with binding energies and single-particle energies
and progressing to examples of detailed nuclear properties.

This review concentrates on nuclear structure with a few examples of application to astrophysics.
Many other examples of astrophysical applications can be found in the conference proceedings of “Nuclei
in the Cosmos” [12]. In its application to nuclei near the drip lines, the shell model encounters new
phenomena which will be discussed in this review such as changes in the single-particle energies [13],
neutron halos [14], [15] and diproton decay [16], [17]. Many acronyms have been constructed — to help
the reader, the ones used commonly in the text are given in Table 7 of the appendix along with the
section in which they are first discussed.

2 Magic Numbers

2.1 Excited states in even-even nuclei

Some even-even nuclei have first excited states which lie at a relatively high excitation energy compared
to the neighboring even-even nuclei. This is an indication that the gap between single-particle levels
is relatively large for both protons and neutrons for these particular Z and N values. These values
of Z and N are the magic numbers in the nuclear shell model. In the simplest approximation, these
nuclei are modeled by closed-shell configurations. (Nuclei for which the gap is large for only protons or
neutrons will be called semi-magic or semi-closed-shell nuclei.) Table 1 provides a list of those nuclei
which have relatively high-lying first excited states, along with the nominal closed-shell configuration.
The nuclei in Table 1 are those with N > Z. Several of these have mirror proton-rich nuclei near the
proton-drip line — 0, ?2Si, 3Ca and **Ni — the latter has only recently been discovered [18].

Shell-model calculations start with the assumption that one or more of these magic nuclei is inert —
they have a closed-shell configuration. For example, the sd shell-model space [24], [3] assumes that 60
and “°Ca are inert. When one considers these closed-shell nuclei in a model space which goes beyond
the assumed closed-shell configuration, they are found to have significant non-closed-shell admixtures.
For example, '2C in the p-shell model space [25] has 40% of the closed-shell configuration, 0 in the
(04+2+4)hw model space has about 50% of the closed-shell configuration [26] and 56Ni in the pf-shell
model space [27] has about 50% of the closed-shell configuration. (The model spaces and notations
are discussed in Sec. 3). Nevertheless, for some purposes these nuclei may be taken as effectively
inert, as long the interactions and operators in the model space are renormalized to compensate for the
simplification.

A shell-model calculation with some choice of inert cores can be considered successful if it can
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Figure 1: Region of the nuclear chart discussed in this review. Nuclei which are stable to proton and neutron
emission are shown by a box. Nuclei above the diagonal line for N = Z are proton-rich and end at the proton
drip line. Nuclei below the diagonal degree line are neutron-rich and end at the neutron drip line. Nuclei
which exist in nature are indicated by the dark box. The magic nuclei are indicated by a filled circle in the
center. The nuclei which are candidates for diproton emission (beyond the proton drip line) are indicated by
crosses. The magic number associated with the LS major shell are indicated by dashed lines, and regions where
the valence protons and neutron fill the p, sd and pf LS shells are indicated. The circles show the regions of
intruder ground-state configurations.
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Figure 2: Neutron single-particle energies for nuclei with N = Z as a function of neutron number obtained
with the SKX spherical Hartree-Fock calculation. The vertical dashed lines show some of the magic number
discussed in the text. The large circles show the approximate Fermi energies for '°0, 40Ca, 56Ni and 1%°Sn.
The orbits are labeled by (n,£,27).
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Table 1: Even-even nuclei with high-lying first excited states. The excitation energies are from th(?
compilations [19], [20] except for 20 from [21], 2O which is the theoretical USD value [22] and *Si
from [23].

Nucleus | Z | N | E, J™ | Proton Neutron
(MeV) Configuration Configuration
He |2 |2 [202 |07 [ (0s:0)° (051/2)°
12¢ 6 |6 |4.44 2t | (0s)%(0ps/2)* (0s)*(0p3/2)*
MC 6 18 [6.09 |17 (0s)*(Ops/)* (0s)2(Op3/2)*(0p1/2)?
150 |8 |8 |6.05 |0+ ] (0s)(0p)° (0s)2(0p)®
20 8 |14]3.17 | 2% | (0s)%(0p)® (0s)?(0p)®(0ds2)®
“0 8 |16|418 |2+ | (0s)2(0p) (05)2(0p)®(0ds2)%(1s1 2)?
“Si 1420 [3.30 |2+ | (0s)2(0p)(0dsya)® (05)2(0p)®(0dsy2)*(1s1/2)2(0ds2)*
o5 |14 (28| (05)%(0p)*(0dy)° (09)2(0p)*(0dly2)"(15172)?(0dkya)*(0fr2)°
365 16 | 20 | 3.29 2+ (05)2(01:))6(0(’15/2)6(131/2)2 (OS)Z(OP)G(Ods/z)6(181/2)2(0d3/2)4
10Ca 2020 |3.35 0% | (0s)%(0p)®(0d1s)'? (0s)%(0p)®(0d1s)*?
“Ca 2028383 |2* | (0s)2(0p)5(0d1s)? (05)2(0p)®(0d15) 2 (0fy 2)®
©Ni 28128270 | 2* | (05)(0p)®(0d1s) 2(0fy2)® | (05)2(0p)®(0dl1s) (0t )0
2Ca 20 | 32| 2.56 | 2% | (0s)%(0p)®(0d1s)2 (0s)%(0p)®(0d1s)*2(0f7/2)%(1pay2)*
80Ca 2040 |7 (0s)%(0p)5(0d1s)'2 (0s)?(0p)(0d1s)*2(0f1p)2°
Ca 20 (50 |7 (0s)?(0p)®(0d1s)2 (0s)2(0p)®(0d1s)**(0f1p)>°(0gg/,)™°
®Ni 28140 | 177 | 0% | (0s)2(0p)°(0d1s)'2(0fr,)® | (0s)?(0p)(0d1s)2(0f1p)?®
SN |28 502 (05)?(0p)°(0d1s)"2(0fy2)® | (05)?(0p)®(0d1s)"2(0F1p)?(Oge2)™®

describe a large subset of the observed energy levels and transitions for the nuclei covered by the model
space with hamiltonians and operators which are close to those expected from the properties of the
free nucleons. Even the most successful (finite) model will eventually encounter states which are not
described. These are often called intruder states, and they are attributed to configurations outside
the model space. Usually the intruder states start at an excitation energy which is typical of the first
excited state in the closed-shell nuclei. But a weakening of the shell gap and correlations can lead to
cases where the intruder state comes close to or below the model-space ground state. For example, the
first excited 1/27 state at 100 keV in '°F is an intruder in the sd-shell model space, and the 1/2 ground
state of ' Be is an intruder in the p-shell model space — both have parities which are not allowed in the
respective model spaces. If the intruder state has the same parity as those in the model space, explicit
mixing may be important. The history of the shell model has been to consider progressively larger and
larger model spaces so that states which would be called intruders in a small model space become fully
incorporated into a larger model space.

The first shell-model work in the sd shell involved truncations around the N =14 and N = 16 shell
closures which exist in the 220 and 240 neutron configurations and the 3Si and 3¢S proton configurations.
However, when both protons and neutrons are active, the strong proton-neutron interaction washes out
the N=14 and N = 16 closures, and one must consider the full sd model space. For example, for 22Si
the ground state obtained with the USD interaction in the full sd shell has only 20% of the nominal
(0ds/2)'? closed-shell component. As will be discussed, the proton-neutron interaction modifies the
single-particle energies as well as introducing proton-neutron correlations (configuration mixing).

Likewise in the pf shell, the first shell-model work focused on the truncations around the N = 28
shell closure which exists in 8Ca and also to a lesser degree in **Ni. For example, many of the levels
in the nuclei between the 20 and 28 magic numbers are qualitatively described by the simple (0f7,)"
model space [28]. However, a much more complete description of the nuclei in the region of *Ni is
obtained in the full pf shell model. It is interesting to note that 52Ca also has a fairly good closed shell
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which is attributed to the filling of the Ops/; orbit, but as protons are added the N = 32 closure quickly
goes away due to the proton-neutron interaction. A more complete description of the nuclei around
N =8 and N = 20 requires the larger p-sd and sd-pf model spaces.

160) and 4°Ca are the classic LS closed shells. LS closed-shell means that the magic number is
associated with the filling of the orbits for a given value of the oscillator major quantum number
N,=2n + £, that is, all orbital (L) and spin (S) quantum states up to a given £ value are filled. The
LS major shell refers to the complete set of orbits for a given value of No: p (N,=1), sd (N,=2) and
pf (N,=3). For heavier nuclei the LS closed shell becomes weak, as seen in the relatively low-energy
of the first excited state in ®Ni (N = 40). Likewise ®*Ca may have a weak LS (pf shell) closed-shell.
For higher mass number the shell gap is determined by the lowering of the highest j orbital due to the
spin-orbit interaction, e.g. the filling of the 0f;/; orbit in *3Ca. In the region N = 28 — 50 the 1pgs,
1py/2, Ofs/2 and Ogg/, orbitals are closely spaced and could be considered as a jj major-shell model
space. The set of orbits in which the highest j from the oscillator shell is removed (0f7/; in the example)
and the highest j from the next higher oscillator shell is added (Ogg/2 in the example) produces the
classic jj closed-shell nuclei '32Sn and °®Pb. 7®Ni may also be a jj closed-shell nucleus but its first
excited state is not yet known. %Ni is also a fairly good jj closed shell. The nature of *2Si remains to
be experimentally determined.

2.2 Single-particle energies and shell gaps

The closed-shell configuration is a single Slater determinant, and one can use Hartree-Fock theory to
obtain the binding energy and single-particle energies. In Hartree-Fock theory for a closed-shell nucleus

(Z, N) the single-particle energies (SPE) for states above the Fermi surface are related to the binding
energy differences:

e, = BE(Z,N) - BE*(Z +1,N), (1)
and '

e = BE(Z,N)— BE*(Z,N +1). (2)
The SPE for states below the Fermi surface are given by

ey = BE*(Z - 1,N) — BE(Z,N), (3)
and

es = BE*(Z,N — 1) — BE(Z,N). (4)

The BE are ground state binding energies which are taken as positive values, and e will be negative for
bound states. (BE* = BE — E;) is the ground state binding energy minus the excitation energy of the
excited states associated with the single-particle states. The shell gap, defined as the energy difference
between the lowest SPE for a state above the Fermi surface minus the highest SPE for a state below
the Fermi surface, is:

9o = € —ef =2BE(Z,N) — BE(Z +1,N) — BE(Z —1,N), (5)

and
gn =€, —es =2BE(Z,N)— BE(Z,N +1) - BE(Z,N —1). (6)

The experimental SPE for 180, “°Ca and *8Ca based upon the assumption that these are closed-shell
nuclei are shown in Figs. (3) and (4). The proton and neutron shell gaps for these and other nuclei
are given in Table 2. The experimental SPE and gaps are compared with those from the SKX Skyrme
HF and the NL3 Dirac Hartree calculations. One observes qualitative agreement with experiment and
theory, but the deviations are significant and will be discussed in Sec. 5.1. When the SPE are known
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Figure 3: Experimental and theoretical neutron single-particle energies for

labeled by (7, ¢,25), and the dashed line is the Fermi energy.

1860 and %°Ca. The orbits are
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Table 2: Experimental and theoretical shell gaps. j> is the orbital just above the gap and j< is the

orbital just below the gap.
Nucleus || Z | j5 iy Expgap | SKX gap [ N |js i Exp gap | SKX gap
(MeV) | (MeV) (MeV) | (MeV)

“He 2 081/2 0p3/2 21.8 2 081/2 0p3/2 21.5

12C 6 0p3/2 Opl/g 14.0 6.1 8 Opl/g Opl/g 13.8 6.2
14C 6 0p3/2 0p1/2 10.6 5.6 8 0p1/2 131/2 6.9 5.4
160 8 0p1/2 0d5/2 11.5 7.1 8 Opl/g 0d5/2 11.5 7.3
20 8 [ Opy/2 | 0ds/z | 10.0 7.8 14 | 0ds/z | Isyyz | 4.1 1.2
40 8 | Opysz | 0ds/z | 11.0 7.6 16 |1sy/, |0Ods | 3.8 3.2
28(:) 8 0p1/2 0d5/2 7.8 20 0d3/2 0f7/2 3.2
34Si 14 0d5/2 151/2 6.5 2.8 20 0d3/2 0f7/2 5.1 4.6
363 16 | 1sy/, | Odssy | 4.7 0.4 20 | Odsy | Ofrj | 5.6 4.6
“Ca 20 | Ods/q | Of7pp | 7.2 4.7 20 | 0ds/p | Of7y5 | 7.3 4.9
“Ca |20 [1syy, | Ofyy |62 4.9 28 | Ofj; | lps | 4.8 3.1
52C& 20 151/2 0f7/2 5.0 32 1p3/2 1p1/2 1.8
6°Ca. 20 181/2 0f7/2 4.9 40 0f5/2 059/2 3.1
56Nl 28 0f7/2 1p3/2 6.5 4.1 28 0f7/2 1p3/2 6.4 4.1
68Nl 28 0f7/2 1p3/2 5.9 4.3 40 lp1/2 0g9/2 2.8 2.6
78Ni 28 0f7/2 1p3/2 4.9 50 1p1/2 Ogg/g 3.5
l”Sn 50 0g9/2 0g7/2 6.1 5.3 82 0h11/2 1f7/2 4.9 4.7
208Pb 82 231/2 0h9/2 4.2 34 126 2p1/2 1g9/2 3.4 3.6

from experiment, these are usually used for shell-model calculations. For nuclei near the drip lines where
the experimental SPE are not known, one needs a theoretical model for predicting or extrapolating the
SPE. One way to do this is to use phenomenological mean-field models such as SKX of NL3, and it is
thus important to understand the reasons for the deviations in known nuclei.

The shell gaps given in Table 2 give complementary information to the energies of the first excited
states (Table 1) about the magic properties of nuclei. However, the shell gaps are sensitive to configu-
ration mixing. In Fig. (5) the binding energy difference of Eq. (6) for even-even nuclei with N > Z is
plotted vs neutron number. The nuclei with N = Z are connected by a dashed line and the isotopes
by solid lines. The magic numbers are expected to exhibit a relatively large gap. However for N = Z,
N = 8 does not appear as a magic number in this way, but rather follows the smooth curve between
Z =2and Z = 14. This is probably related to dominance of alpha clustering in these light nuclei
— the particularly strong interaction between two-protons and two-neutrons in the same state (such
interactions are contained in shell-model configuration mixing). For N = Z above Z = 14, the magic
numbers 20 and 28 appear weakly. For N > Z , the magic numbers 20 and 28 often appear but not
always. In particular for Z = 12 the magic number 20 is not present and for Z = 16 (S) the magic
number 28 is not present (this is the lowest point for N = 28 in Fig. (5)), but is replaced by a peak at
N = 26. The magic numbers 6, 14, 16, 32 and 40 are not present in the gap systematics. For all nuclei
the effective gap as given by Eq. (6) is influenced by pairing and proton-neutron correlations.

The discussion in this section is based on the assumption that the even-even nuclei being discussed
actually have closed-shell configurations, and that the states in the neighboring odd-even nuclei are
pure single-particle states. This is actually not the case; the closed shells are broken and the single-
particle states are fragmented. With shell-model configuration mixing we attempt to calculate the core
breaking effects related to the orbits near the Fermi surface. The closed-shell nuclei and the single-
particle energies discussed above serve as a starting point for this calculation. There will also be mixing
from orbits further away from the Fermi surface, which must be treated explicitly or implicitly in terms



528 B. A. Brown / Prog. Part. Nucl. Phys. 47 (2001) 517-599

25 LI B L L B B BB BN L
[ 2 ]
20 |\ o
Y i
L \ p
S 15 [~ \6 —
Q - -
s X ]
Q - -
m - -
o
10 [ ]
5T ]
0 Lo vy v by b 1 ]
0 10 20 30 40

N

Figure 5: The experimental neutron shell gap for even-even nuclei as a function of neutron number. The values

for nuclei with N = Z are connected by a dashed line, and the isotopes labeled by their Z value are connected
by solid lines.

of an effective mean-field, effective hamiltonians, and effective transition operators.

3 Model Space and Computations

The “model space” indicates the orbitals and the truncation within that set of orbitals which is assumed
for a given calculation. Generally, the best and most complete results are obtained when the model space
is as large as possible. However, the computation time increases exponentially with the size the model
space, and empirical hamiltonians are better determined in smaller models spaces. Thus the choice of
model space is a compromise between what one would like to describe and what is computationally
practical. The specific distribution of n, valence particles over a given set of valence orbits will be called
a partition. The complete or “full” model space includes all possible partitions for a given set of orbits.

The many-body states which are obtained in a shell-model basis contain both intrinsic and center-
of-mass motion. The operator for the center-of-mass motion contains R? and P?, where R and P are
the coordinate and momentum of the center of mass. It can be shown in the oscillator model that the
center-of-mass is always in the L = 0 ground state when the model space is restricted to LS major
shells [29], [30], [31]. When more than one major shell is important, excitations out of the center-of-mass
ground state can occur. The standard method of removing these spurious states is to add a fictitious
center-of-mass hamiltonian [32], [33] which has the effect of raising the energy of the spurious states to
a high excitation energy and removing them from the low-lying spectrum of interest.

The prime examples of model spaces in light nuclei are the complete LS major shells, p, sd and
pf. There are several advantages to the use of complete LS major shells. The model space contains
both j = £+ 1/2 orbitals which are important for Gamow-Teller beta decay, magnetic moments and
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M1 electromagnetic decay. In addition, admixtures of states which strongly effect the EL electric
multipole operators involve the relatively high-energy giant L-multipole resonance, and might be treated
perturbatively in terms of effective charges [34], [35]. Finally, there are no spurious states [29], [30],
[31]. One can easily treat the complete p and sd shells, but the larger pf shell is often truncated by the
maximum number of nucleons excited from the 0f7/, shell [36], [37].

Shell-model configuration mixing can also be carried out for the combination of two complete LS
major shells, such as p-sd and sd-pf. The basis states can be classified by the partition of n, valence
nucleons between lower and upper LS shells (n; and n, ). The partition for which the number of nucleons
in the upper shell has the smallest possible value allowed by the Pauli principle will be called the 0w
configuration (meaning lowest energy within the oscillator basis). The Niw configurations are excited
states in the oscillator basis in which N #w units of excitation energy are added to the lowest 0fw
configuration. The model space in which only one N value is considered at a time will be call the “pure
NAw” model space, and the configurations are discussed in terms of the N value. The series N, N+2,
etc, all have the same parity and can be mixed by the hamiltonian. When this mixing is carried out it
will be called the “mixed Aw” model space.

The ground and low-lying states are usually associated with 0Aw LS configurations. The regions of
nuclei in which the valence protons and neutrons go into the p, sd and pf LS major shells are shown
in Fig. (1). Regions around N = Z in which both neutrons and protons go into the same major shell
are the p, sd and pf for 2 < (N,Z) < 8,8 < (N,Z) < 20 and 20 < (N, Z) < 40, respectively. There
are other regions in which the 0fw configuration involves protons in one major shell and neutrons in
another, such as the p-sd region for neutron-rich nuclei with 2 < Z < 8 and 8 < N < 20, and the sd-pf
region for neutron-rich nuclei with 8 < Z < 20 and 20 < N < 40. All nuclei have states which involve
NAw excitations between the LS major shells. These are usually excited states, but are sometimes
ground states as in the region of intruder states indicated by the circles in Fig. (1). For example the
low-lying 1/2* state in *C and thel/2* ground state of 1'Be could be described as 1%w excitations out
of the p-shell, the latter being an example of an intruder state. These 1hw excitations are sometimes
called non-normal parity states since their parity is opposite to that expected for the 0w configurations.
160 could be described by a closed p-shell configuration with the lowest negative-parity excited states
being 1hw. Note that the lowest negative parity T = 1 states in '*0 will have analogue states '*N and
18F which are discussed as 0w (ground and low-lying) states in these nuclei.

