Quadrupole collectivity in the neutron-rich sulfur isotopes ${ }^{38,40,42,44} \mathbf{S}$

B. Longfellow $\odot^{1,2,3}$ D. Weisshaar $\odot,{ }^{1}$ A. Gade, ${ }^{1,2}$ B. A. Brown, ${ }^{1,2}$ D. Bazin ${ }^{1,2}$ K. W. Brown, ${ }^{1,4}$ B. Elman, ${ }^{1,2}$ J. Pereira, ${ }^{1}$ D. Rhodes, ${ }^{1,2}$ and M. Spieker $\odot^{1, *}$
${ }^{1}$ National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
${ }^{2}$ Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
${ }^{3}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{4}$ Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA

(Received 6 November 2020; accepted 7 May 2021; published 18 May 2021)

Abstract

Electromagnetic transition strengths in the even-even neutron-rich sulfur isotopes ${ }^{38,40,42,44} \mathrm{~S}$ were measured using intermediate-energy Coulomb excitation at the National Superconducting Cyclotron Laboratory. By utilizing the sensitivity of the experimental technique to $E 2$ excitations from the ground state, the evolution of the pattern of $B(E 2)$ strengths to several low-lying 2^{+}states was investigated at $Z=16$ from near stability to the $N=28$ island of inversion. The experimental results allowed a detailed comparison with predictions from shell-model calculations using the SDPF-MU Hamiltonian, which was designed to describe collectivity in this region of the nuclear chart. While the shell-model calculations succeeded in modeling transition strengths at $N=22,24,26$, the experimental $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$at $N=28$ was smaller than the predicted value by about a factor of 2 , similar to previous observations for chlorine and argon isotopes around $N=28$. The dependence of this overprediction by theory on the choice of effective charges was explored.

DOI: 10.1103/PhysRevC.103.054309

I. INTRODUCTION

The neutron-rich sulfur isotopes approaching the conventional neutron magic number $N=28$ have attracted a considerable amount of experimental and theoretical attention that has provided great insight into how nuclear shell structure is modified far from the valley of stability [1,2]. Due to the narrowing of the $N=28$ gap via shell evolution, particlehole intruder configurations become lower in energy and compete with the normal-order configurations, leading to the phenomena of shape and configuration coexistence [3]. In fact, at the center of the so-called $N=28$ island of inversion [4], ${ }^{42} \mathrm{Si}[5,6]$ and ${ }^{44} \mathrm{~S}[7]$ show characteristics of deformation and collective behavior indicative of an absent shell closure.

The first evidence for the breakdown of the $N=28$ magic number was provided by the observation of moderate $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strengths in ${ }^{40,42} \mathrm{~S}[8]$ and ${ }^{44} \mathrm{~S}[7]$ through intermediate-energy Coulomb excitation. Further studies of ${ }^{44} \mathrm{~S}$ have suggested the coexistence of a prolate-deformed ground state and a spherical 0_{2}^{+}excited state at 1365 keV [9,10$]$. In addition, lifetime measurements in ${ }^{44} \mathrm{~S}$ [11,12] and supporting theoretical calculations [13,14] have established the coexistence of levels dominated by zero-, one-, and twoneutron particle-hole configurations at low excitation energy.

In a recent in-beam γ-ray spectroscopy measurement, an interesting systematic trend for the $2_{2}^{+} \rightarrow 0_{1}^{+}$and $2_{2}^{+} \rightarrow 2_{1}^{+} \gamma-$ ray branching ratios in the sulfur isotopic chain was observed

[^0]by Lunderberg et al. and discussed in comparison with shellmodel calculations [15]. Shell-model calculations using the SDPF-MU interaction [16] predict that for ${ }^{38} \mathrm{~S}$ and ${ }^{40} \mathrm{~S}$ the $2_{2}^{+} \rightarrow 2_{1}^{+}$transitions will dominate with 96.4% and 99.4% branching ratios, respectively. In ${ }^{42} \mathrm{~S}$, the reverse occurs with a prediction of 84.2% for the $2_{2}^{+} \rightarrow 0_{1}^{+}$transition and only 15.8% for the $2_{2}^{+} \rightarrow 2_{1}^{+}$transition. These shell-model predictions were validated experimentally with the nonobservation of the $2_{2}^{+} \rightarrow 0_{1}^{+}$branch in ${ }^{38} \mathrm{~S}[15,17]$ and a measurement of $85(2) \%$ for the tentative $\left(2_{2}^{+}\right) \rightarrow 0_{1}^{+}$branch in ${ }^{42} \mathrm{~S}$ [15]. The shell-model calculations link the abrupt change in decay pattern for ${ }^{42} \mathrm{~S}$ with the difference in occupancies for the neutron $0 f_{7 / 2}$ and $1 p_{3 / 2}$ orbitals for the 2_{1}^{+}and 2_{2}^{+}states. In addition, a dramatic increase in level density for 0^{+}and 2^{+} states below 4.5 MeV in ${ }^{44} \mathrm{~S}$ (see Fig. 20 of [15]) signals the sudden and massive gain in correlation energy of the intruder configuration formed by moving two neutrons into the $1 p_{3 / 2}$ orbital compared to the closed $0 f_{7 / 2}$ shell configuration, placing ${ }^{44} \mathrm{~S}$ inside of the $N=28$ island of inversion with ${ }^{42} \mathrm{~S}$ right at the boundary. Due to this particular interplay of the single-particle configurations, a measurement of the $B(E 2)$ excitation strengths to higher-lying 2^{+}states provides a unique window into the breakdown of the $N=28$ shell gap at $Z=16$ and the underlying driving forces that are a cornerstone in explaining shell evolution in rare isotopes.

In this work, intermediate-energy Coulomb excitation was used to populate both first and higher-lying 2^{+}states in the even-even sulfur isotopes from $N=22$ to 28 . At intermediate energies, predominantly quadrupole collective states are excited in a single step from the initial level $[18,19]$, making this technique optimal for selectively populating 2^{+}levels
connected to the ground state by $E 2$ transitions. $B(E 2)$ strengths from the ground state to the 2_{1}^{+}states for ${ }^{38,40,42} \mathrm{~S}$ [8] and ${ }^{44}$ S [7] were first measured using intermediate-energy Coulomb excitation over 20 years at the National Superconducting Cyclotron Laboratory using an array of $\mathrm{NaI}(\mathrm{Tl})$ detectors and a plastic phoswich detector. Here, we present the second measurements of the $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength for ${ }^{38,40,44} \mathrm{~S}$ using any experimental technique. Furthermore, the increase in secondary beam rates available since the experiments described in Refs. [7,8] were performed made the first measurements of $B(E 2)$ strengths from the ground state to 2^{+}levels beyond the lowest-energy 2^{+}states in these nuclei possible. Consequently, the observed feeding of the 2_{1}^{+}levels from higher-lying 2^{+}states could be accounted for in the analysis for the first time.

The measured $B(E 2)$ strengths were used to test in detail the predictions of shell-model calculations using the SDPFMU effective interaction [16], which was developed in the years since the previous sulfur Coulomb excitation measurements [7,8]. The SDPF-MU Hamiltonian was constructed to describe the shell and shape evolution in the sulfur and silicon isotopic chains toward $N=28$, in order to provide an important step toward confirming the underlying mechanism of shell evolution suggested by the most successful effective Hamiltonian in this region. In recent works, the reported one-proton knockout cross sections to ${ }^{42} \mathrm{Si}$ states [20] and proton inelastic scattering cross sections measured for ${ }^{41,43} \mathrm{P}$ [21] were best reproduced in shell-model calculations using SDPF-MU. In $N=27{ }^{43} \mathrm{~S}$, the predicted $B(E 2)$ strengths from shell-model calculations using the SDPF-MU interaction and the SDPF-U interaction [22], which was also developed to describe the $N=28$ island of inversion, were similar [23]. Furthermore, theoretical calculations exploring the role of effective charges were performed to address the overprediction of theoretical $B(E 2)$ strengths near $N=28$. This long-standing issue was observed here for ${ }^{44} \mathrm{~S}$ and previously for ${ }^{43} \mathrm{~S}$ [23], ${ }^{45} \mathrm{Cl}$ [24], ${ }^{46} \mathrm{Ar}[8,25,26]$, and ${ }^{47} \mathrm{Ar}$ [27].