The full Nfiw model space involves excitations of nucleons over many oscillator shells. For example,
the 15w excitation of the '°0 closed shell involves the excitation of one particle from the p to the sd shell
to make a 1p-1h state. A 2Aw model space for 0 would include 1p-1h s — sd and p — pf excitations
as well as 2p-2h p — sd excitations. The addition of the 0s and 1pOf shells in 2hw is necessary for an
exact treatment of all spurious states. Nevertheless in some situations one may be able to carry out
pure or mixed Aw calculation within the limited set of p-sd (or sd-pf) orbitals and remove spurious
states in the low-lying spectra [38], [39].

The basic inputs to most shell-model configuration mixing codes are the single-particle matrix
elements (SPE) and the two-body matrix elements (TBME). For example, in the sd shell there are 3
SPE and 63 TBME. This input for the sd-shell determines the energies and wave functions for about
10° levels in the mass region A = 16 —40. The source of these matrix elements in terms of hamiltonians
is discussed in the next section. The TBME are specified in terms of matrix elements of the scalar
interactions V, < j1,52,J | V | js,js,J > for all possible combinations of ji orbitals in the model
space. J is the total two-particle angular momentum. If isospin is conserved, then the TBME also are
specified by their T value (0 or 1). If isospin is not conserved, then there are three sets of TBME for
the combinations pppp, nnnn and pnpn, where p and n stand for proton and neutron, respectively.

There are several methods for carrying out the many-body calculation. One of these involves defining
the configurations within the model space in terms of an M-scheme basis [40]. Diagonalization of
the hamiltonian in the M-scheme basis results in eigenfunctions with good J (and good T when the
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hamiltonian conserves isospin). Another method involves configurations defined in terms of definite J;
coupling of the intermediate states to a total value J [29]. The dimension of the M-scheme is much
larger than the J-scheme basis. For example, for 12 particles in the sd model space (*Si) the M =0
dimension is 93,710 and the J = 0 dimension is 839. Although the matrix is much larger in the M-
scheme, the computation of the elements of the matrix is much easier. M-scheme and J-scheme codes
are competitive, but there are situations where one is preferred over the other. A third type of code
[33] starts with an M-scheme basis and generates a basis of good J states with an angular momentum
projection operator.

Modern versions of the M-scheme code are ANTOINE [41], VECSSE [42] and MSHELL [43]. Ver-
sions of the J-scheme code are RITSSCHIL and [44] and NATHAN [45]. OXBASH [33] is the only
version of the projection method. OXBASH is convenient for a variety of truncations (e.g. the recent
24 orbit 2p-2h model space for 2°8Pb [46]). The OXBASH computer package comes with a library of
hamiltonians. When the OXBASH hamiltonians are used they should be referenced to original articles
in the literature.

The final step in each of these methods is to diagonalize the matrix. The methods for matrix
diagonalization have evolved from Householder method for dimensions of up to a few thousand (10%),
which was used in the 1960’s for the p-shell model space [47], to the Lanczos method [48], [49] which is
now the standard method for dimensions of up to a few million (108).

The reach of shell-model configuration mixing has recently been greatly extended by the use of
Monte-Carlo techniques. This method is applicable to the full set of configurations for n, valence
particles in a given set of orbitals (one cannot truncate by the partition). The original Shell-Model-
Monte-Carlo (SMMC) method developed by Koonin et al. [50], [51] is applicable to ground states
and the statistical properties of excited states. The Quantum-Monte-Carlo-Diagonalization method
(QMCD) developed by Otsuka et al. [52] is applicable to the spectra for several states of each spin.
For example, a QMCD spectrum for 16 particles in the pf shell (**Ni) with an M-scheme dimension of
1,087,455,228 has recently been obtained [27], [53].

The goal of all of the methods discussed above is to calculate the energies of states for a given
hamiltonian to within at least 100 keV of numerical accuracy (although the conventional shell-model
codes provide typically 1 keV of numerical accuracy) and to provide wave functions from which other
observables can be calculated. There are also many approximate methods. One of these is based upon
the exponential convergence of the energy as a function of partition truncation [54]. The deformed
HF approximation can be carried out in the full HF basis, for example, with the Skyrme hamiltonian,
or with a specific model space with a shell-model hamiltonian. In the latter case one can start with
the same hamiltonian which goes into the shell-model diagonalization or QMCD method to test the
accuracy of the approximation [55], [53]. There are also several extensions of the deformed HF such
as HFB [56] the generator coordinate method [57], [58] and symmetry-projected HFB method [59],
[60]. I will take the recent MSk7 results [10] as an example of binding energies which can be obtained
by deformed HF calculations, but otherwise I concentrate in this review on the results obtained with
“exact” shell-model configuration mixing which has been used most extensively for this region of light
nuclei.

4 Hamiltonians

4.1 Introduction

The microscopic calculations discussed in this review are based on two different types of calculations.
The first is the mean-field approximation which is applicable to all nuclei but which is based on the
restriction to a single Slater determinant. The second is shell-model configuration mixing in which a
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matrix based upon all possible Slater determinants within a relatively small subset of valence orbits are
diagonalized.

The mean-field models are necessary for explicit calculations of the single-particle energies and den-
sity distributions. I will discuss results based upon the non-relativistic Skyrme Hartree-Fock approxi-
mation and the relativistic Hartree approximation — details are given in Sec. 4.5. The Woods-Saxon
potential is an approximation to the mean-field potential in which the radius and diffuseness can be
adjusted for each nucleus or a global set of parameters can be determined [61]. The harmonic-oscillator
potential is an approximation to the Woods-Saxon potential. The oscillator potential is often used
for calculations of TBME due to its analytical properties, and due to the fact that the center-of-mass
motion in the many-body basis can be separated out exactly. The usual global parameterization for
the proton oscillator length based upon the rms charge radii is iw = 45471/3 — 25A4~2/3 and the square
of the length parameter is b% = 41.5/hw.

4.2 Basic assumptions

Shell-model configuration mixing is carried out by diagonalizing a hamiltonian which is usually specified
by set of numbers for the single-particle energies (SPE) and the two-body matrix elements (TBME)
for n particles in a given model space. Such configuration mixing does not explicitly involve the radial
wave functions (they are only implicit in the SPE and TBME). The configuration mixing is in terms of
the multi-particle “angular” structure in the model space. To apply shell-model configuration mixing
results to the calculation of one-body densities, such as those for electromagnetic transitions, the radial
wave functions must be separately introduced — one may use mean-field, Woods-Saxon or harmonic-
oscillator radial wave functions, depending upon the physical situation (e.g. the harmonic oscillator
would be inappropriate for loosely bound halo nuclei.)

Real three-body interactions are required in the Monte-Carlo calculations of the few nucleon systems
and for nuclear matter [6]. There are also effective three-body interactions which arise from the model-
space truncation [62]. There have been a limited number of calculations which include explicit three-
body interactions [63]. But most shell-model calculations do not include three-body interactions, due to
their uncertain structure as well as the greater difficulty in carrying out the calculations. It is understood
that the three-body interactions influence the interpretation of the effective two-body matrix elements
and potentials.

Usually there is no explicit consideration of the kinetic energy in the shell-model configuration
mixing, and it is contained implicitly in the SPE. In this sense the configuration mixing can be considered
as an application of zeroth-order degenerate perturbation theory. The unperturbed energies in the
spherical single-particle basis is highly degenerate, and the degeneracy is broken by a diagonalization
of the the residual interaction. When applied over a wide mass region, the actual change in the kinetic
energy is contained in the effective single-particle energies generated by the residual interaction. Some
work has been started on “dynamical” shell-model calculations [64], [65], [66], [67], which include the
no-core calculations for light nuclei [4], [5] in which the kinetic energy operator is explicitly considered.
Although there are several problems to overcome, a full synthesis of the HF and configuration-mixing
methods should be developed [68]. One possibility along this line is to remove all of the average
monopole terms, (see Sec. 4.4), from the TBME and to replace them with the HF mean-field binding
energy and SPE [69).

It is conventional in shell-model configuration mixing calculations to use the same set of SPE and
TBME over the entire mass region covered by the model space with at most a smooth scaling of the
TBME. For example, the USD interaction in the sd-shell model space assumes the form TBME4 =
TBMEA=!8(4/18)=%3, where the power was determined empirically [24]. The scaling is a result of
the change of the (implicit) radial wave function as a function of mass (A). If one takes the simplest
oscillator dependence of Aw = 41A~'/3, then the TBME calculated with a delta function vary as A~1/2
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and the TBME for the long-range Coulomb interaction varies as A~1/6, Actual nuclear interactions
of intermediate range would vary roughly as A~'/3. This smooth scaling is an approximation, and as
we approach the drip line one might expect to observe deviations from experiment due to the larger
radial extent of the valence wave functions. However, the geometric scaling results do not account
for all of physics; there will be additional changes which are more difficult to evaluate due to the
density-dependence of the interaction as well as to the more close-lying continuum.

A common element of most configuration-mixing calculations in light nuclei is that the interactions
used conserve isospin and are specified in terms of TBME which have good J and T'. The effects of the
Coulomb interaction are usually treated by adding a Z-dependent constant. It can be deduced from
the energy shift between analogue states. In practice, this means that a shell-model result for a given
isotopic chain (fixed Z) gives the relative binding energy and excitation energy as a function of neutron
number. To obtain the absolute binding energy, a constant must be added to connect it to a given
experimental value which can be taken as that of the T = 0 ground state for even Z and that of the
T = 1/2 ground state for odd Z. The levels in mirror nuclei are identical in this approximation. The
experimental levels in mirror nuclei are typically shifted by 100 keV or less, which is small compared
to the accuracy of most configuration-mixing calculations (200 keV or more). There are larger shifts
in light nuclei associated with the Thomas-Ehrman shift of low £ orbitals, and these should be treated
more carefully in terms of the structure change between mirror nuclei. Configuration mixing in light
nuclei can be carried out in a proton-neutron basis [70], but the main interest is in the special problem
of overlaps in Fermi beta decay [71] and in isospin forbidden processes [72]. I will discuss mean-field
models for the displacement energies in Sec. 5.3.1.

When the model space includes only one radial quantum number n for a given £ value, there is

a simple relationship between the nuclear density p(r), the occupation of the orbitals < nx >, and

the spherical single-particle states, p(k): p(r) = Y < nx >| ¢i(r) |*, where the sum k runs over all
k

occupied orbitals. In the oscillator model there is a fixed relationship between Aw and the rms radius
and the convention is to fix iw from the observed charge radii, which has the average mass-dependence
hw = 45A71/3 — 254-%/3, Likewise, the parameters of the Hartree-Fock or Woods-Saxon potentials are
chosen to reproduce the observed densities and radii.

More generally, the model space used for configuration mixing may include several n values for
a given £, and the density also includes sums over off-diagonal terms, ¢k(r)dw(r). One is effectively
modifying the spherical radial wave functions in the shell-model basis, and one should check that the
constraints imposed by Hartree-Fock theory are not violated by the configuration mixing. Various
methods have been introduced in order to enforce the “Hartree-Fock condition” [73], [64], [74]. This
point, however, requires more investigation. Ideally one should use an interaction for the shell-model

calculation which has the correct saturation properties, and this may require interactions which are
explicitly density dependent.

The main method for going beyond the oscillator model is provided by the one-body HF potentials
and their Woods-Saxon approximations. One attempts to “marry” the nuclear many-body problem to
the one-body problem by approximations which have proven quite successful. Consideration of nuclear
densities, such as those used for the interaction cross sections discussed in Sec. 5.6, use HF results
which are constrained by orbital occupations obtained with shell-model configuration mixing. The HF
potential may be used to obtain the SPE for exotic nuclei which are then used in configuration-mixing
calculations. Reactions leading to the unbound states are modeled on the basis of one-body potentials
[75]. Giant resonances at high excitation and their coupling to low-lying states are treated in continuum
QRPA with HF potentials [76]. The proton and neutron decay widths for unbound states are obtained
by using single-particle widths for unbound states in one-body potentials multiplied by the spectroscopic
factors from configuration mixing. This latter method is successful for the calculation of proton decay
widths [77]. There is also work on the many-body shell model embedded in the one-body continuum
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[78]. Brueckner HF (HFB) theory has been used to treat the effects of the one-body continuum on the
pairing properties of nuclei [13].

What is missing is the many-body continuum which can be treated only in some special cases. For
those nuclei such as !'Li, which may be associated with three-body clustefs, three-body models may be
used [14]. But it is not easy to include the Pauli exchange effects or to account for the excitation of the
subsystems (°Li in the example).

4.3 The renormalized G matrix

The starting point for shell-model hamiltonians is the renormalized G matrix based upon modern NN
interactions [62]. For an assumed closed core, the Brueckner G matrix theory is used to obtain a
set of TBME for the model space. This takes into account the short-range repulsive behavior of the
interaction via the ladder diagrams. The G matrix can then be renormalized to include the effects
of mixing with.configurations outside the model space — the core-polarization diagrams. One usually
takes the experimental SPE (when available) together with the renormalized G matrix TBME. These
calculations for a few valence particles or holes around the closed shell are very successful [62]. But as
the number of valence particles increases, the comparison with experiment deteriorates [62], [3].

An example is the spectrum of “8Ca calculated in the pf model space with the SPE from the
experimental spectrum of *'Ca and the TBME from the renormalized G matrix [62]. The calculated
energy of the 2% state is much lower than experiment (there is no N = 28 sub-shell closure in the
theory). The problem can related to the effective energy spacing between the 0f;/; and 1ps/; orbitals
as a function of neutron number. With the G matrix, the spacing is nearly constant as a function
of neutron number, whereas the observed properties of the N = 27 — 29 calcium isotopes require a
larger spacing in **Ca compared to what is found in *'Ca. The change is single-particle energy does not
necessarily indicate a defect in the G matrix theory, but is more probably related to an effective change
in the *°Ca core as neutrons are added. 4°4244Ca have rather large 2hw (sd to pf) admixtures in their
ground states. As neutrons are added to the pf shell, the excitations of nucleons from the sd to the pf
shell become blocked by the neutrons in the pf shell (the amount of sd-shell excitation is also influenced
by the structure of the neutron configuration). This change in the amount of core-excitation can have
an influence on the effective single-particle energies. This essence of this picture can be observed within
the 0ds/,-0f7/, model space [79] in which *°Ca is not assumed to be a closed shell. A full calculation of
the effect in the larger sd-pf model space has not yet been carried out.

There is an analogous situation related to the rapid change in the spacing between the 1s,/, and
0ds/ neutron single-particle energies between %0 and 220 [21] which may be related to a large amount
of p to sd core excitation in the N=Z nuclei 80 [26] which gets blocked by the addition of six neutron
in 220. In addition, there are real and effective three-body forces whose effect accumulates with more
valence particles. The three-body forces are an essential part of the mean-field hamiltonians, but for
practical purposes are almost never included in shell-model configuration mixing. (A new shell-model
code is being developed to include three-body interactions [80] to be used for the no-core calculations
in light nuclei [5].)

4.4 Empirical approaches

Successful shell-model calculations over a wide mass region are based upon hamiltonians which start
from the G matrix but which are empirically renormalized to account for the divergence encountered
with the G matrix. The success of this approach is based upon the fact that the shell-model spectra
and excitation energies are related to only a relatively few TBME or linear combinations of TBME. One
of the oldest and simplest examples is the 0f;/, shell [81] where this one orbital is rather isolated. For
the 0fz, shell there are only eight TBME and one SPE which can be used to obtain the energies and
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wave functions of several hundred levels in the A = 40 — 56 mass region [28] (of course a more complete
model space for these nuclei is possible now). In small model spaces such as the p-shell, essentially all
of the TBME can be obtained empirically, and these will be referred to as effective-TBME (ETBME)
hamiltonians.

A common element in the determination of all empirical hamiltonians is an iteration procedure. One
chooses a good starting hamiltonian such as the renormalized G matrix and uses this to calculate the
wave functions and energies for all energy levels under consideration. These wave functions provide an
expansion of each theoretical energy in terms of a linear combination of SPE and TBME which can be
associated with experiment to make a least-squares-fit matrix. If the TBME are expressed in terms of
potentials or monopole combinations, the TBME can be written as a linear combination of these terms.
The values of the SPE and TBME (or terms) from this fit provide the input for the next iteration. The
iterations are continued until convergence (when the input TBME are the same as the output TBME).
If there are few parameters and the model space is small the iteration procedure is fast.” The most
ambitious projects such as USD [24] and GXPF [82] have taken years to complete.

In larger model spaces the number of TBME is large and they cannot all be well determined by
existing data. The data are sensitive to particular linear combinations of SPE and TBME. The well
determined linear combinations can be obtained by finding the eigenvalues of the least-squares-fit matrix
[83], [84]. The eigenvalues provide the order of importance and the eigenfunctions provide the linear
combination. One then replaces the well-determined linear combinations of TBME by their empirical
values, and the renormalized G matrix can be used for the remaining combinations (the choice of cut
off in the order of importance is partly subjective). These will be called ETBME+G hamiltonians. The
linear-combination method was used to obtain the USD sd-shell hamiltonian [24], and has been more
recently used for the GXPF pf-shell hamiltonian [82]. Details of the method are given in [84], [52] and
(82].

Some of the most important linear combinations of TBME are those for the monopole interaction
which determined the mass-dependence of the effective SPE. The monopole interactions are defined by:

Y J+1) <4, LT|V]55,0,T >

T _ J
Vig = (27 +1) ™

J

Some empirical interactions such as KB3 [36] and KB3G [37] in the pf shell are mainly based upon
modifications of some monopole terms, and will be referred to as “G+MON?” hamiltonians.

One can also consider effective two-body potential models for the empirical shell-model hamiltonian.
In the early shell-model calculations it was found that the modified surface delta interaction (MSDI)
empirically worked better than the delta function [85]. “Surface delta” actually means that the radial
part of the TBME calculation was ignored and replaced by a constant (the same for all radial wave
functions). This was a early form of a density-dependent interaction. The “modified” part means that
a constant as added to the delta function and is equivalent to a monopole correction.

The bare G matrix can be well represented in terms of one-boson-exchange potentials. Examples of
these are the M3Y [86], [87] ("Michigan sum of three-range Yukawa”) potential from the Reid soft-core
NN interaction and the H7B [88] ("Hosaka sum of seven-range boson-exchange”) potential from the
Paris interaction. These potentials represent the (bare) G matrix in a very compact form. They differ
from the potential for the bare NN interaction due to the inclusion of short-range correlations in the
Brueckner theory. The TBME obtained from these potentials are quite similar to those obtained from
the full G matrix calculations with more modern NN interactions such as CD Bonn [62], [89] as shown
in Fig. (6) for the 2300 TBME obtained for an 60 closed shell in the 0s-0p-1s0d-1p0f model space. The
T =1 TBME with CD Bonn are the same as those obtained with M3Y or H7B within a few percent,
and the T = 0 TBME are on the average about 15% weaker with the CD-Bonn.
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Figure 6: TBME for the s-p-sd-pf model space based on the CD-Bonn G matrix (x-axis) compared with those
calculated with the M3Y (y-axis right-hand side) and H7B (y-axis left-hand side) potential models. For T =0
the M3Y and H7B are multiplied by 0.85.
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Table 3: Table of model spaces and interactions names. The types of potentials for the s-p-sd-pf and
sd-pf models space are discussed in the text.

Model space | A Interaction | Type Reference
all all SKX Skyrme [11]
all MSk7 Skyrme [10]
all NL3 Relativistic | [93]
Op (p) 5-16 (6-16)TBME | ETBME [25]
5-16 PJT ETBME [94]
5-16 PJP POT [94]
8-16 (8-16)POT | POT [25]
8-16 (8-16)TBME | ETBME [25]
10-16 PWBT ETBME 73
1s0d (sd) 16-40 USD ETBME+G | [24
16-40 SDPOTA POT 90
1p0f (pf) 40-50 FPMG G+MON 95
40-50 FPD6 POT [96]
40-50 KB3 G+MON (36]
40-60 KB3G G+MON [37]
40-60 GXPF ETBME+G | [82
s-p-sd-pf 10-20 MK 97
10-20 WBP (73]
10-20 WBT 73
sd-pf near N =20 | WBMB 98], [99]
RCNP [100]
Utsuno et al. [39]
Dean et al. [38]

Empirical hamiltonians can also be based upon two-body potential models in which the strengths of
the various channels (central, spin-orbit and tensor) are obtained from a fit to energy data. These will
be called potential “POT” models for the shell-model hamiltonian. The simplest form of the potential
models are the delta functions and MSDI mentioned above. A more elaborate form is the modified-
surface-one-boson-exchange-potential (MSOBEP) [90] which will be discussed in Sec. 4.7. Other types
of fits related to the potential models can be based upon the relative matrix elements [91] and Talmi
integrals [92], [90].

These empirical hamiltonians would be of little interest if they just were made to reproduce a certain
set of energy levels. But their usefulness relies on the fact that they have proven to be a powerful way
to generate realistic wave functions (from which one calculates transition rate observables) and to
extrapolate the known properties of nuclei to the unknown. When one observes something which does
not agree with these extrapolations, it is usually an indication of “new physics” involving degrees of
freedom which are not in the assumed model space. The observation of such “new physics” in neutron-
rich nuclei is the essential aspect of the current and proposed radioactive-beam experimentations.

The names of some commonly used effective hamiltonians and the model-space they are associated
with are given in Table 3. These hamiltonians have been determined by a least-squares fit to binding
energy and excitation energy data. This was accomplished by varying the full set of two-body matrix
elements (ETBME), by varying well determined linear combinations of two-body matrix elements and
keeping the rest fixed at some G matrix values (ETBME+G), by adding monopole corrections to the
G matrix (G+MON), and by varying potential parameters (POT). Details will be discussed in the
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subsections below.

4.5 Mean-field hamiltonians

The Skyrme approximation [101], [102] is an s— and p—wave expansion of an effective two-body inter-
action together with an s—wave density dependent interaction:

1 ,
Vouyrme = to(1 +20P)8 + (1 + 21 Py) (k 25+ 6k?)

1
+t2(1 + $2P,)k’ . (Sk + 6t3(1 + $3Pa)pa(R) 5

+iWo(0i + 0;) - k ® 6K, (8)
where 6 = §(r;—r;), k = (1/2i)(V:—=V,) is the relative momentum operator acting on the wave function
to the right and k’ is the adjoint of k. P, is the spin-exchange operator and R = (r;+r;)/2. The form of
the Skyrme interaction allows one to calculate the potentials analytically in terms of the densities which
makes the self-consistent calculations quite fast — it has recently been used to calculate the binding
energies and shapes of 9200 nuclei [10]. I will discuss results of two recent Skyrme hamiltonians.

The HF solution for closed-shell nuclei assumes only a single Slater determinant, but the actual
structure of these nuclei is known to be much more complex. The success of the Skyrme model might
be justified in the frame-work of the density-functional models which have been widely used in atomic,
molecular and condensed matter physics [103], [104].

Goriely et al. [10] obtained the parameters for MSk7 from a least squares fit to the binding energies
of 1772 nuclei. Deformed HF+BCS calculations were carried out [105]. Of the ten parameters in Eq.
(8), seven were varied (o and z, were fixed at —0.5 and o was fixed at 1 /3 to give a nuclear matter
incompressibility of K = 231 MeV), the spin-orbit energy density retains the terms involving ¢,,¢,, 2,
and z, a four-parameters §-function pairing force was added, and a two-parameter Wigner correction
term was added.

The SKX parameters were obtained from a least squares fit to eleven closed-shell nuclei (60, 343;j,
“Ca, *8Ca, ®Ni, 88Sr, 100 132G, and 28Pb), five rms charge radii and 65 single-particle energies.
Spherical calculations were carried out (with the MSk7 the eleven nuclei correspond to spherical nuclei
(10]). Of the ten parameters in Eq. (8), nine were varied (although only six linear-combinations are well
determined) and o was fixed at 1/2 to give a nuclear matter incompressibility of K = 270 MeV (an
alternative version SKXm with a = 1/3 and K = 238 MeV was also determined [11] ). The SKX spin-
orbit energy-density leaves out terms involving t1,13, 7, and z, and a generalized two-parameter spin-
orbit force based upon the Hartree reduction was used [106]. SKX uses the Friedman-Pandharipande
neutron matter equation of state [107] as a constraint (it has recently been shown that the neutron
skin is sensitive to the properties of the neutron equation of state [108], [109] ). SKX also introduces a
new parameter which is needed to reproduce the mirror displacement energies, either by cancelling the
Coulomb exchange term (SKX) or by the addition of a charge symmetry breaking (CSB) interaction
(SkXcsb [110] ).

The relativistic mean-field is an alternative to the Skyrme HF. The relativistic description of nuclear
systems uses a field theoretical approach (quantum hydrodynamics) where the interaction of nucleons
is described by an exchange of mesons. [111] I will use the non-linear parameter set NL3 [93] which
gives a good description of binding energies and radii (K =270 MeV).

4.6 The p-shell model space

The p model space includes the Op, /2 and Opg, valence orbits. The work of Cohen and Kurath on the
ETBME and potential models fits to 40 p-shell energies was one of the first to establish the success
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of these methods. They derived several interactions: the (6-16)TBME and (8-16)TBME versions of
ETBME fit and the (6-16)POT version of the POT fit. In the Oxbash interaction library these are given
the names CKI, CKII and CKPOT, respectively. The CK interactions are still reasonable reasonable
starting points for p-shell calculations.

More recent versions of the p-shell effective interactions are discussed in [94] which take into account
a more complete set 77 p-shell energies in the mass region A = 5 — 16. In the Oxbash library these
new p-shell interactions are given by the names PJT (a ETBME-type interaction called PTBME in
[94]) and PJP (POT-type interaction related to PNOALS in [94] but with no mass dependence in the
single-particle energies). PJT and PJP have an mass dependence of TBME# = TBME#='6(4/16)~%7,
where the power was determined as a best fit to the A = 5— 16 p-shell energy data. Since the reference
[94] is not always available I give the PJT and PJP hamiltonians in table 8 of the appendix. Among the
other p-shell hamiltonians, is the one from [112] which considered magnetic moments in the hamiltonian
fit, which I will call PMOM.

The energy-fit to the entire region of p-shell nuclei (A = 5 — 16) have an rms deviation between
experimental and theoretical energies of about 600 keV, Table X in [73], [94]. This rather large value
may be related to the halo and cluster structure of the lightest p-shell nuclei. Thus for the region
of nuclei above about A = 10, separate p-shell hamiltonians have been developed based upon fits to
levels of p-shell nuclei with A > 10, such as the the ones obtained by Warburton and Brown for their
WBP and WBT interactions [73]. The rms deviation between experimental and theoretical energies for
A > 10 is typically 350 keV.

4.7 The sd-shell model space

The sd model space includes the 1s,/5, 0ds/, and 0ds/, valence orbits. The renormalized G matrix for
the sd-shell was developed in the mid 1960’s by Kuo and Brown [113], [114], [115]. These G matrix
interactions give reasonable agreement with the experimental A = 18 and A = 38 spectra. When the
G matrix is used to calculate the spectra for the sd-shell nuclei with more than two particles or holes,
the agreement with the experimental energy spectra deteriorates rapidly as the number of particles or
holes is increased [24]. There were several attempts to find improved empirical hamiltonians. By 1976
Chung and Wildenthal [84], [116] had obtained empirical hamiltonians for the lower-part of the sd-shell
(CWP for particles outside of 1*0) and the upper part of the sd shell (CWH for holes in *°Ca). By 1984
Wildenthal had found a unique set of ETBME which were able to describe the the entire sd shell —
referred to as the USD (universal sd-shell, called W in the Oxbash library) interaction [24]. The TBME
of the USD interaction scale as TBME# = TBME“='8(A/18)%3. The USD interaction was obtained
by varying 47 best-determined linear combinations of TBME parameters to fit 447 energies in the mass
region A = 18 — 39 with an rms deviation of about 185 keV [24], [3]. The 19 least-well-determined
parameters where fixed to the A = 18 Kuo G matrix [114].

The two-body matrix elements for the USD and G-matrix interactions are compared in Fig. (7).
Even though the difference between the empirical matrix element and G matrix is not large, the effect of
the difference builds up quickly with particle (or hole) number, and it is important to take into account
the empirical adjustments to obtain agreement with spectroscopic data [3]. The differences between the
fitted TBME and those from the G matrix may be attributed to many-body effects not included in the
G matrix calculation, such as effective three-body interactions and core breaking in 0 and *°Ca.

While the USD interaction is very successful for applications to sd-shell nuclei, it is not immediately
applicable outside the sd shell. Moreover, while the same ETBME+G approach can be used for heavier
nuclei, the number of TBME grows quickly for the corresponding larger model spaces. In contrast,
two-body potential models are in principle applicable for all nuclei, and thus potential models for the
sd-shell were investigated [90]. The first step of this investigation was to transform the jj-coupled
TBME into tensor-coupled LS matrix elements [117]. The 63 TBME in the sd-shell can be written
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Figure 7: Comparison of the USD TBME for the sd-shell with those from the Kuo-Brown renormalized G
matrix. The diagonal TBME are indicated by a cross.

as linear combinations of 20 central, 8 spin-orbit, 16 tensor and 18 antisymmetric spin-orbit (ALS)
terms [90]. If the effective interaction is derivable from an isospin-conserving potential that depends
only on the relative and center-of-mass coordinates between two nucleons in the nucleus, then the
antisymmetric spin-orbit component must vanish. Several investigations of the ALS component have
been carried out [118], [119]. For the USD interaction it was found that the ALS component is not very
important; setting this component to zero increased the rms deviation from 185 to 215 keV [90]. The
central, spin-orbit and tensor potentials were represented by a fixed one-pion exchange term (OPEP)
plus medium range OBEP whose strengths are fitted to the sd-shell energy level data. Furthermore, it
as found that the fit is improved if the potential is made density dependent, and if monopole terms were
added in the central potential. Thus a 14-parameter, density-dependent OBEP was determined which
could reproduce the 447 sd-shell energy data with an rms deviation of about 260 keV. I will discuss
some results from the potential called SDPOTA in [90].

4.8 The pf-shell model space

The pf model space includes the 1p32, 1p1/2, Of7/5 and 0f;/; valence orbits. The Kuo-Brown renormalized
G matrix [120] is the traditional starting point for the pf shell TBME. As mentioned above, when the
G matrix is used for configuration mixing in “8Ca, the spectrum is in poor agreement with experiment.
McGrory et al. [121] found that the G matrix interaction could be improved by the addition of a
monopole interaction between the 0f7/2 orbital and the other pf shell orbitals. The G+MON approach
was used for the KB3 interaction by Poves and Zuker [36] and in addition, some of the diagonal
0f;, TBME were changed. KB3 has been widely used for the lower part of the pf shell, but its
extrapolation to heavier pf shell nuclei is not very good [27]. KB3 has recently been improved to a new
interaction KB3G by the addition of an overall mass dependence to the TBME of the form TBMEA
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= TBMEA=%2(A/42)~1/3, and the addition of more monopole corrections [37]. The new monopole
corrections are based upon the effective SPE around “*Ca and *Ni. (KB3G is a further development
of KBF [122], [123], [124)).

The potential model, MSOBEP, developed for the sd-shell [90] was successfully applied to obtain a
six parameter density-dependent interaction for the lower part of the pf shell FPD6 [96], [125). When
applied more recently in the QMCD approach to 56Ni, the FPD6 interaction still works quite well [27],
[53]. The effective SPE obtained for FPD6 for 48(a and *Ni however can be improved by the addition of
monopole interactions (beyond that already contained in FPD6) [37]. The full ETBME+G approach to
the pf shell interaction has recently been made possible by the QMCD method and has been applied to
all pf shell nuclei over the mass range 47-65 [82]. It will be tested by future calculations and experiments
in the more exotic neutron-rich pf shell nuclei.

4.9 The s-p-sd-pf-shell model space

The s-p-sd-pf model space includes the 0sy/2, Ops/2, 0p1/2, 18172, 0dsy2, 0ds/2, 1ps/2, 1p1/2, Of7/2 and 0fs 2
valence orbits with %w truncations appropriate for nuclei near *0 as described below. Near '°0, the
most important part of this model space is the inner part p-sd. The p-sd hamiltonian depends upon
four types of TBME:
(A) <pplVipp>,

(B) < sd,sd |V |sd,sd>,

(C) <pysd|V|pysd>,

(D) <p,p|V|sdsd>. 9)

Most hamiltonians have been developed for pure NAw configurations which only depend on interac-
tions (A), (B) and (C). Warburton and Brown [73] use the USD interaction for (B) and determined
interactions (A) and (C) by ETBME+G fits (WBT) and MSOBEP potential model fits (WBP) to
experimental energies in the mass region A = 10 — 22. WBT and WBP give similar results and are
often used interchangeably — their results can be compared as a guide to theoretical error.

An earlier version of the potential model fit is the MK interaction of Millener and Kurath [97]. The
MK interaction as used by Millener [126] consists of the p-shell (8-16)TBME for (A), the sd-shell CWP
interaction [84], [116] for (B), and the MK potential for (C) (the CWP and USD interactions are very
similar for nuclei near ¥Q). An interaction which is related to MK is called PSDMK2 in [127]. It is
sometimes used (incorrectly in terms of spurious states) within just the p-sd set of orbitals.

For WBT, WBP and MK, the actual calculations are carried out in the larger set of orbits s-p-sd-pf.
The addition of 0s and 1p0f is necessary to fully remove the spurious states. Also above A = 16 the
pf shell becomes explicitly important for the 1%w excitations. For the additional TBME needed in this
extended set of orbits WBP and WBT uses the H7B bare G matrix [88] and MK uses the and the bare
Kuo-Brown G matrix [114].

The mixed fiw model space also depends upon the off-diagonal interaction (D). For WBT and WBP
the (D) matrix elements are determined from the WBP potential obtained for (C). The MK interaction
uses the bare Kuo-Brown G matrix for (D). Another version of the Warburton-Brown interaction called
WBN [128] uses the H7B bare G matrix [88] multiplied by 0.8 for (D).

4.10 The sd-pf-shell model space

The sd-pf model space includes the 1s,/,, 0ds/2, 0ds/2, 1ps/2, 1p1/2, 0f7/2 and Ofs, valence orbits with Aw
truncations described below. This model space has been used for the region of nuclei around N = 20.
It would be best to consider the larger p-sd-pf-sdg model space (in analogy with the s-p-sd-pf model
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space for '°0 discussed above), but for practical reasons (e.g. the number of orbits and dimensions
which can be considered in the shell-model codes) a limitation to just sd-pf is imposed. Hamiltonians
have been designed for both pure Niw and mixed Aw model spaces.

4.10.1 Pure N/w model space

The sd-pf hamiltonian depends upon four types of TBME:

(A) < sdysd |V |sd,sd>,

(B) <pfipf |V Ipf,pf >,
(C) < sd,pf |V | sd,pf >,

(D) <sd,sd |V |pf,pf>. (10)

Hamiltonians have been developed for both pure and mixed fiw configurations.

The WBMB hamiltonian for the pure Nfiw model space was developed by Warburton, Becker,
Millener and Brown [98]. WBMB has been used for several studies of neutron-rich beta decay [129],
(130], [131] and for a study of the island-of-inversion around 32Mg [99] (more recently extended to larger
neutron number in [132]). For WBMB the USD sd-shell interaction [24] is used for (A), and the FPMG
pf-shell interaction [95] is used for (B). The cross-shell (C) and off-diagonal TBME (D) was calculated
from the Millener-Kurath potential [97] with some adjustments in diagonal cross-shell matrix elements
based upon the 1hw states in °Ca. WBMB is designed for use in the pure NAw model space which
does not involve the (D) interaction. WBMB is sometimes applied in the mixed Aw model space for
a qualitative understanding of the mixing. A more recent version of WBMB has replaced the FPMG
pf-shell interaction with the FPD6 pf-shell interaction.

Retamosa et al., [100] have also constructed a sd-pf interaction which has been used for Z = 8 — 13
[100] and Z = 14—20 [133] which I will call the RCNP interaction. They again use the USD for (A) but
take pf’ in [36] for (B). (C) is obtained from the Lee-Kahanna-Scott G matrix (134], and then monopole
corrections are added to fit some selected experimental energy data together with the prescriptions
of Duflo and Zuker [135] for the most exotic nuclei. The sd-pf shell interaction continues to evolve.
Recently the observation of the 3/2~ excited state in 35Si has lead to further monopole corrections to
the RCNP interaction [136].

4.10.2 Mixed Aw model space

Early work which demonstrated the importance of intruder states was carried out by mixing 0hw and
2w in a reduced set of orbitals [137), [138], [139], [140], [141]. The QMCD calculations of Utsuno et
al. use the full sd-0fzo-1p3/2 model space. Their interaction starts with one similar to WBMB which is
appropriate for the pure NAw model space. USD for (A), the Kuo-Brown renormalized G matrix [120]
for (B) and the Millener-Kurath potential as modified in [98] for (C) and (D). When applied to the
full sd-0f7/2-1p3/; model space this interaction must be renormalized. The 0ds/,-0d3/, and 0dgs/2-0f7/,
monopole terms for T' = 0 and 1 were adjusted and the USD pairing matrix elements are reduced [39)
in order to account for several experimental features of the neutron-rich nuclei around N = 20 such as
the fact that 20 unbound [142], [143].

The full sd-pf model space has been considered in the SMMC calculations of Dean et al. (38], [144].
They used a renormalized G matrix interaction for the sd-pf model in which the monopole interactions
are modified to reproduce the SPE from the Duflo-Zuker parameterization [135].
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Figure 8: Experimental and theoretical neutron single-particle energies for 2C and ?®0. The experimental
values for 280 are based upon those extrapolated with the USD sd-shell interaction. The orbits are labeled by
(n,£,25), and the dashed line is the Fermi energy.

5 Comparison of Experiment and Theory

In this section I discuss comparisons between experiment and theory in roughly increasing order of
theoretical complexity, starting with the the mean-field properties for the binding energies and single-
particle energies. Next I consider Ohw shell-model configuration mixing for the binding energies and
separation energies. The special features of proton-rich nuclei are discussed in Sec. 5.3. The separation
energies will show features which can only be explained by the intruder states associated with Nfiw
excitations discussed in Sec. 5.4. The final sections cover data on spectroscopic factors, E1 transitions,
quadrupole moments, E2 transitions, magnetic moments, beta decay and interaction cross sections.

5.1 Single-particle energies

The experimental single-particle energies for 0, °Ca and **Ca are compared with the SKX Hartree-
Fock and NL3 Dirac Hartree calculations in Figs. (3) and (4). Both mean-field calculations are in
qualitative agreement with experiment, but overall the NL3 results are in better, in particular for
the gap at the Fermi surface. The interpretation of the agreement or disagreement of the mean-field
models with experiment depends upon how the results are to be used in conjunction with shell-model
configuration mixing. I illustrate this by the example of ?C shown in figure (8).