II. EXPERIMENT

The intermediate-energy Coulomb excitation experiment was performed using the Coupled Cyclotron Facility at the National Superconducting Cyclotron Laboratory [28]. First, a primary beam of stable ${ }^{48} \mathrm{Ca}$ accelerated to $140 \mathrm{MeV} / \mathrm{u}$. The ${ }^{38,40,42,44}$ S secondary beams were produced in separate allotments of beam time by fragmentation of the primary beam on a ${ }^{9} \mathrm{Be}$ production target at the mid-acceptance position of the A1900 fragment separator [29]. All secondary beams were purified using a $450 \mathrm{mg} / \mathrm{cm}^{2}$ achromatic Al wedge degrader. For each set of runs, the sulfur secondary beam of interest was then impinged on a $492 \mathrm{mg} / \mathrm{cm}^{2}{ }^{209} \mathrm{Bi}$ target at the reaction target position of the S 800 magnetic spectrograph [30] to inelastically excite the sulfur nuclei via the Coulomb interaction. At mid-target, the energies for ${ }^{38,40,42,44} \mathrm{~S}$ were 75, 76,80 , and $73 \mathrm{MeV} / \mathrm{u}$, respectively. Slits in the beam line were used to restrict the momentum acceptance to about 1% for ${ }^{38,40,42} \mathrm{~S}$ and 2% for ${ }^{44} \mathrm{~S}$.

Plastic timing scintillators and the standard set of S800 focal-plane detectors [31] were used to identify the outgoing

FIG. 1. Particle identification plot utilizing energy loss and time of flight for the ${ }^{44} \mathrm{~S}$ setting. The energy loss is measured in the S800 ionization chamber and is proportional to Z^{2} and the time of flight measured between plastic scintillators in the beam line and at the back of the S800 focal plane and is proportional to A / Z.
reaction products and to reconstruct their trajectories on an event-by-event basis. The scattering angles of the projectiles at the reaction target were reconstructed using information from the two $x y$-position sensitive cathode-readout drift chambers (CRDCs) in the S800 focal plane and knowledge of the S800 magnetic rigidity. An example of the particle identification plot using energy loss in the S800 ionization chamber and the time of flight between plastic scintillators in the beam line and at the back of the S 800 focal plane for the ${ }^{44} \mathrm{~S}$ setting is shown in Fig. 1. The vertical line spanning energy loss at a constant time of flight above the ${ }^{44} \mathrm{~S}$ gate is due to pileup in the ionization chamber. The total number of pileup counts at the time of flight corresponding to ${ }^{44} \mathrm{~S}$ is less than 3% of the counts in the energy loss peak. The vertical line below the ${ }^{44} \mathrm{~S}$ gate at a constant time of flight is about an order of magnitude suppressed relative to the number of pileup counts. These counts can be attributed to ${ }^{44} \mathrm{~S}$ nuclei undergoing reactions on one of the four CRDC foils or the ionization chamber entrance foil, which add up to a total of about $20 \mathrm{mg} / \mathrm{cm}^{2}$ of poly p-phenylene terephthalamide $\left(\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}\right)$.

The lower- Z reaction products lose less energy in the ionization chamber but the time of flight is retained since the CRDCs and ionization chamber entrance are close to the end of the flight path. For ${ }^{38,40,42}$ S, the secondary beam intensities were restricted by the rate limit at the S 800 focal plane. For ${ }^{44} \mathrm{~S}$, the average secondary beam intensity was about 3900 pps.

At intermediate beam energies, the analysis of Coulomb excitation experiments must be restricted to a maximum scattering angle or equivalently a minimum impact parameter. This minimum impact parameter is typically chosen to exceed the sum of the radii of the projectile and target nuclei by several fm so that the electromagnetic contribution to the inelastic excitation cross section dominates [25,32-34]. Due to the high velocity of the projectile, the time spent in the vicinity of the target nucleus is short, greatly suppressing multistep excitations [18]. Therefore, for even-even nuclei,
2^{+}states with a sufficiently $E 2$ connection with the ground state are selectively populated in single-step excitations. The scattering angles of the sulfur projectiles were measured using the CRDCs

The experimental cross sections for populating the 2^{+} states via Coulomb excitation were determined by detecting the in-flight γ-ray deexcitations from the sulfur projectiles. To do this, the ${ }^{209} \mathrm{Bi}$ reaction target was surrounded by the CAESium-iodide scintillator ARray CAESAR [35], a 192element array of $\operatorname{CsI}(\mathrm{Na})$ detectors covering nearly 4π and providing high efficiency and granularity. The cross sections were used to extract the electric quadrupole transition strength $B(E 2)$ assuming the Coulomb excitation mechanism. In particular, the relativistic model of Coulomb excitation developed by Alder and Winther [18] was utilized. The reduced transition strengths obtained from intermediate-energy Coulomb excitation experiments using this method, including experiments at similar beam energies and in the same mass region as the present results, have shown excellent agreement with the results found using other experimental probes [33].

To model the in-beam response of CAESAR after Doppler reconstruction, GEANT4 simulations benchmarked against laboratory-frame spectra from standard γ-ray calibration sources were utilized. The simulated efficiency curve was scaled to match the measured efficiency curve following the method of [36], introducing a 5\% systematic uncertainty [37]. The intrinsic and in-beam energy resolutions of CAESAR as a function of γ-ray energy are discussed in Ref. [35]. To determine Coulomb excitation cross sections from the deexcitation γ-ray yields, no addback procedure was applied to the singles spectra for CAESAR in order to avoid additional systematic uncertainties on the γ-ray detection efficiency. However, the gain in statistics afforded by nearest-neighbor addback was exploited in the $\gamma-\gamma$ plots used to identify coincidences and in the multiplicity-one plots used to identify ground-state transitions.

III. RESULTS

For each of the nuclei ${ }^{38,40,42,44} \mathrm{~S}$, the Doppler-corrected γ-ray spectra were fit with GEANT4 simulations of the line shapes of observed γ-ray transitions and GEANT4 simulations of Doppler-corrected $511-\mathrm{keV}$ and $1460-\mathrm{keV}$ laboratoryframe background lines together with a double exponential background. These fits were performed using several choices for the maximum scattering angle. Note that the GEANT4 simulations take into account the small changes in detection efficiency with choice of scattering angle cut due to the anisotropic angular distribution of the emitted γ rays. The angle-integrated cross sections, determined from the efficiency-corrected γ-ray yields, number of incoming S projectiles, and reaction target thickness, were then converted to $B(E 2)$ strengths using the Alder-Winther model of relativistic Coulomb excitation. In each case, a more restrictive maximum scattering angle cut than the nominal maximum safe scattering angle as determined from the touching spheres plus 2 fm prescription for the minimum safe impact parameter was utilized due to the angular spread of the beam and angular straggling in the target $[36,38]$.

For $2_{x}^{+} \rightarrow 2_{1}^{+}$decays, there are contributions from both $M 1$ and $E 2$ multipoles. Since the multipole mixing ratio affects the angular distribution of the emitted γ rays, there is an effect on the detection efficiency of the array. The quoted $B(E 2)$ strengths were extracted using the predicted multipole mixing ratios from shell-model calculations using the SDPFMU interaction. From GEANT4 simulations of CAESAR for the $1513-\mathrm{keV} 2_{2}^{+} \rightarrow 2_{1}^{+}$transition in ${ }^{38} \mathrm{~S}$, the difference in efficiency using the angular distribution predicted from the shell-model multipole mixing ratio compared to assuming a pure $E 2$ transition is about 0.1%. The SDPF-MU multipole mixing ratios were used to determine the angular distributions for all mixed transitions in this work. In addition, proton and neutron effective charges of 1.35 and 0.35 , respectively, [16] were utilized for these SDPF-MU shell-model calculations.

The uncertainties for transition energies were derived from the fit uncertainties added in quadrature with a systematic uncertainty of 4.5 keV [39]. For the $2_{1}^{+} \rightarrow 0_{1}^{+}$transitions, the reported energies are from fits to the non-addback spectra with more restrictive choices of scattering angle. For the $2_{x}^{+} \rightarrow 2_{1}^{+}$ transitions, the reported energies are from fits to the projections of the $\gamma-\gamma$ coincidence matrices with nearest-neighbor addback employed and no scattering angle cut applied. The uncertainty in energy for the $2_{2}^{+} \rightarrow 0_{1}^{+}$transition in ${ }^{42} \mathrm{~S}$ was found by fitting the multiplicity-1 nearest-neighbor addback spectrum.