Gloeckner and Zamick [145] used the 1>C example to show that the effective gaps defined by Eqgs.
(5) and (6) from the binding energies of the lowest states in the odd-even nuclei, ''C, *'B, 13C and 13N
in this case, are larger than the intrinsic mean-field gaps. In Fig. (8) I show the experimental neutron

3
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gap in ?C assuming a closed-shell (Ops2)* configuration for protons and neutrons compared to SKX
and NL3. In SKX the gap is close to the typical spin-orbit splitting of 6 MeV and the experimental
value is about twice as large and similar to NL3. When the full p-shell model space is used for 12C,
the empirical interactions of Cohen and Kurath have an effective spin-orbit splitting of about 6 MeV
(e-g- the difference between the single-hole energies in %0, Fig. (3)), and when the p-shell calculation
is restricted to a closed shell configuration the gap is about 6.0 MeV. With shell-model configuration
mixing the >C ground state has about 40% of the closed-shell component and the binding energies of
'1C and '3C relative to '2C agree with experiment. The reason for the large effect gap is that 1'C and 13C
are not pure hole and particle states. In order to recover the true single-particle gap from experiment
one must take the energy weighted sum over the spectroscopic factors from !2C to all states in !'C
and '3C. One can try to obtain mean-field SPE from a consideration of the experimental spectroscopic
pickup and stripping data, but it is difficult to know if the data set is complete, expecially if the strength
is fragmented over many levels.

From this example we would conclude that NL3 is most appropriate for calculations in which 12C
is treated as a closed shell, and that SKX is most appropriate for calculations in which 12C is treated
in the full p model space. Similar p-sd and sd-pf mixing calculations for ¥0 and “°Ca, respectively,
are much more difficult, but-it is likely that the large gaps observed in '°0 and “°Ca compared to SKX
is also related to core-breaking effects. For %0, 2hw admixture in the ground state with the WBP
interaction [73] increases the gap by about 2.5 MeV.

This type of configuration mixing between appears to be particularly large for N = Z nuclei. A
neutron (or proton) excess increases the stability of the closed shell nuclei, so that the closed-shell mean-
field approximation is better and the SKX SPE become closer to the experimental values (based upon
an assumed closed-shell configuration) in nuclei such as 240, 34Si and *8Ca. As an extreme example
compare in Fig. (8) the sd-shell neutron SPE for 220 from SKX with those extrapolated from the USD
configuration mixing calculations (see Sec. 5.2.1).

The difference between SKX and NL3 can be mainly related to the effective mass (m*/m), which
is about 1.0 for SKX and 0.6 for NL3. The effective mass for the Skyrme interaction can be tuned by
the parameters [102] and those for SKX are determined primarily from the SPE of heavy nuclei where
the spacing around the Fermi surface requires an effective mass of about 1.0 [11]. I show as examples
the case of *2Sn in Fig. (9) and 2°Pb in Fig. (10). For NL3 on the other hand, an effective mass
of about 0.6 is intrinsic to the model. An effective mass of 0.6 gives SPE in heavy nuclei which are
spread out compared to experiment as shown by NL3 in Figs. (9) and (10). Typical Brueckner G matrix
interactions also give an effective mass of about 0.6, and the reason for an empirical value of near unity
in heavy nuclei is attributed to configuration mixing due to coupling of the single-particle states to
surface vibrations [146], [147]. Thus the appropriate mean-field calculation depends upon whether the
configuration mixing is to be incorporated implicitly in the mean-field parameters, or explicitly in the
wave functions. In this sense configuration mixing in '32Sn and 2°®Pb is required to recover the correct
SPE starting from the NL3 interaction, whereas SKX requires these nuclei to be treated as closed shells.

Pairing in semi-magic nuclei also produces an effective gap which is larger than the spacing between
single-particle levels. A simple example is provided by pairing in the Ni isotopes. The 1ps/s-0fs/; SPE
spacing in %'Ni is 0.77 MeV, whereas if ®Ni is treated as a closed 1p3/z shell the effective gap from Eq.
(6) is 3.57 MeV — this is due to the configuration mixing between these two orbitals which is dominated
by the pairing interaction.

In summary, there are two different types of configuration mixing effects in the observed SPE. The
coupling to surface vibrations increases the effective mass and compresses the spectrum around the
Fermi surface. On the other hand the pairing and proton-neutron correlations increase the gap at the
Fermi surface. The use and validity of mean-field models depends upon the context in which they are
to be used. There are other considerations associated with the form of the mean-field potentials and the
approximations which are used. It appears that low-£ orbits above the Fermi surface are systematically
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Figure 9: Experimental and theoretical proton and neutron single-particle energies for 13285, The orbits are
labeled by (n,4,25), and the dashed line is the Fermi energy.
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Figure 10: Experimental and theoretical proton and neutron single-particle energies for '32Sn. The orbits are

labeled by (n,¢,25), and the dashed line is the Fermi energy.
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Figure 11: Theoretical proton and neutron single-particle energies for 60Ca. The orbits are labeled by (=, f, 25),
and the dashed line is the Fermi energy.

too high in the mean-field models compared to experiment. This is observed for the 0s and 1p orbits in
Fig. (3), and discussed for the low-£ orbits in 208p}, with SKX in [11]. This indicates that the “large-
radius behaviour” of these mean-field potentials is too weak, thus not providing enough binding for
these low-£ orbitals. There are also issues associated with rearrangement energies and center-of-mass
corrections which generally go as (1/A) and are most important for light nuclei [74]. The SKX and
NL3 models provide perhaps the most reliable way to extrapolate the SPE from nuclei near stability
to the most exotic nuclei near the drip lines. The predictions for the ®°Ca and ™Ni SPE are given in
Figs. (11) and (12), respectively. Other recent predictions for ®Ca are given in [148). It will remain for
future experiments to test these extrapolations.

5.2 Ground-state binding energies and separation energies
5.2.1 Global binding energies

The binding energies for the region of nuclei up to A = 60 vary by hundreds of MeV, yet we will be
discussing theoretical calculations which reproduce experiment to the level of several hundred keV to
an MeV. The “coast to coast” situation for all nuclei between the drip lines is illustrated in Fig. (13)
where the BE obtained with the MSk7 HF calculations [10] are shown for all nuclei between the proton
and neutron drip lines centered on Z = 20 (left-hand side) and N =20 (right-hand side) and compared
to experiment where known.

The drip line is reached in each case when the derivative of the BE curve with respect to proton or
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Figure 12: Theoretical proton and neutron single-particle energies for ®Ni. The orbits are labeled by (m,2,27),

and the dashed line is the Fermi energy.
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numbers N = 20, N = 28 and Z = 20 are indicated by dashed lines.
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neutron number goes to zero. One observes in the bottom panels of Fig. (13) an apparently featureless
and smooth curve with the data in agreement with theory. However, we are interested in a much higher
level of detail which is illustrated in the top panel by subtracting a smooth curve given by the liquid
drop model (LDM) from theory and experiment. I use for the LDM binding energy in MeV:

BE(LDM) = 15.56A — 17.234%/3 — 0.6967722 A~'/3 — 23.285(N — Z)?/A. (11)

The top curve brings out the detail related the microscopic aspects of the nuclear shell model.

Fig. (2) is extended in Fig. (14) to the SKX single-particle energies for the calcium isotopes as a
function of neutron number. Beyond %°Ca one observes that the 0Ogo/2 orbital becomes bound, and thus
"Ca will be bound with SKX. The even-even calcium nuclei between ®°Ca and ™Ca will probably be
bound due to pairing (which has been neglected in this particular SKX HF calculation).

5.2.2 sd-shell binding energies

The binding energies (BE) of the oxygen and fluorine isotopes are shown in Fig. (15). When the BE for
a given neutron number N is smaller than that of the nucleus with N — n it is unbound to n-neutron
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decay. The experimental BE (filled circles connected by lines) are compared to those obtained with the
USD (squares) and SDPOTA (crosses) interactions. Below N = 16 experiment and theory fall on top
of each other within about 200 keV. Starting at N = 16 the extrapolated BE from the two interactions
begin to show more difference. The sd-shell theory is 1—2 MeV more bound than experiment, suggesting
that the residual interaction becomes slightly weaker toward the drip line compared to that inferred
from nuclei near the valley of stability. However, the full interpretation will have to include the pf-shell
admixtures which become important near N = 20 [149].

The BE from the SDPOTA interaction are in agreement with known limits of stability. O is
bound to two-neutron decay by 1.0 MeV with USD but unbound by 0.02 MeV with SDPOTA, only
the latter is consistent with the experimental non-observation of 260 [142], [143]. **F is unbound to
one-neutron decay with both USD and SDPOTA, in agreement with experiment [150]. ?°F is bound
to neutron decay with both USD and SDPOTA in agreement with its experimental observation [151].
From a comparison of USD and SDPOTA we would conclude that the theoretical uncertainty in the
extrapolation to these most neutron-rich nuclei is about 1 MeV. In more recent theoretical investigations
the effective interactions are often adjusted to give agreement with the stability properties of the oxygen
isotopes.

The qualitative features of the binding energies for the oxygen isotopes can be understood in the
extreme j-j coupling limit. I show in Fig. (16) the effective neutron single-particle energies (ESPE) as
a function of neutron number in the j-j coupling limit. (The sd-shell calculations shown in Fig. (15)
go beyond j-j coupling and include all possible sd-shell configurations, but the dominant configurations
are those discussed below.)

Between N=8 and 14 the neutrons fill the ds/, orbit which is bound in 160 by about 4 MeV. This,
together with the attractive pairing energy, provides the sharp increase in binding energy observed
between N=8 and 14. Between N=14 and 16 the neutrons fill the s;/, orbit which is less bound than
the ds/,. Thus one starts to see less increase in the binding energy at this point. Between N=16 and 20
the neutrons fill the d3/, orbit which has close to zero energy, and the binding energy curve becomes flat
in this region. This flatness, of course, makes it difficult to predict exactly which nuclei will be stable
to neutron decay. Beyond N=20 the neutrons occupy the pf shell orbits which are unbound. Hence the
binding energy curve decreases beyond this point.

One notes in Fig. (16) that the shell gaps change with neutron number. Near '*0 the 0ds/; and 1s/
orbits are close together, but for 220 they have become about 4 MeV apart making N = 14 a magic
number. The shift in the 1s;/; ESPE between %0 and 220 is due the monopole interaction between the
0ds/, and 1s,/, orbitals which involve the diagonal TBME
< 0dsjz, 18172, J,T = 1|V | 0ds3, 18172, J,T =1 >. These TBME can be obtained from information
on excited states in the light oxygen isotopes such as 30 and !°0. Data on excitation energies in nuclei
near stability relevant to these TBME were included in the 447 energies used to obtain the USD and
SDPOTA interactions.

With the renormalized G matrix the 0ds/, and 1s;/; orbits remain close together as a function of
neutron number. Indeed, it is this apparent failure of the G matrix which makes the agreement with
experiment diverge as a function of increasing neutron number (using the 0 SPE). The origin of this
difference between USD and the G matrix interactions is probably complex, involving different amounts
of p-shell core breaking as one goes from 60 to 220 as well as three-body interactions, and it should
not necessarily be taken as a failure of the basic G matrix approach.

For N = 16 the 1s,/,-0d3/2 gap also opens up as can be seen in Fig. (16), and this N = 16 becomes
a magic number. As protons are added to the sd-shell the proton-neutron interaction further modifies
the ESPE. In particular, by Z = 14 the N = 16 gap disappears. This change can be related to the large
0ds/,-0d3j» TBME associated with the V;, proton-neutron interaction [152]. The same mechanism is
responsible for the loss of the N = 32 shell gap [153] (the 0f7/,-0fs/2 proton-neutron interaction) and
for the sudden change of deformation in the Zirconium isotopes [154] (the Ogg/2-0g7/2 proton-neutron
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Figure 15: Binding energies for the oxygen and flourine isotopes as a function of neutron number. The upper
panel is an expanded part of the lower panel. The experimental values are the filled circles connected by lines.
The theoretical values are given for the USD (squares) and SDPOTA (crosses) sd-shell interactions.
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Figure 16: The effective single-particle energies for the oxygen isotopes as a function of neutron number
obtained from the USD interaction. The orbits are labeled by (n,£,2j).

interaction).

Beyond 20, the ESPE depend on the 0ds/>-0ds/2 T = 1 (neutron-neutron) TBME. Data in the
oxygen isotopes on excitation energies, relevant to these matrix elements, are not well known since they
are associated with levels at high excitation and are mixed with intruder states. Hence beyond 240, the
BE predictions rely components of the interaction which cannot be derived from data in nuclei near
stability. For the USD interaction the Kuo-Brown G matrix was used for the poorly determined TBME,
and for the SDPOTA interaction the fitted potential model was used for all TBME.

5.2.3 Separation energies

A more comprehensive comparison of binding energies can be given in terms of the one- and two-neutron
separation energies. For these comparison I use the data compiled of Audi and Wapstra [155] which are
supplemented by the recent mass measurements [156], [157].

The one-neutron separation energies obtained for the MSk7 HF model model are compared to
experiment for some selected Z values in Fig. (17). One finds good overall agreement with deviations
of up to one MeV both for exotic nuclei and for those near the valley of stability. From the staggering
one can observe deviations which can be attributed to pairing. This may be partly attributed to
the simple global delta function assumed for the pairing [10], [105] and partly attributed to the BCS
approximation which insufficient for light nuclei. The interaction might be improved by the use of
a G matrix or empirical interaction. The BCS can be replaced by exact pairing solution {158]. The
two-neutron separation energies for MSk7 are compared for experiment for all even Z values in Fig.
(18). Again one observes deviations of up to 1—2 MeV for all nuclei. In this case the deviation
may be attributed to the mean-field and the associated single-particle energies or to the deformed HF
approximation for the residual proton-neutron interaction. One notices particularly large deviations for
the oxygen (Z = 8) and calcium (Z = 20) isotopes near stability which are probably related to core



B. A. Brown / Prog. Part. Nucl. Phys. 47 (2001 ) 517-599 553

FARRRRE
|
|

14

T 7
12

10

S(1n) (MeV)

NI I IS AT A A

LANLINLI BNLELIL AN LN L L L LB L |

-2

-4

Figure 17: One-neutron separation energies for some selected Z values as a function of neutron number. The
values for MSk7 HF (squares connected by dashed lines) are compared to experiment (circles connected by
lines). The data are labeled by Z. The vertical dashed lines indicate the magic numbers 8, 20 and 28.

26 T T
24
22
20
18
16

111 ||||||l||||||||||||||||||||||||||||||||||||||||||||

S(2n) (MeV)
o
lllll|| lll’IlllllIIllIIlIIlI|IIIllllllllll'll||lll'll||r

o
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breaking in these nuclei.

The theoretical separation energies from shell-model configuration-mixing shown in Figs. (19) to
(23) are based on Ohw model spaces (which do not contain the intruder states) with hamiltonians WBT
73] for the p-sd shell, USD for the sd-shell [3], RCNP for the sd-pf shell (N > 20) [100], FPD6 [96] the
calcium isotopes. Binding energies have been calculated for other pf shell nuclei [159] but not yet for
the nuclei away from the valley of stability included in the figures.

One-neutron separation energies for come selected Z values are shown in Figs. (19) and (20). The
overall agreement between experiment and theory is excellent. The largest deviations are for neutron-
rich Z = 4 — 5 where the theoretical oscillation is larger than the experimental ones, which indicates
that the pairing interaction is too strong. But in general the pairing properties of the nuclei near the
neutron drip line (where the separation energies go to zero) are similar to those near the valley of
stability. One can observe shell effects in odd-even oscillations which are well reproduced, for example,
in the reduced pairing for Z = 20 and N = 29 — 31 which reflects the isolation of the 1ps/, orbit.

The neutron drip line will be reached first for the odd-N one-neutron separation energies which are
shown for even Z in Fig. (21). Note that this is the negative of the single-particle energy for states
above the Fermi surface as defined by Eq. (2). Thus, for example, for Z = 8 the first three points are
associated with the 0ds;; SPE which is bound by about 4 MeV, the next point at N =15 is related to
the 1s,/, SPE bound by about 3 MeV and the last three points (theory only) are related to the unbound
0d3, orbit. The largest deviation occurs for 2Ne (Z = 10, N = 19) which is about 1 MeV more bound
in experiment indicating the intruder nature of its configuration (see Sec. 5.4.2).

The two-neutron separation energies are given in Fig. (22) for even Z and (23) for odd Z. The
most striking deviations are observed for Z = 10 — 12 and N > 19. There is a particularly large
anomaly for Z = 17 and N = 29 in Fig. (23) indicating a sudden shape change at this point, but the
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Figure 21: One-neutron separation energies for even Z and odd N values as a function of neutron number. The
results from shell-model configuration-mixing calculations discussed in the text (squares connected by dashed
lines) are compared to experiment (circles connected by lines). The data are labeled by Z. The vertical dashed
lines indicate the magic numbers 8, 20 and 28.

5.3.1 Displacement energies

The displacement energy is the binding energy difference between mirror nuclei (those with the same
atomic number A but with the proton number Z and neutron number N interchanged). For a given
mass A and isospin T the displacement energy is:

D(A,T) = BE(A,T5) - BE(A,T2), (12)

where T =| TS |=| T2 |, BE(A, TY) is the binding energy of the proton-rich nucleus and BE(A,T;) is
the binding energy of the neutron-rich nucleus. If the nuclear force is charge symmetric, then this binding
energy difference can be related to the well-understood Coulomb interaction between the protons.
However, it was shown by Nolen and Schiffer [164] that there is a systematic increase in the experimental
displacement energies compared to those calculated with a charge symmetric strong interaction (the
Nolen-Schiffer anomaly). In the usual HF calculation one has both direct and exchange terms in the
Coulomb-energy density functional. For the exchange one uses the Fermi-gas approximation which is
a good approximation to the exact calculation [165]. The ground-state displacement energies obtained
with the Coulomb plus Coulomb-exchange HF approach (from the SKXce interaction of [11]) are shown
on the right-hand side of Fig. (24). One observes the systematic deviation between experiment and
theory associated with the Nolen-Schiffer anomaly. For the heaviest nuclei the ratio shown in Fig. (25)
goes to a constant value of about 1.06. It is well known [164] that the displacement energies are sensitive
to the rms charge radii; the SKX interactions reproduce the experimental charge radii of '¢0, **Ca and
8Ca, to better than one percent (see Fig. 10 of [11]). The displacement energies are also sensitive to the
rms radius of the valence orbits, and the SKX interactions give radii for the ds/; orbit in 170 and the

0f7; orbit in 41Ca which are within 2% of those deduced from the magnetic electron scattering form
factors [166].
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indicate the magic numbers 8, 20 and 28.
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In the fit to closed-shell nuclei the displacement energy is represented by the pair of nuclei ®Ni-*Ca.
The binding energy of *®Ni is not measured but can be extrapolated to within an uncertainly of a few
hundred keV from the 0f7/; shell displacement energy systematics [17], [167], [168], [8], [169]. The recent
discovery of *8Ni (18] is consistent with the mass obtained from the 0f7/2 extrapolations.

In order to improve agreement with experiment it was found that the HF theory could be improved
in two ways. One of them consists of leaving out the Coulomb exchange term, with the result shown
in the middle panel of Figs. (24) and (25). This may be interpreted as a correction from nuclear
correlation (configuration mixing) which happens to cancel the exchange term. This has been discussed
in the general HF framework by Bulgac and Shaginyan [170], [171], [172] in terms of a surface-vibration
contribution to the Coulomb correlation energy. I note that the relativistic approach leaves out the
Coulomb exchange by default, and that most Woods-Saxon programs [173], [174] leave out the Coulomb
exchange.