A. ${ }^{38} \mathrm{~S}$

The Doppler-corrected γ-ray spectrum for ${ }^{38} \mathrm{~S}$ measured with CAESAR is provided in Fig. 2 with a laboratory-frame scattering angle cut of 40 mrad applied. The low-energy region of the spectrum is dominated by bremsstrahlung, which is electromagnetic radiation produced by the acceleration of electrons from the target atoms due to interactions with the beam, and other beam-correlated background such as target breakup and reaction products interacting with the beam pipe. The highest intensity peak corresponds to the known $2_{1}^{+} \rightarrow$ 0_{1}^{+}transition in ${ }^{38} \mathrm{~S}$ at 1292.0(2) keV [40]. The energy of the transition measured in this work is $1289(5) \mathrm{keV}$. The weak γ-ray peaks at 1513 and 2508 keV were included on the basis of $\gamma-\gamma$ coincidence data.

The background-subtracted projection of the $\gamma-\gamma$ coincidence matrix gated on the $1292-\mathrm{keV}$ peak is shown in Fig. 3. As seen in the figure, the $1292-\mathrm{keV}$ transition is in coincidence with transitions at 1513 and 2508 keV . The background subtraction was performed by gating on a projection of the same width as the $1292-\mathrm{keV}$ gate but at higher energy and subtracting the resulting spectrum from the $1292-\mathrm{keV}$ projection. The $1513-\mathrm{keV}$ peak has been observed previously and tentatively assigned as the $\left(2_{2}^{+}\right) \rightarrow 2_{1}^{+}$transition [15,17,41-43]. The adopted energy for the transition is $1513(2) \mathrm{keV}$ [40] and the energy measured here is $1512(9) \mathrm{keV}$. Its observation from intermediate-energy Coulomb excitation in this work confirms the 2_{2}^{+}assignment. The $2508(25)-\mathrm{keV}$ transition from a level at $3800(25) \mathrm{keV}$ has not been observed in previous works. Shell-model calculations using the SDPF-MU interaction predict that the 2_{3}^{+}level in ${ }^{38} \mathrm{~S}$ is at 3553 keV in excitation energy and decays with a relative branching ratios of 100% to the

FIG. 2. Top: Doppler-corrected energy spectrum for ${ }^{38} \mathrm{~S}$ gated on scattering angles smaller than 40 mrad in the laboratory frame. The blue curves are the individual components of the fit function derived from GEANT4 simulations along with a double exponential background. The $1292-\mathrm{keV} 2_{1}^{+} \rightarrow 0_{1}^{+}$transition, $1513-\mathrm{keV} 2_{2}^{+} \rightarrow$ 2_{1}^{+}transition, and $2508-\mathrm{keV} 2_{3}^{+} \rightarrow 2_{1}^{+}$transition were included in the fit. The red curve is the total fit function. Bottom: Low-energy portion of the Doppler-corrected energy spectrum for ${ }^{38} \mathrm{~S}$. The large background at low energies is due to bremsstrahlung and other beamcorrelated background.
$2_{1}^{+}, 18 \%$ to the ground state, and 18% to the 2_{2}^{+}level. This is consistent with the $2508-1292 \mathrm{keV}$ cascade from a $3800-\mathrm{keV}$ level established here. Due to low statistics, any additional γ-decay branches from the $3800-\mathrm{keV}$ state were not observed.

The nominal maximum safe scattering angle is 55 mrad in the laboratory frame, as determined from the touching spheres plus 2 fm prescription for the minimum safe impact parameter. While the uncertainty in the angle measurement due to the position resolution of the CRDCs is about 2 mrad [31], the angular spread of the incoming beam is on the order of 5-10 mrad. Figure 4 shows the number of background-subtracted counts in the $1292-\mathrm{keV}$ full-energy peak as a function of scattering angle in the laboratory frame. At the nominal safe scattering angle cut of 55 mrad , the experimental data fall below the Alder-Winther prediction, which does not account for the angular spread in the incoming beam or angular straggling in the target, prompting a more restrictive choice for the maximum of 40 mrad . The angle-integrated cross section for the $1292-\mathrm{keV}$ transition as a function of scattering angle cut is shown in the top panel of Fig. 5. Note that the top panel of Fig. 5 is essentially proportional to the angular integration of the counts in Fig. 4. In practice, the cross sections in the top panel of Fig. 5 were determined from the efficiency-