Another way to improve agreement with experiment is to add a charge-symmetry breaking (CSB)
term to the Skyrme interaction which can be expressed as a change to the proton-proton (pp) and
neutron-neutron (nn) s-wave interactions:

‘/S,;(pyrme = tO(]- - xO)(l + :B,,)(S
and

‘/S';(';rme = to(]. - 2"0)(1 - Id)éﬂ (13)

where z, is a parameter to be determined.
The A = 48 closed shell nuclei require z, = —0.01440.002 for the interaction called SKXcsb The
results for the all displacement energies are shown on the right-hand side of Figs. (24) and (25).
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Figure 23: Two-neutron separation energies for odd Z values as a function of neutron number. The results
from shell-model configuration-mixing calculations discussed in the text (squares connected by dashed lines)
are compared to experiment (circles connected by lines). The data are labeled by Z. The vertical dashed lines
indicate the magic numbers 8, 20 and 28.
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Figure 24: Ground-state displacement energies as a function of A for SKXce (with the normal Coulomb
exchange term), SKX (without the exchange term) and SKXcsb (with the exchange term and with a CSB
interaction). The experimental data are filled circles and the calculations are given as crosses.
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Figure 25: Top: the ratio experiment/theory for the data shown in Fig. (24); Bottom: the difference
experiment-theory. The symbols are filled circles for T = 1/2, crosses for T = 1, squares for T = 3/2
and plus signs for T = 2.

A correct description of the displacement energies within the mean field approximation is obviously
important for understanding the position of the proton drip lines. A = 99 is the heaviest T = 1/2
isobaric doublet for which the proton-rich nucleus is expected to be bound. The calculated displacement
energies for A = 99 are —13.54 MeV (SKXce), —14.03 MeV MeV (SKX) and —14.15 MeV (SKXcsb).
The introduction of the extra terms in the Skyrme hamiltonian which are needed for the displacement
energies, also has an influence on the neutron drip line; for example the binding energy of 'Sn is
predicted to be —1158.0 MeV (SKXce), —1149.0 MeV (SKX) and —1148.4 MeV (SKXcsb).

The SKXcsb interaction should ultimately be related to the CSB nucleon-nucleon (NN) scattering
data. Analysis of the NN scattering data together with a model for the NN interaction gives [175],
[176] a value of Aacsg = @pp — @nn = 1.5 £ 0.5 fm for the difference in the pp and nn scattering
lengths. Modern NN potentials such as the AV18 [177] and CDbonn99 [178] are designed to reproduce
this difference. It is not easy to interpret the CSB contribution to the displacement energies directly in
terms of 2 NN potential due the short-range nuclear correlations and their dependence on the strong
NN potential. Probably the most realistic way to do this is to consider the CSB contribution to the
displacement energies obtained with the variational Monte Carlo approach for A = 7 [6] and the BHF
approach for A =15 and A = 17 [178]. For example, the CSB displacement energy for the A = 17, ds/s
state is 92 keV with AV18 [178] to be compared with 355 keV with SKXcsb. From these comparisons
one finds that the effect of the empirical CSB interaction obtained for SKXcsb is a factor of 3—4 larger
than expected from AV18 or CDbonn99. Thus one concludes that either there is a significant NNN
or many-body CSB contribution whose origin is unknown, or that a major part of the displacement
energy anomaly is due to nuclear correlations. Possible many-body CSB effects at the quark level have
recently been examined [179], [180].
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5.3.2 Binding energies of proton-rich nuclei

The systematics associated with the Coulomb displacement energies can be used to obtain theoretical
binding-energies of proton-rich nuclei from the experimental binding energies of neutron-rich nuclei.
The displacement energies of Eq. (12) can be modeled on smooth systematics [167], [168], [181]; shell-
model configuration mixing which contains the Coulomb and CSB interactions [17], [8], [169]; or on
the mean-field models such as the one discussed in the previous subsection. One can combine the
experimental binding energy for the neutron-rich nucleus BE(A, T, )ezp together with the calculated
value for D(A,T) to give an extrapolation for the proton-rich binding energy:

BE(A,TS) = D(A, T)theory + BE(A, T )ezp. (14)

For most of the nuclei out to the proton drip line the binding energy BE(A, T )ezp of the mirror neutron-
rich nucleus is known to 100 keV or better. This method has been used to predict the binding energies
and the drip line for Z = 19 — 28 [17], [169), [167) and Z = 28 — 38 [169], [9]. The latter calculations
have been used [9] to study the rapid-proton (rp) capture path in the astrophysical explosive hydrogen
burning process [182]. The rp-process in light nuclei depends upon theoretical calculations of the
displacement energies of ground and excited states and upon the spectroscopic factors which enter into
the (p,y) reaction [183], [184].

5.3.3 Proton halos

The Coulomb barrier prevents loosely-bound protons from extending as far as the loosely-bound neu-
trons. One of the most extreme cases to consider is that for a loosely-bound 1s;/; state, since the
centrifugal barrier is small. The 1/2* first excited state of !’F which is bound by only 100 keV provides
a good example. The valence radius of this state is calculated to be 5.5 fm [185]; twice as large as the
rms radius of the %0 core (2.7 fm). The B(E2) for the transition to the "F ground state (1s;/, —
0ds/2) is much larger than any other “single-particle” transition in this mass region [185]. The halo
nature of this state is important for the astrophysical ¥0(p,y)!"F reaction [78].

The ground state of 8B which has a separation energy of 140 keV provides perhaps the best example
which can be studied experimentally in more detail. The calculated Ops/, spectroscopic factor between
the ®B (2*) and "Be(3/27) ground states is about unity [174] which means that ®B can be viewed as
a single loosely-bound proton outside of "Be. The quadrupole moment of this state has been discussed
theoretically [186], [187]. 8B has been extensively studied theoretically and experimentally in regard to
the low-energy solar reaction “Be(p,7)®B reaction and the neutrinos produced from the ®B beta decay
[188].

The 1s,/, orbital becomes the ground state in nuclei with Z=15 and Z=16. The nuclei which are
closest to the proton drip line, i.e, 2P, 2P and ?'S; provide the best proton halos [181]. The proton halo
for these nuclei is related to the removal of a 1s; proton to the ground state of the silicon isotopes. The
components of the knockout reaction leading to difference final states have been analyzed in gamma
coincidence experiments. The momentum distribution for the ground-state component (obtained by

subtraction of the total from those in coincidence with gammas) is narrow as predicted for a £=0
proton halo [189].

5.3.4 Diproton decay

Nuclei have been observed to decay by a variety of processes which include fission, beta decay, gamma
decay, alpha decay and proton decay. Diproton decay, which involves the simultaneous emission of
two protons decay [16], is perhaps the next on this list, but it has proven to be the most elusive.
The condition for this mode of decay is that single-proton decay 4Z —(4~1) (Z — 1) be energetically
forbidden, and that the Q value for two-proton decay #Z —(4=2) (Z — 2) be in a narrow range such
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that its lifetime or decay width is experimentally accessible. The pairing interaction contribution to
the nuclear binding energy gives the possibility for this situation to occur. In light nuclei it is often the
case that there are broad intermediate states available to single-proton decay 4Z —4~! (Z — 1) which
gives a combination of sequential and direct modes of two-proton decay. This is the case for *Be [190],
120 [191], [192], and ®Ne.

Some cases which have been discussed for the observation of only the direct decay mode are ”Ne
(193], **Ne [194], *Mg [195), *Ti, *Fe, [17], [196] **Ni (18], [17], 5*Zn, **Ge, ©3Se, 5'Kr and "'Sr [169)].
These nuclei are indicated by the crosses in Fig. (1). Recently the two-proton decay of an excited 1~
state in '8Ne to the 10 ground state has been observed [194] in which there are no intermediate states
are known (except for a possible influence from the tails of broad excited states).

Decay models have recently been developed [197], [195], which take into account the final state
interaction of the two-protons and are thus more realistic than the original two-body cluster estimates
(17], [198]. The R-matrix model of Barker [197] incorporates the final state interaction between the
two-protons in terms of the s-wave phase shift. This model provides the observed width T as a function
of the reduced width 42 (Eq. 1 of [197]). The reduced width can be approximated by 7% = 6%v%,,,
where 62 is the dimensionless spectroscopic factor, and Yo = 3h%/(2Ma?) is the Wigner limit, with a
being the channel radius in the R-matrix model.

The s-p-sd-pf model space has recently been used to calculate the spectroscopic factor for the #Ne
1~ decay with 1w wave functions for ®Ne and a closed shell of 60 [199]. The spectroscopic factor is
based upon the SU3 cluster model [200], [201] with results of §2=0.043, 0.024 and 0.075 obtained for
MK, WBT and WBP, respectively. With Barker’s value of ¢ = 1.45(A}/3 + A;la) = 5.5 fm (A; = 16
and A, = 2), the Wigner limit is 43,, = 1.03 MeV, and Barker’s R matrix gives ['/6% = 810 eV
(L =1, @z = 1.83 MeV), resulting in diproton widths of 35, 19 and 61 eV for MK, WBT and WBP
respectively. The experimental width for diproton emission is 2143 eV [194]. Although WBT yields
the best agreement with experiment, there is probably an error of at least a factor of two in the decay
model. The dominant decay mode of the !8Ne 1~ state is by single-proton emission to the low-lying
bound states of ”F. The shell-model calculation for this one-proton emission agrees with experiment
within a factor of two. There is also a broad 3/2* level at 5 MeV in 7F whose low-energy tail could
give some sequential proton decay — further experiments are needed to check this.

Results for the diproton decay of ®Mg and “Ni are given by the three-body decay model [195].
The R-matrix value for the diproton decay of Mg (L = 0) with @2, = 1.408 MeV gives a width
of 50x10~" MeV (62=1) compared to the three-body model result of 8x10~7 MeV (with 8%2=1, the
cluster spectroscopic factor is not yet calculated). However, the three-body model may contain an
implicit spectroscopic factor for the simple (0ds/2)? model assumed. It is not clear how the many-body
(shell-model) spectroscopic factor can be used in the three-body model.

“Ni remains the most exciting case for finding the diproton decay of a ground state, its existence
has only recently been confirmed [18]. The Q value for diproton decay has been extrapolated from the
displacement energy systematics as 1.36(13) MeV (17]) and the pf shell spectroscopic factor is §2=0.14
(17]). Barker’s R matrix model gives Ty/2 = 0.030, 0.48 and 20 ms for Q=1.49, 1.36 and 1.23 MeV,
respectively. The calculated beta decay half-life is 9.2 ms [17]. The three-body model [195] gives Ty,
=~ 10 ms for Q=1.36 MeV.

5.4 Intruder states

In a given model space for a given nucleus one will always eventually encounter an experimental level
whose configuration is outside the model space description. These are often called intruder states. This
is particularly important for the nuclei near the magic numbers which determined the boundary of the
region covered by the model space. The meaning of intruder is relative to the defined model space and
in this review intruder states will refer to those which have configurations which are outside 0w model
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spaces. This corresponds to the excitations of protons and/or neutrons across one of the LS closed
shells, p, sd or pf. (In heavy nuclei intruder usually refers to the excitation across the jj closed shells).

Particle-hole excitations (involving one or many particles and holes) across the shell gap near magic
numbers always appear much lower in excitation energy than one would estimate from the single-particle
hamiltonian due to the correlations. This situation is well known in nuclei near the valley of stability, in
for example, 160 which has a low-lying “4p-4h” band. In some situations these correlations result in a
degeneracy or inversion relative to the normal spherical state, producing a ground state whose structure
involves particle-hole excitations across the shell gap. The most well known regions where this occurs
are for the nuclei around 2Be and 3?Mg. These intruder ground states might be misinterpreted in terms
of a vanishing shell gap. But there are two factors which play a role in their formation. One of them
is a weakening of the shell gap as one approaches the drip line. This is related to the closer spacing of
the least bound single-particle states and the lowering of the low-£ relative to their position in nuclei
near the valley of stability. I will give some examples. Another factor is that the structure of the
intruder state must involve the protons and neutrons in configurations with a large number of degrees
of freedom for pairing and quadrupole correlations compared to that of the normal ground state. There
are regions of heavier nuclei which have not yet been explored where this inversion may occur. The next
location related to the LS closed shell would be around ®2Ti relative to the N = 40 gap. For heavier
nuclei, the intruder states would be associated with jj closed shells. Although the jj intruder states
come low in energy, for example in the nuclei around #¢Pb [202], I am not aware of a situation where
they come below the normal ground state. One possibility is near #Zn for the N = 50 closed shell; it
will be interesting to have more detailed experiments for this region. A theoretical and experimental
understanding of intruder states is crucial for the r-process path.

Intruder states can be incorporated within the model space as recently shown by Utsuno [39] in the
case of the 32Mg region. A more qualitative understanding of intruder states in terms of shell gaps and
correlation energies is provided shape coexistence models [203], [204], [205]. Shape coexistence includes
as an extreme the superdeformed bands in deformed HF calculations involving orbitals far removed
from those around the spherical Fermi surface [206].

5.4.1 Intruder states near ?Be

The 1/2+ ground state of 'Be is one of the oldest examples of intruder states [207). It lies 300 keV
below the 1/2~ state which is described in terms of the p-shell model space for this mass region. The
intruder state has one neutron excited from the p shell into the sd-shell (leaving two neutron holes in
the p shell). The shell gap for 0 is about 11 MeV, but the intruder state comes much lower in energy.
The wave functions generated in the larger 1hiw model space involving both p and sd shells have been
used to interpret the reason for the inversion [208] in terms of three effects: (a) a reduction of the p-sd
shell gap from its value of 11 MeV in '®0 to about 4 MeV in ?Be, (b) an increase in the monopole
pairing energy due to an opening up of the pairing degrees of freedom for the two neutron holes in the
p shell, and (c) deformation due to the proton-neutron interaction. The spectroscopic evidence for the
deformation will be discussed in Sec. 5.5.

I show in Fig. (26) the SKX and experimental neutron SPE relative to Opy/; for N = 8 as a function
of Z. The error bar shown for the 1sy/; state at Z = 4 indicates that this states is unbound and has a
decay width. (A similar comparison for the absolute SPE with the SGII Skyrme interaction is shown
in Fig. 1 of [208].) The SKX shell-gap decreases with Z mainly due to the lowering of the 1s,/; orbit.
This is due to the increase in the density of single-particle states as one approaches the top of the
potential well. As mentioned previously the SKX gap for 0 (N = 8) is smaller than experiment, and
I attribute this to p-sd configuration mixing in #0. For the more neutron-rich nucleus C (N = 6) the
SKX agreement with experiment is better, indicating that the p-sd mixing is smaller in *C than '°0.

In the N = 7 isotones the 1hw excitation in which one neutron is excited from the p shell to the
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Figure 26: Neutron SPE for N = 8 for 0ds/2 (diamonds) and 1s/, (triangles) relative to Op, /2 (filled circles).
The symbols connected by lines represent SKX HF results, and the symbols connected by dashed lines are the
data deduced from experimental binding energies.

sd shell starts out at 3.09 MeV in '*C, drops to 2.02 in !?B (the centroid of the 1~ — 2~ doublet) and
then remains the ground state in ''Be, °Li [209], [210] and °He [211]. This trend is consistent with
shell-model calculations in the (0+1)Aw model [211].

There are excited configurations in 14C corresponding to 17w (the 1~ state at 6.09 MeV) and 2hw
(the 0% state at 6.59 MeV) excitations from the p-shell into the sd-shell. The 1Aw excitation energy is
higher in N = 8 than N = 7 since for N = 8 there is only one neutron hole in the p shell and there is
no energy gain from the p-shell pairing. The 2hw excitation is lowered from its single-particle energy
spacing by the energy gain from both proton and neutron pairing as well as from the proton-neutron
interaction. In the calculation with the WBT and WBP interactions, the 2hw excitation drops to 2.7
MeV in 1B [212] and then becomes degenerate with the 0fiw configuration in '?Be and ''Li [213]. The
consequence of this degeneracy for the spectroscopic factors is discussed in Sec. 5.5.

The discussion above involves pure Nfiw configurations or coexistence in which the mixing between,
for example, 0w and 2hw, is not considered. It is possible to extend the model space to include mixing,
but there are two problems to overcome. One is that most interactions (WBP and WBT in particular)
are designed for the pure Niw model space. This interaction is implicitly renormalized to account for the
NAw mixing which is not in the model space. The application to mixed Aw will require a new interaction
which is differently renormalized to be compatible with the larger model space. The second problem
concerns the convergence of the spectrum in terms of the number of Aw excitations. For example, to
obtain a spectrum for %0 one may mix 2hw into the 0w ground state (which is computationally easy).
The result of this procedure is that the mixed ground state is lowered in energy by about 11 MeV
relative to that of the pure 0w (closed shell) configuration. The equivalent level of mixing and energy
shift for the excited 0% “4p-4h” (4hw) state would require the addition of 65w (which is computationally
not so easy). It may take up to about 10Aw for convergence but this is beyond the present level of
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Figure 27: Neutron SPE for N = 20 for 0f;/, (diamonds), 1pz/, (triangles), and 1s,/; (crosses) relative to
0d3/, (filled circles). The orbits are labeled by (n,£,25). The symbols connected by lines represent SKX HF
results, and the symbols connected by dashed lines are the data deduced from experimental binding energies.

computation.

The Monte-Carlo methods can be applied to the full p-sd model space which would include up to
12p-12h within the p-sd shell, but would be very incomplete in terms of the full set of hw excitations
needed for the treatment of and spurious states. Although technically possible, Monte-Carlo calculations
for this model space have not been reported. Monte-Carlo calculations in the sd-pf model space for
the region of Mg have been carried out [38], [39] but in this case the resulting wave functions involve
mainly neutron excitation from sd to pf for which the spurious state problem is not so severe.

Some calculations which include mixing up to 45w have been carried out. The truncation problem
require that the energies of the higher Aw configurations be shifted down in order to compensate for
the truncation [26] or by reducing the shell gap [214].

5.4.2 Intruder states near 3*Mg

The anomalies in the binding energies, excitation energies, half-lives and radii of the most neutron rich
sodium and magnesium isotopes relative to the 0fiw calculations have been known for some time [215],
[216], [217]. The early deformed HF calculations indicated the importance of the pf shell [217] and the
pf shell was soon incorporated into the model space [218], [137].

The WBMB interaction was used to calculate the energy of the pure NAiw (N=1-4) configurations in
a full Nfiw space for some nuclei and with the weak-coupling approximation for other nuclei in this mass
region. The weak-coupling approximation provides some insight into the nature of these intruder states
and ties them together with intruder states in other mass regions such as 0 and “°Ca [219], [220],
[221], [222], [223] and with those in heavy nuclei [203], [204], [205]. In weak coupling one obtains the
excitation energy of m-particle n-hole configurations relative to a closed shell in terms of the properties
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of the pure m-particle and n-hole configurations in the nuclei m and n nucleons removed from the
closed shell. The basic assumption is that the average particle-hole interaction Vj; is weak and does not
change the structure of the pure m-particle and n-hole configurations in when they are put together.
The total particle-hole interaction is estimated by mnV,;. One can either calculate the energies of the
configurations represented by the pure m-particle and n-hole configurations or use experimental binding
energies to obtain them [55], [224].

Warburton and Brown [98] used the weak-coupling model in the region of 3?Mg to obtain the
boundaries of the island of inversion. The result is that there is an island of nuclei, 32-3*Mg, 3'-33Na and
30-32Ne, whose 1fiw and 2hw configurations come lower in energy that the 0w configuration, and there
are many others for which the 14w configuration is essentially degenerate with the 0%w configuration
analogous to the 1/27, 1/2* doublet in "Be. The three mechanisms discussed in the previous section
also apply here: a reduction in the shell gap, the pairing correlations, and the proton-neutron (deformed)
correlations.

The Ay =.e(0f7/2) — €(0ds/2) energy gap is an important ingredient in the relative spacing of the
Ohw (spherical) and 2w (deformed) configurations in ?Mg [144]. I show in Fig. (27) the SKX and
experimental neutron SPE relative to 0ds/; for N = 20 as a function of Z. The experimental SPE for
34Si are based upon the recent experiments for 3Si [225] and 3Si [136]. The error bars for the 1s, /2
state at Z = 8 indicate that these states are unbound and have a decay width. (For a comparison with
other Skyrme interactions see Fig. 6 of [144].)

The SKX shell-gap is nearly constant with Z except for near Z = 8 where the low-¢ 1pay2 crosses
over. This situation is similar to the low-lying 1s,, state for N = 8 shown in Fig. (26). The degeneracy
of 1p3/2 and 0fy, for low Z increases the pairing correlations (see Fig. 24 in [144]) as well as allowing
for larger deformation from the quadrupole mixing of these two orbits.

As discussed in Sec. 5.1, the SKX gap for °Ca (N = 20) is smaller than that deduced from
experiment, and I attribute this to sd-pf configuration mixing in “*Ca. For the neutron-rich nucleus 34Si
the SKX SPE are in better agreement with experiment, indicating that the sd-pf mixing is smaller in
%451 than in “°Ca. The SKX extrapolation to Z = 8 (80) gives a sd-pf gap of about 4 MeV. Shell-model
configuration mixing also provides extrapolations for this gap which may sometimes be less reliable than
the HF model. For example, the ESPE obtained with the Utsuno interaction shown in Fig. 5 of [39] has
an sd-pf gap of only about 2 MeV at 220, which is inferred from the drip-line properties of the nuclei
in this region [149], and is related to an increase in the 1s; /2-0d3/; spacing. But the interpretation in
terms of a small shell gap may be influenced by the model space truncation (to Ofzj2 and 1ps/,) and
to the uncertainty in the residual interaction in these exotic nuclei near the neutron continuum. The
position of the single-particle states in these nuclei near the neutron drip line can be tested by finding
the excited states of 2O corresponding to the 1s, /2 =+ 0ds/; excitation to the 2% state and the 0ds;
— 0f7/2 and 1s)/; — 1ps), excitations to the low-lying dipole (17) states. In particular the 2t energy
in 20 is predicted at 4.18 MeV with USD and 5.5 MeV with the Ustuno interaction (21] (the neutron
separation energy of about 3.7 MeV means that these states are probably unbound to neutron decay).

Calculations in the mixed fiw sd-pf model space have recently been carried out (38], [39]. The results
of [39] confirm the picture of the island-of-inversion but provide details concerning the mixing between
Ohw and 2hw and the importance of 4hw. This is illustrated in Fig. (28) from Ref. [39]. This shows
number of sd to pf neutron excitations beyond the 0hw model for the silicon, magnesium and neon
isotopes. The dashed line represents the idea of coexistence where 2hw comes below 0kw in magnesium
and neon for N = 20 and N = 22 and two neutrons are excited. The QMCD calculations show that the
island does not have steep cliffs, but that there is a more gradual beach. For ?®Ne with N = 18 there
is close to 50% admixture of Ohw and 2hw which indicates the degeneracy of these two configurations
[226]. 3'Na is in the middle of the island-of-inversion. It has recently been experimentally confirmed
that there is a low-lying state [227] indicative of the collective structure first pointed out in (0+2)Aw
calculations [138]. The experimental information in this region of neutron-rich nuclei is expected to be
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Figure 28: Number of sd to pf neutron excitations as a function of neutron number for neon (circles), Mg
(triangles) and Si (diamonds) based on the QMCD calculations of [39]. The dashed line is the expectation for
the pure NAw states in the island of inversion [99].

greatly expanded over the next decade.

5.5 Spectroscopic factors

Nucleon spectroscopic factors are among the most fundamental tests of shell-model wave functions [228].
Until recently experiments were only possible for one-nucleon transfer reactions on stable nuclei. [229].
With radioactive beams one can carry out transfer reactions with inverse kinematics [230]. In addition, a
new method has been developed [231], [232] which makes use of the large cross sections for the knockout
of the loosely-bound neutrons in high-energy reactions (typically above 50 MeV /nucleon). An example
of the knockout reaction is °Be(}'Be,'°Be+v)X where one neutron is removed from the ! Be radioactive
beam leading to excited states in °Be which are tagged by the gamma rays in coincidence with °Be
[233]. The reaction leading to the ground state of °Be is deduced from the difference between the
total cross section and that in coincidence with gammas. The momentum distribution of °Be provides
information on the £ value of the knocked out neutron. At these high energies the reaction mechanisms
simplifies and they can be treated in the eikonal model [75], [234] as a sum of stripping and diffraction
dissociation mechanisms.

Spectroscopic factors obtained from recent experiments for one-neutron removal in coincidence with
gamma rays [233], [213], [212], [235], [236], [232] are summarized in Table 4. The results in Table 4 are
for the lowest few states in the final nucleus, although other states up to the neutron decay threshold are
observed as discussed in these references. The sum-rule for the neutron-removal spectroscopic factor
is the total number of neutrons N. The difference between N and the theoretical strength given in
Table 4 is that the remaining strength resides in more highly excited states in final nucleus most of
which are unbound to neutron decay. The total one-neutron removal cross sections have for these and
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other nuclei are in good agreement with the WBT (WBP) calculations [237]. To be consistent with the
original references, the theoretical results in Table 4 are from WBT for °Li, !'Be, ?Be and B; WBP
for 18:16.17.19C and USD for 220 and F.

The spectroscopic factors for the low-lying states are those for the most loosely-bound nucleons
near the Fermi surface. The spectroscopic factors were extracted using an overlap function which is
generated by a single-particle state in a Woods-Saxon potential with a geometry of r, = 1.25 fm and
a = 0.70 fm and with a well-depth determined by reproducing the one-nucleon separation energy in
Table 4. The experimental spectroscopic factors are in good overall agreement with the theory based
upon the WBP and WBT interactions. I will discuss the details below. The Woods-Saxon geometry
has been chosen mainly for consistency and the absolute spectroscopic factors will be uncertain at the
levels of 10-20% until a more microscopic model for the overlap function is used. For example, use of
the SKX HF radial wave function for the 1s,/; orbit in *C gives a spectroscopic factor of 0.90 compared
to the Woods-Saxon value of 0.74 in Table 4 [236].

The results for ''Be are important for understanding the structure of this 1%w intruder ground
state discussed in Sec. 5.4.1. The spectroscopic factors to the lowest 2t state measures the deformed
component and is in good agreement with WBP and WBT. These spectroscopic factors have also been
measured in inverse kinematics [230]. The spectroscopic factors obtained in a coupled channel analysis
of the inverse reaction are in agreement with those from the knockout reaction.

A consequence of the intruder state in 'Be is that the shell-model ground state of *Be is compli-
cated. The 0fiw and 2hw (intruder) configurations have degenerate energies with the WBP and WBT
interactions which would give a ground state which is a 50% mixture of these. The '?Be beta decay has
also been used as a more indirect measure of the 25w admixture [238], [239], [127]. The spectroscopic
factors in Table 4 are based upon this 50% mixture. The agreement with experiment is fair, and it can
be improved by taking a ground state which is 33% 0Aw and 67% 2hw in the framework of the WBT?2
calculation [213]. The 0Ods/, strength suggested by the shell model is not yet detected since it leads to
a neutron unbound 5/2% state in 'Be. An excited 0F state in '?Be has been suggested at 2.7 MeV
[240] which would be the component orthogonal to the mixed ground state. However, there is also a 1~
state at 2.7 MeV [241] and it would be important to confirm the existence of a 0% state at this energy
and measure its structure in a one-nucleon transfer reaction. The structure of the mirror nucleus 120
will be similar to that of '?Be, but one should expect a larger (1s,/;)* component in 120 due to the
Thomas-Ehrman shift of the 1s;, relative to Op, /2 orbitals observed in the 1/2% and 1/2~ states of 1°N
and 3C.

Single-nucleon removal cannot be measured for !'Li since '°Li is unbound. But from the correlation
of the two-neutrons in a reaction leading to °Li it has recently been inferred that the 0py/2 and 1sy/,
components are about equal [242]. With WBP and WBT the energies of the 0hw and 2hw configurations
are degenerate, and this leads to a wave function which is 50% 0hw and 50% 2hw (as in '?Be). The results
for the spectroscopic factors for the lowest four states listed in Table 4. The resulting spectroscopic
factors summed over all states in °Li are 1.00, 0.67 and 0.33 for 0pi1/2, 1s1/2 and 0ds/2, respectively.
The 1s to Op ratio is in fair agreement with experiment, but the smaller 0ds/, component has not yet
been detected experimentally. !'Li and '?Be have similar structure in terms of the mixed 0Aw and 2Aw
properties, the main difference is that ''Li is less bound than !?Be. A calculation [243] for the excited
states of 'Li in (0+2)Ahw and (143)hw model spaces gives several states below 3 MeV in excitation
(3/27,3/2%,1/27 1/2%).

The structure of '*Be (unbound) [244] and 'Be [245] are also complicated and will require the
consideration of at least the 0, 1 and 2 fiw configurations. The 0kw structure of *Be with WBT has
neutron components of 53% (0ds/2)?, 40% (1s1/2)? and 7% (0da/;)* which is consistent with a recent
dissociation experiment [245].

Above Z=4 the 0hw configuration is well separated below the higher fiw configurations, and the
experimental data are consistent with the dominance of the 0w neutron sd-shell components. The
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main complication comes from the crossing of the 1s,/; and 0ds;, orbits between oxygen and carbon.
Thus the excited 1sy/; state in 7O becomes a the ls;/; ground state in '*C. The neutron pairing
interaction for N > 10 makes a '®C ground state which is about 50% (1s;/2)? and 50% (0ds/2)? in
agreement with experiment. The analogous structures in '#2%22C are not yet measured, but 22C is
expected to be a very interesting Borromean halo nucleus with a large (0s;/;)? component (relative to
the 2°C ground state) (see also Sec. 5.6). Borromean refers to the fact that the total three-body system
of 2°C plus two neutrons is bound in spite of the fact that all of the two-body subsystems are unbound.
The theoretical spectra for both '"C and °C have a triplet of low-lying levels with spin 1/2*, 3/2+
and 5/2*. The ordering of these levels differ between WBP and WBT. WBP gives a 3/2* ground state
with 5/2* at 0.03 MeV and 1/2* at 0.30 MeV for '’C, and a 1/2* ground state with 5/2* at 0.19
MeV and 3/2* at 0.62 MeV for °C. WBT gives a 5/2* ground state with 3/2* at 0.08 MeV and 1/2*
at 0.27 MeV for '7C, and a 5/2* ground state with 1/2* at 0.5 MeV and 3/2* at 0.40 MeV for '°C.
The present experimental results give 3/2* for the !"C ground state and 1/2* for the !°C ground state.
Thus the WBP interaction is favored in this respect and is used for the theoretical spectroscopic factors
given in Table'4. (The spectroscopic factors obtained for WBP and WBT are very similar.)
17C is an interesting case where the proton-neutron interaction makes the 3/2% “seniority three”
configuration the ground state below (but near) the 1/2+ and 5/2* states. The situation is analo-
gous to ?'Ne [19] which also has a 3/2* ground state. In most cases ground-state to ground-state
spectroscopic factors are large, but in this unusual case the transfer selection rule allows only for
0ds/; which is a small part of the wave functions and leads to a small spectroscopic factor. With
WBP the largest components of the '"C 3/2* state are 32% for [(0pa/2)%, (Opy/2)?, (0ds/2)?] and 31% for
[(Ops/2)®, (0p1/2)?, (0ds/2)?, (1s1/2)"], with the remaining 37% contained in many smaller components.
The experimental spectroscopic factor is small but not as small as theory (it is obtained indirectly from
a subtraction of all '8C from those detected in coincidence with a gamma rays). The 1"C spectroscopic
strength is large for the !6C 2% state with a mixture of 1s, /2 and 0ds;; which is confirmed experimentally.
For °C the halo nature of the momentum distribution in one-neutron knockout reactions indicates
a 1/2% ground state [232]. There is some uncertainly in the spectroscopic factor due to the uncertainty
in the separation energy, and I take the results given in Table 4 from Fig. 8 of [232]. (A precise mass
measurement of '°C is needed.) With WBP the largest component of the °C 1 /2% state is 48% for
[(Op3/2)%, (0p1/2)?, (0ds/2)*, (1s1/5)!] with the remaining 52% contained in many smaller components.
The [(0ds/2)*, (1s1/2)"] configuration appears theoretically at an excitation energy of 1.33 MeV in 2'0
with the USD interaction [22] (which is part of WBP), and may be associated with an experimental
state observed at the same energy [246]. In the framework of WBP (and WBT) its energy is lowered
in 'C due to the 1.6 MeV downward shift of the 1s, /2 state relative to 0ds/, between 70 and °C.
Table 4 also provides a sample of some shell-model predictions for neutron-rich sd-shell nuclei which
are currently being measured. 2’0 has a large 1s,/; spectroscopic factor to the ground state of 220.
There is also a very large 0ds/, spectroscopic to the excited states which could be observed in their
gamma decay. For 2¢F I give the result for the theoretical 3+ ground state, but the 2+ state lies only 97
keV higher [22] (a recent experiment [247] suggest that this 2* level may be at 522 keV), and for only
the first three states in 2°F (there is an additional 5.6 units of strength, mainly 0d, in higher states).
Spectroscopic factors for the addition of neutrons to neutron-rich nuclei are important for the r-
process path [248]. Although the data discussed here on neutron removal are not directly applicable,
they do provide a test of the energy levels, spins and structure for the models and interactions.
Spectroscopic factors for the interesting region of nuclei around 32Mg with its intruder states is open
territory both experimentally and theoretically. Neutron transfer reactions are needed to establish the
structure of the nuclei- with N = 19 — 21. As mentioned in Sec. 5.4.2 the 1ps/2 orbit should be nearly
degenerate with 0f7/; around Z = 10 and can be experimentally detected by the narrow momentum
part of the knockout cross section. The properties of 3'Mg and 33Mg are unknown and reactions on the
neighboring even-even nuclei leading to these will be important to carry out.
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Figure 29: Experimental and theoretical total interaction cross sections. Note that the points are separated
in Z by the addition of 300(Z — 2).

5.6 Interaction cross sections

The interaction cross sections of high-energy light radioactive beams provided one of the first clear in-
dications for the existence of neutron halo phenomena [249]. Recent high-energy cross section data for
Z=6—9 [250] together with other data [251] now provide a wider experimental picture for the interpre-
tation of neutron halos and skins in light nuclei. One of the first microscopic theoretical interpretations
for the cross sections data was given by the Glauber reaction model with matter densities obtained
from a Hartree-Fock model [252]. The data are compared with an updated set of calculations based
upon the SKX Skyrme interaction [11] in Fig. (29). The general features we discuss here emerge from
all Skyrme interactions [253].

The reaction model is the zero-range Glauber model described in [252]. The experimental data for
the cross sections on '2C were taken from the compilation of Ozawa et al. [251] (The beam energies
were 790-800 MeV /u for Z = 2 — 5 and 950-1020 MeV /u for Z = 6 — 12, with the exceptions of log
data taken at 950-960 MeV /u, and 101115C, 121317N 1314150 17F and '"Ne data taken at 670-740
MeV/u.) The input to the Glauber model is an NN interaction with a range of r, = 1 fm and effective
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cross sections [254] of 40.0 mb for 680-740 MeV /u, 40.9 mb for 790 MeV /u and 44.0 mb for 950-1020
MeV/u.

The HF calculations start with an assumed simple filling of the orbits in the order 0s, /3, Ops/2, 0p1/2,
0ds/2, 1s1/2 and 0ds/2. This is accurate enough for well-bound nuclei near stability. The single-particle
energies from SKX agree with experiment to within 1—-2 MeV [11]. As discussed in [252], when one
approaches the neutron drip line the matter radii are sensitive to the single-particle energies and the
related separation energies, especially for the low-£ orbits. The separation energy also depends upon
the pairing and collective aspects of the residual interaction which are not present in the HF mean
field. For the nuclei near the drip line one can constrain the orbit occupations and separation energies
in the HF by the experimental data on binding energies and spectroscopic factors (supplemented by
theoretical spectroscopic factors) discussed in the last section. The occupation constraint is imposed
by calculating the HF density with fractional occupations. The separation energy constraint was made
by multiplying the central HF potential so that the single-particle energy is equal to the one-neutron
separation energy. This requires typically an adjustment of only a few percent in the potential strength.

For Z > 8, the neutron occupations are taken from the USD sd-shell wave functions. For N =
16 nuclei the ls;/, single-particle energy from the SKX HF calculation is close to the experimental
separation energy [155]. No constraints were imposed for N = 16 or above. For N = 15 nuclei the 1sy/2
single-particle energies from the SKX HF calculation are about 1 MeV more deeply bound than the
experimental separation energy and they were thus constrained to the experimental separation energies.

The calculated rms matter radii and interaction cross sections for Z=2-11 are shown in Fig. (30)
as a function of nucleon number A. The various isotopic chains are connected by lines (they are not
labeled by Z but this can be inferred from the comparisons made with experiment in Fig. (29)).

In Fig. (30) one observes a correspondence between the rms matter radii and the interaction cross
sections. There are several interesting trends. On the average the rms radii go as A!/3 but there are
significant deviations. The halo nuclei such !'Li, !'Be and *Be show a sharp increase. I would include
in this set of halo nuclei '°C and ?2C (whose interaction cross section has not yet been measured and
is not included in the Fig. (29)). In addition, beyond N = 14 there is an upward bend which is due to
shell effects in the HF potential which I will discuss below.

In Fig. (31) I show the proton, neutron and matter densities obtained with SKX for 22C for which a
(0ds/2)®(1s1/2)2 configuration is assumed. (This is about 60% of wave function in the WBP and WBT
0hw model space with the rest containing 0d3/; components.) The 1s,/, SPE is —1.74 with SKX. The
HFB theory has recently been used to predict a “pairing anti-halo” effect in nuclei with =0 valence
states [255]. So this will be an interesting case to study experimentally. It is amusing that 22C has just
twice the number of protons and neutrons to the lower drip-line nucleus Li, and it will be interesting
to see if the pattern continues for other nuclei with (N/Z) = (11/3), 3F, 4Mg, etc.

The interaction cross sections are compared with experiment in Fig. (29). In this figure 300(Z — 2)
is added to experiment and theory in order to separate the various Z values in one figure. All of the
calculated cross section are multiplied by 0.95 to obtain a optimum overall agreement with experiment.
This 5% adjustment is probably within the range of that expected for the Glauber model approximation.
The agreement with experiment is impressive. There are only two details which do not agree with
experiment within error. One is the enhancement in the calculated 5C (N =9) cross section due to
the relatively loose binding of the 1s, /2 orbit which does not show up in experiment. The other is the
relatively large experimental cross section for 220 (N = 15) which does not show up in the calculation.
Other than this, the data supports the halo nature for some nuclei, as well as the upward bend after
N =14.

The theoretical kink at N = 14 is related to a change in the self-consistent HF potential. Up to
N = 14 the 0ds/, orbit is being filled and the neutron density increases at the nuclear surface. Beyond
N = 14 neutron start to occupy the 1s, /2 orbit, part of its density lies in the nuclear interior on top of
that already present from the filled Os and Op orbits. The HF matter densities and neutron potentials
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is in units of nucleons/fm3.

for the even-even oxygen isotopes from N = 10 to N = 16 are shown in Fig. (32). For N = 10 — 14
the surface density gradually increases as a function of neutron number and the resulting HF potential
for neutrons is relatively constant as a function of neutron number. There is a discontinuous change
in the potential when neutrons are added to the 1s;/; orbit at N = 16 such that the neutron potential
becomes suddenly weaker in the interior and hence pushes out the neutron density, especially for the
1sy/, orbit itself.