FIG. 3. Background-subtracted, Doppler-corrected γ-ray spectrum for ${ }^{38} \mathrm{~S}$ counts in coincidence with the $1292-\mathrm{keV} 2_{1}^{+} \rightarrow 0_{1}^{+}$ transition. The $1513-\mathrm{keV}$ and $2508-\mathrm{keV}$ transitions are visible and included in the red fit curve derived from GEANT4 simulations.
corrected γ-ray yields of fits similar to that shown in Fig. 2. Here, the cross sections have been corrected for the feeding contributions of the $1513-\mathrm{keV}$ and $2508-\mathrm{keV}$ transitions. The corresponding $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strengths calculated using the semiclassical approach of Alder and Winther are shown in the bottom panel of Fig. 5. Up until about 40 mrad , the extracted $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$values are rather constant, while for larger scattering cuts they start to decrease, reflecting the deviation from the Alder-Winther prediction seen in Fig. 4.

Using a maximum scattering angle of 40 mrad in the laboratory frame, the $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength was determined to be $229(19) e^{2} \mathrm{fm}^{4}$. Similarly, the $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{2}^{+}\right)$ strength was found to be $21(8) e^{2} \mathrm{fm}^{4}$ and the $B\left(E 2 ; 0_{1}^{+} \rightarrow\right.$ 2_{3}^{+}) strength was found to be $11(8) e^{2} \mathrm{fm}^{4}$ for the same maximum scattering angle.

FIG. 4. Counts in the $1292-\mathrm{keV}$ peak as a function of scattering angle in the laboratory frame. The red curve is from the AlderWinther model and does not include the effects of the angular spread in the beam or angular straggling in the target. Consequently, a maximum scattering angle of 40 mrad was considered in the analysis rather than the nominal safe scattering angle of 55 mrad .

FIG. 5. Top: feeding-subtracted, angle-integrated cross section as a function of choice of scattering angle cut derived from the experimental data for the 2_{1}^{+}state in ${ }^{38} S$ (black circles). The red curve is the expected cross section assuming a $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength of $229 e^{2} \mathrm{fm}^{4}$. Bottom: $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength calculated using the Alder-Winther model of Coulomb excitation for different choices of maximum scattering angle.

The value for the $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength from the previous intermediate-energy Coulomb excitation experiment by Scheit et al. is $235(30) e^{2} \mathrm{fm}^{4}$ [8]. The $1513-\mathrm{keV}$ and $2508-$ keV feeding transitions were not observed by Scheit et al. due to limited statistics. If feeding is neglected in this analysis, the extracted $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength is $261 e^{2} \mathrm{fm}^{4}$, which is also consistent with the previous value [8].

B. ${ }^{40} \mathrm{~S}$

The known $2_{1}^{+} \rightarrow 0_{1}^{+}$transition in ${ }^{40} \mathrm{~S}$ at $903.68(9) \mathrm{keV}$ [40] is clearly visible in the Doppler-corrected γ-ray energy spectrum with a laboratory-frame scattering angle cut of 40 mrad applied shown in Fig. 6. The energy of the transition measured in this work is $902(5) \mathrm{keV}$. In addition, there is a weak transition at 2452 (23) keV. The $2452-\mathrm{keV}$ transition is more clearly observed in the background-subtracted projection of the two-dimensional $\gamma-\gamma$ coincidence matrix gated on 904 keV shown in Fig. 7. From this coincidence relationship, the $2452(23)-\mathrm{keV}$ transition is inferred to originate from a level at 3356(23) keV.

The angle-integrated cross section for the $904-\mathrm{keV}$ transition, corrected for feeding by the $2452-\mathrm{keV}$ transition, is shown in the top panel Fig. 8 as a function of scattering angle cut. The nominal maximum scattering angle in the