The kink can be can quantitatively defined by the ratio:

_ Ru(N=16) = Ra(N=14) _ o(N =16) — o(N = 14)

F R N=10)-R.(N=13) " o(N=14) —o(N = 12)’

(15)

where R, = /< 72 > is the rms matter radius and o is the interaction cross section. The approximate
equality between the value obtained from the rms matter radius and the interaction cross section
follows numerically from the calculations. The numerical results for the oxygen isotopes (Z = 8) will
be discussed. The SKX HF interaction gives k = 2.0. Other Skyrme interactions give k values between
1.9 and 2.1 as long as the single-particle energy of the 1s, /2 orbit is close to its experimental separation
energy. The Woods-Saxon potential gives k ~ 1.2 which is a measure of the small skin or halo effect
associated with the 1s orbit bound by about 3 MeV (the Woods-Saxon potential changes smoothly as
a function of N). The NL3 relativistic Hartree model gives k = 2.3. So there is some mean-field model
dependence in the k. For increasing Z, the sharp increase of the 1s; /2 occupancy at N = 14 is somewhat
washed out due to the proton-neutron interaction in the sd-shell, and hence the k value slowly decreases
with increasing Z. The experimental cross section data for nitrogen, oxygen and flourine would favor
a k value somewhat larger than the Skyrme value, but the data for Z = 7 — 12 as a whole agree well
with the Skyrme value.
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5.7 E1 transitions

A consequence of the close spacing and halo nature of the 0s;/, and Op/, orbits found in N = 7
nuclei (discussed in Sec. 5.4.1) is that there is strong low-lying E1 strength in this region of nuclei.
The outstanding early example is the B(E1) for the 1/2~ to 1/2* transition in !'Be which has the
largest E1 transition strength observed between low-lying bound states. Millener et al. [256] used
the MK interaction together with Woods-Saxon radial wave functions to calculate this B(E1) and
obtained good agreement with experiment. In normal nuclei low-lying El transitions are weak due
to the destructive interference between many single-particle components in the transition density —
the coherent El strength where all of the single-particle matrix elements are in phase is in the high-
energy giant dipole region. For the 1/27 to 1/2% transition in 'Be the 1s;/,-Opy/; contribution is much
larger than usual because of the halo nature of these orbits, and hence this term dominates the other
single-particle contributions producing a large B(EL) [256].

Low-lying dipole strength has recently been discovered in '?Be [241]. Sagawa et al. [257] have de-
scribed this other E1 transitions in this mass region on the basis of the WBP and PSDMK?2 interactions
with HF radial wave functions.

5.8 Quadrupole moments and E2 transitions

A quadrupole deformation of the valence orbits (those in the model space) leads to a self-consistent
deformation of the core orbits (the orbits in the closed shell). This is described in perturbation theory
as the coupling of 2hw J™=2* excitations of the core to the valence orbits [185], [34] and is represented
within the model space as an effective charge for protons (e, = 1 + §,) and neutrons (e, = 0 + 8,),
where 1 and 0 are bare charges (all in units of e), and § are the polarization charges. For the full LS
model spaces (p, sd, pf) all of the low-lying collective states are treated explicitly, and the effective
charge represents the coupling of the valence orbitals to the AN=2 giant quadrupole resonance [34].
If one takes into account only the isoscalar giant resonance in nuclei with N = Z , then the protons
and neutrons have the same same polarization charge §,=6,. The polarization charge is slightly orbital
dependent with average calculated values of 0.4 to 0.5 for the sd-shell [34]. Coupling to the isovector
giant quadrupole resonance in N = Z nuclei increases the neutron effective charge and decreases the
proton effective charge (the reason is that the average interaction between the valence neutron and core
proton is larger than that between the valence proton and core proton). The calculated proton and
neutron effective charges are e, = 1.3 — 1.4 and e, = 0.5 — 0.6, respectively for the upper sd shell (34].
The empirical effective charge averaged over orbits and mass in the sd-shell is e, = 1.29 and e, = 0.49,
in reasonable agreement with the calculations.

These empirical values for the sd-shell are typical of those used in the shell-model configuration-
mixing calculations for light nuclei. However, empirical effective charges (based upon a comparison of
theory with a range of E2 data) may be influenced by truncations in the model space as well as other
defects of the model wave functions (such as clustering and halo effects). In each case an attempt must
be made to understand the origin and value of the effective charge.

As one goes away from nuclei with N = Z toward the neutron drip line the neutron excess will
influence the effective charge. Bohr and Mottelson [258] made a qualitative estimate: e =14+(Z/A)-
0.32-0.02(N — Z)/A and e, = (Z/A)+0.32—0.62(N — Z)/A. Sagawa and Asahi [76] have carried out
microscopic HF calculations for the carbon isotopes and obtained approximately e, = 1.29, 1.16 and
1.03 for the Op proton orbit in **C, **C and »C, respectively, e, = 0.50 for the Op neutron orbit in 2C
and e, = 0.33 and 0.25 for the 0d orbit in '°C and 2°C, respectively. The values for 12C are typical of
the N = Z results discussed above. For neutron-rich nuclei the effective charges decrease. The decrease
qualitatively follows from the Bohr-Mottelson estimate, but is also influenced by the single-particle
binding of the valence orbits (a deep binding for protons and a loose binding for neutrons) [34].



576 B. A. Brown / Prog. Part. Nucl. Phys. 47 (2001) 517-599

In addition to the effective charge, one must consider realistic radial wave functions for the neutrons
as they become more loosely bound. The increase of the E2 matrix elements due to the increase in size
of loosely-bound valence neutrons partly cancels the decrease from the reduced effective charge. Recent
calculations based on the HF radial wave functions and the WBT configuration mixing for the boron
isotopes are in good agreement with experimental data for nuclei out to !”B. I note, however, that the
recent data for the !N 2~ Q moment is about a factor of two smaller than can be explained by current
models [259].

Recent results for the Q moments of the neutron-rich sodium isotopes out to ?*Na are in reasonable
agreement with the USD sd-shell model [260]. The Q moment of 'Na [261] will be of particular interest
in terms of its interpretation as a pf-shell intruder configuration.

I show the systematics of the 2% energies in Fig. (33) and B(E2) values in Fig. (34). The data are
taken from the compilation [262] with the addition of more recent results for Mg [263], 58Cr [153],
0Cr [264], 5*Fe and ®Fe [265]. The theoretical energies are based on 0w model spaces (which do
not contain the intruder states) with hamiltonians WBT [73] for the p-sd shell, USD for the sd-shell
{3], RCNP for the sd-pf shell (N > 20) [100], FPD6 [96], [266] for the pf shell with N < 28, and the
truncated model-space results from [153] for the pf shell with N > 28. The B(E2) values were obtained
with the harmonic-oscillator radial wave functions and with effective charges of e,=1.29 and e,=0.49
[3] for the sd shell, e,=1.5 and e,=0.5 for the sd-pf shell [100], and e,=1.23 and e,=0.54 for the pf shell
(53]

There is good overall agreement between theoretical and experimental energies with the exceptions
of 1?Be (N = 8) and 32Mg (N = 20) [267] which are related to their intruder structure. The high energy
for the 2% state for N = 32 in 52Ca is an indication of a sub-shell closure for 1psy2 which quickly goes
away as the proton-neutron interaction bring the 0fs/; closer in energy to 1ps/2 as Z increases [153].
The sub-shell closure which appears at Z = 40 in the theory (since the pf shell ends at Z = 40) does
not appear for iron (Z = 26) indicating the importance of Ogg/; in this region. The RCNP hamiltonian
(100], [133] predicts that the N = 28 shell closure in terms of 2* energy will remain for Z < 20 except
for ““Mg (Z = 12) New experiments will be of particular interest to test these predictions.

The B(E2) values are not in such good agreement between theory and experiment. Neon and
magnesium show an increase as they approach N = 20 rather than the theoretical decrease which is
related to the gradual mixing with the intruder states. Utsuno et al. [39] are able to obtain the gradual
mixing in the sd-0f7/o-1ps/; model space.

The B(E2) values for 2Ca (N = 22) and */Ca (N = 24) show a striking experimental enhancement
over theory which is an indication of the mixing with intruder states in these nuclei near stability. This
feature does not show up in the 2% energies. Indeed, it was noted in the early shell-model work that
the pf-shell is not adequate for these nuclei [121], and that 2hw sd-shell excitations are required [268],
[269]. These 2hw excitations are associated with low-lying intruder states in these nuclei. In spite of
the advances which have been made in carrying out full sd-pf shell calculations for neutron-rich nuclei
(39], [38], the expanded model space has not been applied to this region of nuclei near stability. These
2hw excitations are probably also responsible for the deviations in the lighter titanium and argonne
isotopes. There is another disagreement between experiment and theory for 6Ar which was also noted
in [270].

There are many other interesting E2 observable which I cannot cover adequately. The coexistence
of shapes can be further explored by the studying the B(E2) to higher 2% states in nuclei such as 34Si
[23], [136] and to states in odd-even nuclei, for example, 43S [136].

The B(E2) as measured by electromagnetic decay or Coulomb excitation provides information on
the proton contribution to the E2 transitions. Complementary information on the neutron contribution
can be obtained from inelastic hadronic scattering experiments [271], [272], [273]. It is important to
understand how the proton and neutron degrees of freedom are coupled in nuclei near the drip line. Is it
possible to have a deformed neutron halo and a spherical proton core or visa versa? In the valence shell
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Figure 33: Energy of the lowest 2+ states in MeV. The experimental energies shown by filled circles connected
by solid lines. The theoretical energies are shown by squares connected by dashed lines for the nuclei on the
left and by crosses connected by dashed lines for the nuclei on the right. 2% energies above 4 MeV are indicated
at the top of the scale. The extreme single-particle ordering is given at the top.



578 B. A. Brown / Prog. Part. Nucl. Phys. 47 (2001) 517-599

s1] p3 |p1| d5 s1] d3 f7 p| 15 p1] 99
——t T —

: a4
2 - Zn (Z=30) =
o F .
[ Si (Z=14) Ni (Z=28] ]
, E i (2=14) ;4\4 o i (Z=28) E
. N el .

PN
- EN
[ Ne (Z=10), Vi
, b /A‘\‘ 5
h:
0(z=8) \,/*\ Ti (2=22)

G
Fe (Z=26)
o x|
w2
5,

s Or2-24)

0 r ]
ﬁ C ]
& 2F E
0 o 8—e—$—0 1
2 - C (Z=6) Ca (Z=20) -
0 —
2 ‘_B . L« Arz=tg) |
L Be (Z= X E
- (Z=4) -‘\f\\' h
0 [ n
» | =) * s(z=16) =
E He (z=2 ]
0 PR | - L L1 | TR T 2
0 10 20 30 40
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connected by dashed lines for the nuclei on the left and by crosses connected by dashed lines for the nuclei on
the right. The extreme single-particle ordering is given at the top.
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model one must introduce generalized effective charges to account for the coupling of valence protons
and neutrons to the core protons and neutrons [274]. Systematic experiments of the type started (275],
[276], [277], [278] are needed to show how the neutron contribution evolves as one approaches the drip
line.

5.9 Beta decay

The study of beta decay in nuclei is important for testing nuclear structure models, for the weak
interaction rates needed in astrophysical processes, and for fundamental weak-interactions studies. The
decay rate for allowed 3~/B* decay is given by:

ftigz = C[l(9a/gv)*B(GT-;1) + B(F-14)), (16)

where f is the phase-space factor, t,/; is the partial half-life for the decay from an initial state (¥;) to
a specific final state (¥;). To an accuracy of 1% C, is given by 6170. The dimensionless Gamow-Teller
(GT) strength is:

B(GT_j4) =< Uy || Zea*th,_ || U > /(2J; + 1), an

and the dimensionless Fermi strength is:

B(F-p3) =|< Wy || Stk || W [? /(205 + 1), (18)

| ga/gv | =1.26 is the ratio of the axial-vector to vector coupling constants for the nucleon as obtained
from the neutron beta decay, and t, and t_, are the nucleon isospin raising and lowering operators,
respectively. The B values satisfy the sum rules

S(F) = %;B(F-) ~ £;B(Fy) = (N - 2), (19)

and
S(GT) = %;B(GT.) - XsB(GTy) = 3(N - 2). (20)

In this section I will give some examples of the application of the nuclear shell model to the beta decay
of exotic nuclei.

5.9.1 Fermi decay

When isospin is conserved the Fermi decay populates only the isobaric analog state in the daughter
nucleus. When | T,; | = T; then either B(F_) or B(FY) is zero and the B value for the other is |IN=-2Z|.
There is a small isospin nonconserving part to the nucleon-nucleon interaction due to the Coulomb and
charge-dependent nuclear interactions, and this leads to a small correction to the Fermi matrix element
which is conventionally expressed in the form B(F) = (1 = d)B(F). The results of a recent calculation
(279] for the correction factors d are shown in Fig. (35) (crosses connected by a line) and compared
to the experimental values (filled circles) for those 0+ — 0% (pure Fermi) decays which have been
measured with high accuracy [280], [281]. The correction factor is the sum of two parts, d = dia + dpo,
one due to isospin mixing (IM) within the valence space for shell-model configuration mixing, and the
other due to a mismatch in the radial wave functions leading to a radial overlap (RO) correction. (For
these B(F') values the constants and phase space factors associated with Eq. (16) need to be evaluated
to an accuracy of 0.1%.) The experimental values have been adjusted by an overall factor to fit the
calculations for the lowest Z values.

On an absolute scale, the experiment and theory deviate (from the unitarity of the KM matrix) by
0.3-0.4 percent [282], [283], [284], [280]. The reason for this deviation is not understood, but if no other
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Figure 35: Isospin mixing corrections to the Fermi transitions. The crosses connected by a line are theoretical
calculations. The filled circles are relative values deduced from experimental Fermi beta decay.

nuclear structure problems are found, it is a sign of new physics beyond the standard model of weak
interactions. The new aspect of the calculations presented in Fig. (35) is the prediction of a jump in
the d value at Z=30 and above. The jump is due primarily to an increase in the RO correction for high

Z values. The IM corrections leads to isospin-forbidden transitions to excited 0% states [279] which will
be explored in new experiments.

5.9.2 Gamow-Teller beta decay

One of the most comprehensive comparisons of experimental and theoretical GT strength has been
carried out for the sd shell nuclei [285] with the USD interaction. In [285] the comparison between
theory and experiment was made for several hundred individual transitions. It was found that the
experimental strength is systematically quenched relative to the theoretical strength by a factor of
about 0.59; that is, the experimental beta decay rate is hindered by a factor of 1.67 compared to theory.
Where is the missing strength? Maybe some of the strength has been missed in the beta decay because
the strength is shifted to higher energy states above the @ value window. The (p,n) experiments
provide important complimentary information in this regard. For example, the strength for the *Ne
beta decay can be compared with the strength observed in the mirror *O(p,n) reaction [286], [287].
Examination of the spectrum of Fig. 7 of [286] shows that the GT strength distribution (into the sharp
states) is much like the predicted one. Detailed analysis of such spectra [287] show that the observed
GT strength distribution agrees with that predicted by the 0d1s shell-model calculations and that the
missing strength is not to be found in sharp states below 20 MeV of excitation. This quenching factor
of about 0.6 appears to be rather universal as long as a complete 0fiw model space (e.g. full sd) is used.
Calculations within the full pf shell require about the same reduction factor in order to reproduce the
observed GT beta decay [125], [288]. Much theoretical work has been done to understand the origin of
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Figure 36: B(GT) values for the 3Ca — %K beta decay, summed as a function of excitation energy. The
circles are experiment [293] and the calculations are for the USD (line) and CWH (dashes) interactions.

the quenching [289], [290]. From comparison of M1 and GT matrix elements, one can deduce that about
two-thirds (in the amplitude) of this comes from higher-order configuration mixing (from non-sd shell
parts of the wave function) while one-third comes from the delta-particle nucleon-hole admixture [291].
The position of the missing strength and its division between 3~ and 3+ related to the higher-order
mixing is unclear but is presumably spread out over excitation energies up to about 100 MeV, making
it difficult to observe experimentally.

The lifetimes obtained for the beta decay of proton and neutron-rich nuclei in the sd shell are
generally in excellent agreement with the USD calculations based upon the quenched effective operator.
An exception to this occurred for nuclei around 3'Na where the experimental lifetimes for some nuclei
are about an order of magnitude longer than those predicted by theory [292]. This was another early
indication of the intruder nature of these states which have been discussed extensively in this review.

Studies of the GT strength function give a more detailed critique of theory. I show as an example
in Fig. (36) the GT strength obtained from the beta decay of **Ca. The B(GT) values are obtained
for individual states and then summed as a function of excitation energy. The experimental strength
includes an analysis of the beta delayed proton spectra [204], [293]. The theoretical B(GT) values
include the empirical quenching factor of 0.60. The free-nucleon sum-rule strength is 12 units and the
quenching brings this down to 7.2 units. The comparison in Fig. (36) shows features which are typical of
the decay of proton- and neutron-rich nuclei. The phase-space associated with the beta decay Q value of
about 11 MeV means that the experiment is only sensitive to strength up to about 8 MeV in excitation,
this part comprising only about 1/3 of the total predicted strength. The half-life is determined mainly
by the very small B(GT) values in the lowest 2 MeV. In comparison with the USD curve in Fig. (36)
one would conclude that experimental GT strength is too large compared to theory and that one does
not need quenching [295]. However, an analysis of the ¥Ca data reveals [296] that the theoretical GT
strength has indeed to be quenched. The shape of experimental distribution is in better agreement
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Table 5: Calculated and measured beta-decay properties of proton-rich sd shell nuclei with |T, |>2

Parent |T,| J" T1/2(ms) Ex of IAS (MeV) BR to | Beta Delayed | Exp
Nucleus Theory® Exp | Theory Exp | to IAS(%)® | Decay Modes | Ref
oMg 2 0t 102 95+3| 646  6.57 35| p 301
2A] 2 4t 88 5943 14.02 14.04 3.8 | p,2p,a [302]
ug 2 o* 147 14048 | 587 591 11.1 | p (303], [304]
26p 2 3t 38 44.740.5| 13.37  13.08 2.8 | p2p,cx [305]
23 2 ot - 129  125+10 5.96 5.95 145 [ p [306]
2Ar 2 O 87  98+2| 500  5.04 210 | p (307]
36Ca 2 ot 104 100+£2 4.24 4.26 40.7 | p [294]
Bg  5/2 52t 38 407404 | 1159 1178 49 | p2p3pa | [308]
77g 52 52 9 155413 | 1262 1275 3.5 | p.2p3p,c | [309], [310]
SAr 5/2 52t 12 151413 | 1206  12.30 41 |p2p3pe | [311], [312]
%Ca  5/2 12 23 257402 | 88 9.0 12.1 | p,2p,3p [208]
2gi 3 ot 28 2942 8.95 3.8 | p,2p,3p [313]

a) There is an uncertainly of about 10% due the uncertainty in the beta-decay Q value.
b) These are the theoretical values. Most experimental values quoted in the literature are inferred from
the Ex(IAS) and T,/ or have a very large error.

with that obtained with the older CWH interaction [297] as shown for the *Ca decay in Fig. (36).
The difference in shape between the USD and CWH GT distributions can be related to the 0ds/2, 0ds/,
spin-orbit splitting in the upper sd shell [297]. Similar considerations are necessary in the interpretation
of the more recent 3*Ca decay data [298]. The influence of the energy shift for the 8% decay of the
proton-rich calcium isotopes has been also been observed in the 3Ar beta decay [299].

The GT strength functions in the pf shell are important for understanding beta-decay and electron
capture during the late stages of stellar evolution. The data and calculations with the KB3 and KBF
interactions are discussed in [124], [300].

Beta decay data have been obtained for most sd-shell nuclei out to the proton drip line. A summary
of the calculated [314] and experimental half-lives are given in Table 5. Other calculations based on
the USD interaction are given in [315]. The agreement for the half-lives is excellent. The half-life
calculations include the universal GT quenching factor, and the agreement with experiment indicates
that the basic quenching mechanism (from higher-order configuration mixing) is valid out to the proton
drip line. The beta delayed particle emission can be quite complex, but it can be calculated within the
shell model [314]. The beta delayed o emission predicted in [314] has been observed experimentally
[302].

The quenching of GT strength is well established in for nuclei near the valley of stability and for
proton-rich nuclei. But the operator may be closer to its free nucleon form for halo components of the
beta transition in nuclei such as !Li [316] due to a reduction in the interaction overlap between the
valence and core nucleons. There has been some (i.e. [317], [136]) but not extensive theoretical work on
the beta decay of the most neutron-rich nuclei which involve the p-sd and sd-pf shells. First-forbidden
beta decay will be more important for neutron-rich nuclei due to the increased phase space for these
transitions — these involve significantly more complicated transition operators [318], [128].
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5.9.3 Super Gamow-Teller transitions

By “Super” Gamow-Teller transition I mean a GT transition to a specific final state which has a large
B(GT) value compared to the bare nucleon (neutron decay) value of B(GT')=3. Although the sum-rule
value can be quite large in nuclei with a large neutron excess, it is not easy to find many examples of
Super GT transitions due to the splitting of GT strength. For example, for the GT_ transition from
8Pb, which has been studied with the intermediate energy (p,n) reaction, the GT, should be small
(because of the neutron excess) and hence £;B(GT-) ~132. However, for 28Pb as well as most other
cases observed, the total GT strength is fragmented over many final states, hence the GT strength to
any specific final state is small.

In fact, there are only two transitions to specific final states observed so far which are larger than
the neutron value of 3. They are 0%, T' = 1, He to 1*, T = 0, °Li decay with B(GT-)=4.72 [319)
and the 0%, T = 1, 18Ne to 1*, T = 0, '®F decay with B(GT,)=3.15 [285]. The reduction from the
sum-rule values of S(GT) = 6 are due to the quenching discussed above. In both of these examples, the
final states are ground states and they come low in energy because of the attractive particle-particle
interaction. As one moves away from the two-particle valence case and adds more valence particles,
the strong GT strength moves up in energy and eventually becomes a “particle-hole” state which is
pushed up by the residual particle-hole interaction. The high energy usually results in a fragmentation
of strength due to mixing with 2p-2h configurations. Borge et al. [320] have presented the case for
Super GT strength in the decays of ®He, °Li and ''Li. However, since the final states lie at a high
excitation energy, the strength is probably fragmented over many final states. Op shell calculations for
the °Li decays show this fragmentation [321]. Op shell calculations (319] for the 8He decay predict a
strength of 7.7 for a state at about 9 MeV in excitation [319] but the experiment is difficult to interpret
because of the large width of the final state.

There are two remaining candidates for Super GT transitions — *Ni and '°°Sn. %Nj is known to
decay to a low-lying final state in *Co, but the Q value is very small, and this particular final state
has a very small B(GT). We have predicted [322] a Super GT to a level just above the Q value with
B(GT) ~5.5 which may be studied via the inverse reaction p(**Ni,%Co)n. '%Sn has been predicted
to decay by a Super GT to a should beta decay by a Super GT to a low-lying state in '°°In with
B(GT) ~8.5 [323]. The main condition for the existence of these isolated Super GT transitions in 56Nj
and %8n is that the spin-orbit gap between the £ + 7 and £ — 1 orbits be sufficiently small compared
to the shell gap so that the 1p-1h states are isolated below the 2p-2h states.

The GT strength of **Ni and '°Sn are both examples of a general class of transitions in nuclei
with, N=Z [324]. The N=Z nuclei are interesting because the GT sum rule only gives £;B(GT-) =
£;B(GTy), a result of isospin symmetry. The £;B(GT) are thus completely model dependent and are
sensitive to nuclear correlations [324]. There are several equivalent ways to obtain the B(GT) values
in N=Z nuclei; 8* decay (where energetically allowed) or (n,p) reactions, 8~ decay or (p,n) reactions,
or (p,p) reactions. As one approaches 1%Sn, the beta decay Q values become larger due to the larger
Coulomb displacement energy [325], hence much more of the GT strength can be observed in beta
decay. Data for the interesting region between **Ni and '°°Sn will rely upon future radioactive beam
experiments. GT strength in this mass region is important for beta decay and electron capture which
takes place in the late stages of stellar evolution [124], [300), [326].

5.10 Magnetic moments

The precisely measured magnetic moments historically have served as a sensitive test of the shell-
model wave functions. In this perspective I show on the left-hand side of Fig. (37) the experimental
magnetic moments for nuclei near stability considered in [3] (those that are measured to 1% or better
accuracy) compared to those obtained with the simplest possible (single Slater determinant) sd-shell
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Figure 37: Comparison of experimental and theoretical magnetic moments in the sd shell. The theory on the
right-hand side is based on the full sd-shell wave functions obtained with the USD interaction. The theory on
the left-hand side assumes only the simplest single-particle wave function (a single Slater determinant). Both
calculations use the free nucleon M1 operator.
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Figure 38: Comparison of experimental and theoretical magnetic moments in the sd shell. The theory is based
on the full sd-shell wave functions obtained with the USD interaction. The results on the right-hand side are

obtained with the free-nucleon M1 operator, and the results on the left-hand side are obtained with the effective
M1 operator.
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Table 6: Magnetic moments of 3/2~ states in the p-shell. Experiment (from [20] except for "Be [331] and
9C [332] ) is compared to those obtained with the results from three p-shell hamiltonians. Free-nucleon
and effective g-factors [112] are used.

Nucleus T | experiment | (6-16)TBME PJT PMOM | PMOM

free free free | effective
u ‘Be 1/2 —1.398 —1.288° —1.329 -—1.377 | —1.368
¢ °Be 1/2 -1.178 -1.268 -1.101 -1.090 | —1.070
p*C 1/2 —0.964 —0.783 —0.850 —0.949 | —0.924
p°C 3/2| (-)1.391 —1.482 -1.438 —1.511| —1.503
© 20 3/2 —1.389 —1.270 -1.355 —1.411| —1.388
p 'Li 1/2 3.256 3.171  3.212  3.263 3.273
v B 1/2 3.082 2.893  2.877 2.895
B 1/2 2.689 3.509 2592 2.702 2.724
p L 3/2 3.439 3.376  3.352  3.425 3.430
r BB 3/2 3.177 3.022 3.125  3.191 3.209
p L 5/2 3.668 3.793  3.793  3.793 3.801
<o>A=T7 |1/2 0.94 1.01 1.01 1.02 1.07
<o>A=9 |1/2 0.82 0.77 0.76 0.85
<oc>A=11|1/2 0.59 0.59 0.64 0.67 0.79
<o>A=9 |[3/2 1.44 1.04 1.09 1.09 1.12
<o>A=13]3/2 0.76 0.66 0.71 0.74 0.84

wave functions. The dramatic improvement obtained by using the full sd-shell with the USD hamiltonian
is shown on the right-hand side. As mentioned previously, this improvement is related to using the
LS model space which fully incorporates both members of the spin-orbit doublet j = ¢ + 3 which
are strongly connected by the M1 (magnetic moment) operator. The mechanisms which quench the
Gamow-Teller beta decay also apply to the spin part of the M1 operator. However because of its vector
rather than axial vector nature, meson exchange corrections are more important for the M1 operator
(289], [290]. There are enhancements from the mesonic exchange which tend to cancel the higher-order
quenching (observed in Gamow-Teller) making the free-nucleon results shown in Fig. (37) already close
to experiment. The agreement with experiment can be improved, as shown in Fig. (38) by the use of
an effective M1 operator which is given in terms of effective spin and orbital g factors [3]. The effective
operator is compared to calculations which include mesonic exchange and higher-order configuration
mixing in [291]. More recently, magnetic moments have been measured in the sd shell for more exotic
nuclei (327], [260], [328], [329], [330]. The deviation between experiment and theory is at the level of
%0.05 pn (e.g. 1% of the largest value).

A similar level of agreement between experiment and theory is obtained for magnetic moments in the
p-shell [94], as shown in Table 6 for 3/2~ states. The magnetic moment for the A = 9, T = 3/2 mirror
pair has been of recent interest [332], [333]. If good isospin is assumed, one can add the moments of
mirror nuclei to deduce an isoscalar spin matrix element [334] < ¢ > = [u(proton — rich) + u(neutron —
rich) — J]/(0.38) For A = 9 one obtains < ¢ > = [u(°C)+pu(°Li) —3/2]/(0.38) = 1.44. This is compared
with the results for other 3/2~ mirror pairs in Table 6. (The single-particle values are pp = —1.913,
Bn = 3.793 and < 0 >= 1.) The hamiltonians chosen are the (6-16)TBME of Cohen and Kurath, a
more recent version of the ETBME fit called PJT [94], and one which also considered magnetic mo-
ments in the ETBME fit called PMOM [112]. Free-nucleon g-factors [g,(proton)=>5.586, g,(neutron)=-
3.826, g¢(proton)=1 and g(neutron)=0] and effective g-factors [g,(proton)=>5.543, g,(neutron)=-3.875,
ge(proton)=1.030 and g(neutron)=0.036] obtained from the PMOM fit are used. There are consider-
able variations in the < ¢ > values which are reproduced by theory, with both experiment and theory
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being largest for A = 9. The effects of higher-order configuration mixing [290], [289], [291] is to reduce
(quench) the < o > values. However, the A = 9 experimental < o > value is anomalously large
compared to theory. The isospin mixing effects discussed in [333] increase < o > by about 0.10 py. It
is interesting that the "Be and °C moments are more nearly equal to each other experimentally than
expected theoretically. A simple interpretation could be that the structure of 9C looks like "Be plus two
protons in the 1s;, orbit (which would not contribute to the moment). But this interpretation would
require some evidence in the mirror nucleus °Li for a low-lying configuration of this type which does
not now exist. The magnetic moment for ''Li in Table 6 shows a deviation from the other p-shell nuclei
which can be interpreted in terms of component in the ''Li wave function which looks like 9Li plus two
neutrons in the ls;/; orbit.

Recently measured magnetic moments for 1B, B, 1B and "N have been compared with the MK
and WBP calculations [335], [336]. The recent experimental result [337] of . = —1.6816(8) puy for 'Be
1/2% is of particular interest for its intruder structure. It is also the first result for any 1/2* moment in
this mass region. With the free-nucleon operator its value is close to that of —1.71 py obtained with the
MK interaction and somewhat larger than that of —1.58 (—=1.49) py obtained with WBT (WBP) [337].
However, a quantitative interpretation of the experimental result will depend upon an understanding of
the effective M1 operator for this loosely bound system. A precise experimental value for the °C 1/2%
moment is needed.

6 The Model-Space for Heavier Nuclei

This review has focussed on the properties of medium-light nuclei where one finds a gradual transition
from the LS to jj model space. In this section I comment on some problems involving the model space
in heavier nuclei. For the nuclei around N = 40, it is clear that the sdg major oscillator shell becomes
important and in particular the Oggo orbital. There is only a very small shell effect at the pf-shell
neutron closure in ®Ni which certainly disappears for higher Z and may also disappear for lower Z. It
will be important in future experiments to see if there is some pf-shell effect left in °Ca.

The model space for nuclei between about A = 60 and A = 100 should involve at least the 0fs/,,
1ps/2, 1p1/2 and 0gg/, orbitals. But configuration mixing within this set of orbitals may not be adequate
for understanding the structure of nuclei in this region, due to the influence of the low-lying states
associated with the quadrupole and Gamow-Teller operators.

The quadrupole degrees of freedom involve three regions of energy: (a) low energy transitions
within the (0fs;2, 1psj2, 1p1/2, 0ge/2) model space; (b) Ogojz to Ogrje and 0Ogga to 1dss excitations
outside the model space whose energy lies around 3 MeV in 1°°Sn; and (c) the high-energy AN=2 (2hw)
excitations (also outside the model space). Since (b) is low in energy, its influence might not be treated
perturbatively, especially if the valence space configuration is strongly deformed. It will be interesting
to see to what extent the (0fs/2, 1ps/2, 1p1/2, 0go/2) model space will work, but a more complete valence
space for this mass region may need to involve all of the pf and sdg orbitals. Similar questions arise
for the completeness of jj major shells in heavier nuclei which are the basis for counting the number of
valence bosons in the interacting-boson model [338], as well as other models which rely on a well-defined
number of valence nucleons [339].

For the Ofs/z, 1psj2, 1p1/2, Ogey2 model space, there is an important first-order correction to the
GT and M1 operators involving the Ogg/; to 0g7/2 transition. This cannot be treated as a constant
effective operator since its contribution depends upon the occupation of the 0gg/2 and Og7/; orbitals.
This occupation number dependence is in an important ingredient in understanding the N and Z
dependence of the Gamow-Teller strength observed in the °°Sn region [340], [341] relative to a model
in which 1°°Sn has a closed-shell configuration. Also, there is a higher absolute quenching of the GT
matrix elements when 1%°Sn is treated as a closed shell due to first-order 0go/2 to Ogz/2 correction terms,
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in addition to the usual higher-order quenching (as in the sd and pf shells). It may be possible to
formulate a mass-dependent model for the effective GT and M1 operators. Or one may have to consider
a more complete or full pf-sdg model space. An understanding of these quenching effects is crucial for
reliable predictions of beta-decay matrix elements needed for astrophysics and weak-interaction physics
(such as double-beta decay). Future experiments on the detailed beta decay properties of 1%°Sn will be
of primary importance in understanding these issues [323].

7 Summary and Outlook

Overall agreement between the theoretical and experimental properties presented in this review is
excellent. The agreement with experiment does not significantly deteriorate at the drip lines. On the
contrary, there are places of disagreement both for nuclei near stability and for exotic nuclei which are
related to model-space truncation. For example, in the calcium isotopes near stability the enhanced
B(E2) (compared to the pf shell model) indicates the importance sd-shell admixtures. These same type
of admixtures are necessary for the intruder states in the neutron-rich nucleus 32Mg. With the improved
computational techniques the model spaces can be enlarged to sd-pf, and this has been successfully
applied to some nuclei in the 3*Mg mass region. What is lacking is a consistent application of the sd-pf
model space (or s-p-sd-pf-sdg) to all nuclei going from stability to the neutron drip line. This will be a
gradual process of expansion. For example, determination of a “unjversal” pf-shell hamiltonian which
is underway [82] together with the QMCD (or a similar) method will provide a unified set of results
for the pf shell region of nuclei. It will be much more challenging to obtain unified interactions for the
p-sd and sd-pf models spaces which will provide the extension of the 0hw results in Figs. 17-23 and
33-34 to the mixed fw wave functions which explicitly contain the low-lying and ground-state intruder
configurations.

The G matrix approach to the nuclear interactions relies upon the use of the harmonic-oscillator
basis [62]. These serve as a starting point for the shell-model configuration mixing for all nuclei even
out to the drip line. In nuclei near the valley of stability the shell model is successfully applied up
to excitation energies above the nucleon decay thresholds; at the neutron drip line the neutron decay
threshold goes to zero. Above the decay threshold, continuum rather than oscillator basis should be
considered. The empirical modifications of the TBME might be partly attributed to the loose binding
and the continuum for high lying states in nuclei near the valley of stability and for the low-lying states
in nuclei near the drip neutron drip line. More fundamentally, one must extend the G matrix approach
to understand the interaction between nucleons at high excitation and near the drip lines.

The goal in nuclear theory must be to expand and unify our current approaches so that the properties
of all nuclei can be better understood and so that the predictive power becomes more accurate. To
achieve this goal it is necessary to integrate the two main types of models: the mean field and the
shell-model configuration mixing. The Skyrme HF in the spherical basis provides a starting point for
the closed-shell binding energies and single-particle energies. The role of configuration mixing is then
to give the extra correlations associated with core breaking. It will be important to treat nuclei such
as '%0 and “°Ca as open shell nuclei.

The properties of magic nuclei are of primary importance for starting shell-model configuration
mixing. Recent results on single-particle energies around *2Sn have greatly improved the configuration-
mixing predictions for nuclei towards the neutron-drip line in this region. Similar results from radioactive-

beam experiments for the single-particle properties of other nuclei such as ®Ca and ™Ni will provide
launching pads for shell-model configuration mixing in these mass regions.
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Table 7: Appendix: List of acronyms and abbreviations used in the text.
Term Meaning Section | Reference
model spaces
p-Shell 0p3/2 a.nd 0p1/2 2.1
sd-shell 0d5/2, 0d3/2 and 181/2 2.1
pf—shell 0f7/2, 0f5/2, 1p3/2 and 1])1/2 2.1
LS shells the major shells p, sd and pf 2.1
Ohw lowest possible excitation between LS shells 3
NAw N Aw excitations between LS shells 3
mixed Aw Nhw with several or all N mixed 3
interactions
(8-16)POT | p-shell POT hamiltonian 4.6 [25]
(6-16)TBME | p-shell ETBME hamiltonian 4.6 [25]
(8-16)TBME | p-shell ETBME hamiltonian 4.6 [25]
CWP,CWH | sd-shell ETBME+G hamiltonians 4.7 (84], [116]
FPD6 pf-shell POT hamiltonian 4.8 [96]
FPMG pf-shell G+MON hamiltonian 4.8 (95]
GXPF pf-shell ETBME+G hamiltonian 4.8 [82]
H7B “Hosaka sum of seven-range OBEP” potential 4.4 (88]
KB3 pf-shell G+MON hamiltonian 4.8 [36]
KB3G pf-shell G+MON hamiltonian 4.8 (37]
M3Y “Michigan sum of three-range Yukawa” potential | 4.4 (86], [87]
MK 0Aw s-p-sd-pf-shell hamiltonian 4.9 (97]
MSKk7 Skyrme-type hamiltonian 4.5 (10]
NL3 Dirac-Hartree hamiltonian 4.5 (93]
PJT p-shell ETBME hamiltonian 4.6 [94]
PJP p-shell POT hamiltonian 4.6 [94]
PWBT p-shell ETBME hamiltonian 4.6 (73]
RCNP 0fw sd-pf-shell hamiltonian 4.10 [100]
SDPOTA sd-shell POT hamiltonian 4.7 [90]
SKX Skyrme-type hamiltonian 4.5 [11]
USD sd-shell ETBME+G hamiltonian 4.7 [24]
WBP 0Aw s-p-sd-pf-shell hamiltonian 4.9 (73]
WBT 0Aw s-p-sd-pf-shell hamiltonian 4.9 (73]
WBMB 0hiw sd-pf-shell hamiltonian 4.10 (98], [99]
other
BCS Bardeen-Cooper-Schrieffer pairing approximation | 4.5
CSB charge-symmetry breaking 5.3.1
ETBME effective TBME 44
ETBME+G | ETBME with some replacement by the G matrix | 4.4
G+MON the G matrix with monopole corrections 4.4
HF Hartree-Fock 4.5
MSDI modified-surface delta function interaction 4.4 (85]
MSOBEP modified-surface one-boson exchange potential 4.4 [90]
OBEP one-boson exchange potential 4.4
POT potential model fit 4.4
QMCD quantum Monte Carlo diagonalization 3 [52]
SPE single-particle energy(ies) 2.2
SMMC shell-model Monte Carlo 3 (50], [51]
TBME two-body matrix element(s) 3
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Table 8: The PJT and PJP p-shell hamiltonians for A = 16 from [94]. Op,/; is orbit 1 and Ops, is orbit
2. These interactions have a mass dependence given by TBME4 = TBMEA=1%(A/16)%17,

orbits [J T PJT PJP
SPE 1 4.3522 | 4.7345
2 2.1422 1.9751
TBME |1111]|10 |—-3.5383 [ —4.1112
1111(01 |[-0.6188 | 0.2335
1121)10 2.0001 |. 1.1399
112210 2.6524 | 2.1417
1122|101 | —4.1265 | —4.7316
212110 |—6.0149 | —6.4461
212120 | —5.0237 | —4.6554
212111 0.7552 | 0.6215
2121|121 |-1.6697 [ —1.8895
2122110 4.0113 | 3.6183
212221 |-1.6633 | —1.5997
2222|110 |—3.3558 | —3.2280
222230 | —5.8166 | —5.8791
2222|101 |-—3.2533 | —3.1122
222221 | -09119 | —0.7584

~
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