FIG. 6. Doppler-corrected energies of ${ }^{40} \mathrm{~S} \gamma$ rays measured with CAESAR. A scattering angle cut of 40 mrad in the laboratory frame has been applied. The red curve is the total fit function and the blue curves are the individual components of the fit function derived from GEANT4 simulations along with a double exponential background. The $904-\mathrm{keV} 2_{1}^{+} \rightarrow 0_{1}^{+}$transition and $2452-\mathrm{keV} 2_{x}^{+} \rightarrow 2_{1}^{+}$transition were included in the fit.
laboratory frame is 51 mrad . The bottom panel shows the corresponding $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$values. The $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$ strength adopted in this work is $284(26) e^{2} \mathrm{fm}^{4}$ using the more conservative 30 mrad laboratory-frame scattering angle cut. The value for the $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength reported by Scheit et al. from an intermediate-energy Coulomb excitation experiment, in which no feeding was observed due to limited statistics, is $334(36) e^{2} \mathrm{fm}^{4}$ [8]. If feeding from the $2452-\mathrm{keV}$ transition is neglected in this work, the extracted $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength is $305 e^{2} \mathrm{fm}^{4}$, which is consistent with the previous measurement within uncertainties.

SDPF-MU shell-model calculations for ${ }^{40}$ S predict that the 2_{2}^{+}level is at 3285 keV and that the 2_{3}^{+}state is at 3579 keV . The 2_{2}^{+}state in the calculation decays nearly 100% of the time to the 2_{1}^{+}level. Similarly, the 2_{3}^{+}state decays with a relative

FIG. 7. Background-subtracted, Doppler-corrected γ-ray spectrum for ${ }^{40}$ S gated on coincidences with the $904-\mathrm{keV}$ transition from the 2_{1}^{+}level to the ground state. The red fit curve from geant4 simulations includes the clearly seen $2452-\mathrm{keV}$ transition.

FIG. 8. Top: angle-integrated cross section as a function of scattering-angle cut for the feeding-subtracted experimental data on the 2_{1}^{+}state in ${ }^{40} \mathrm{~S}$ (black circles). The expected cross section assuming a $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength of $284 e^{2} \mathrm{fm}^{4}$ is represented by the red curve. Bottom: $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength calculated using the Alder-Winther model of Coulomb excitation for different choices of maximum scattering angle.
100% branch to the 2_{1}^{+}level and an 8% branch to the ground state. However, the predicted $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{2}^{+}\right)$strength is only $2.9 e^{2} \mathrm{fm}^{4}$ compared to $54 e^{2} \mathrm{fm}^{4}$ for the $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{3}^{+}\right)$ strength. The experimental $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{x}^{+}\right)$strength for the $3356(23)-\mathrm{keV}$ state calculated from the yield of the $2452-\mathrm{keV}$ transition in this work is $26(17) e^{2} \mathrm{fm}^{4}$ using the 30 mrad scattering angle cut. No higher-lying 2^{+}states beyond the first 2^{+}are listed in the current data evaluation [40].

$$
\text { C. }{ }^{42} \text { S }
$$

The 2_{1}^{+}state in ${ }^{42} \mathrm{~S}$ has been reported at $903(5) \mathrm{keV}$ [40]. In this work, γ rays corresponding to the $2_{1}^{+} \rightarrow 0_{1}^{+}$transition are clearly seen in Fig. 9, the non-addback Doppler-corrected γ-ray spectrum measured with CAESAR using a scattering angle cut of 40 mrad in the laboratory frame. The energy of the transition extracted from the fit performed in this experiment is $904(5) \mathrm{keV}$, in good agreement with the literature value.

Lunderberg et al. observed a 3002(4) keV γ ray in ${ }^{42} \mathrm{~S}$ and tentatively associated this transition with the decay from the $\left(2_{2}^{+}\right)$state to the ground state [15]. This transition can be seen at $3005(13) \mathrm{keV}$ in the nearest-neighbor addback spectrum gated on multiplicity one events shown in Fig. 10. For an array like CAESAR covering nearly the full solid angle, the relative enhancement of the $3002-\mathrm{keV}$ peak for events where only

FIG. 9. ${ }^{42}$ S Doppler-corrected energy spectrum measured by CAESAR for scattering angles smaller than 40 mrad in the laboratory frame. The blue curves are the individual components of the fit function derived from GEANT4 simulations along with a double exponential background while the red curve is the total fit function. The $903-\mathrm{keV} 2_{1}^{+} \rightarrow 0_{1}^{+}$transition, $2100-\mathrm{keV} 2_{2}^{+} \rightarrow 2_{1}^{+}$transition, $3002-\mathrm{keV} 2_{2}^{+} \rightarrow 0_{1}^{+}$transition, and $4150-\mathrm{keV} 2_{x}^{+} \rightarrow 2_{1}^{+}$transition (see discussion in text) were included in the fit.
one γ ray was detected (a so-called multiplicity one event) compared to all events is indicative of a direct transition to ground state. The observation of the $3002-\mathrm{keV}$ transition in intermediate-energy Coulomb excitation in this work confirms the assignment by Lunderberg et al. rather than the proposal for the $\left(2_{2}^{+}\right)$level lying at 2779 keV and decaying predominantly to the 2_{1}^{+}state put forth by Sohler et al. [44].

From [15], the 3002-keV level has relative decay branches of $100(2) \%$ to the ground state and $18(2) \%$ to the 2_{1}^{+}state via a $2100(4)-\mathrm{keV} \gamma$-ray transition. As seen in Fig. 11, the $2100-\mathrm{keV}$ peak is visible in the background-subtracted projection of the two-dimensional $\gamma-\gamma$ coincidence matrix gated on the $903-\mathrm{keV}$ transition along with a broad feature around 4150 (110) keV . The energy of the $2100-\mathrm{keV}$ transition

FIG. 10. Doppler-corrected energy spectrum for ${ }^{42} \mathrm{~S}$ for events where only one γ ray was detected by CAESAR. Nearest-neighbor addback was utilized. The $3002-\mathrm{keV}$ transition from the 2_{2}^{+}state to the ground state is visible and included in the red fit curve derived from GEANT4 simulations.

FIG. 11. Coincidences with the $903-\mathrm{keV} 2_{1}^{+} \rightarrow 0_{1}^{+}$transition in ${ }^{42} \mathrm{~S}$. This spectrum has been background subtracted and Doppler corrected. A peak at 2100 keV and a feature around 4150 keV are visible and included in the red fit curve derived from geant4 simulations. See text for discussion.
measured in this work is $2117(31) \mathrm{keV}$, consistent with the more precise value of $2100(4) \mathrm{keV}$ from [15]. Due to the broad feature originating from Doppler-corrected $1460-\mathrm{keV}$ background, the relative intensities of the $3002-\mathrm{keV}$ and $2100-$ keV transitions were fixed to the known efficiency-corrected branching ratio from [15] in the fit of Fig. 9 and in the similar fits performed using different scattering angle cuts.

Figure 12 shows the angle-integrated cross section for the $903-\mathrm{keV}$ transition as a function of scattering angle cut. The cross sections have been corrected for feeding from the 2100keV and $4150-\mathrm{keV}$ transitions. Unlike for ${ }^{38} \mathrm{~S}$ and ${ }^{40} \mathrm{~S}$, this plot shows a clear and significant dependence of extracted $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength on laboratory-frame scattering angle cut for all choices of maximum scattering angle. A method similar in principle to the CRDC scaling method introduced in Refs. [45,46] was developed to remove this dependence. In Refs. [45,46], the low statistics of a nucleus of interest and low CRDC efficiency prevented the direct application of a maximum scattering angle cut. Instead, the intermediateenergy Coulomb excitation cross section for a high-statistics contaminant in the same setting as a function of maximum scattering angle was utilized. The ratios of cross sections at different maximum scattering angles to the total cross section with no scattering angle cut for the high-statistics contaminant were determined. Then, the same ratios were applied to the cross section for the nucleus of interest with no scattering angle cut to estimate the cross sections and $B(E 2)$ values at the given maximum scattering angle cuts. Therefore, in this method, the shapes of the cross section curves as a function of maximum scattering angle for the contaminant and nucleus of interest were assumed to be the same within experimental uncertainties.

Here, a high-statistics contaminant in the ${ }^{42} S$ setting was not available so we instead use the shape of the theoretical cross section curve as a function of maximum scattering angle, which is fixed by the A and Z of the target and projectile, multipolarity of the transition, energy of the state

FIG. 12. Top: experimental feeding-subtracted and angle-integrated cross section as a function of scattering-angle cut for the 2_{1}^{+}state in ${ }^{42} \mathrm{~S}$ (black circles). The red curve is the predicted cross section for a $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength of $326 e^{2} \mathrm{fm}^{4}$. The blue data points are the experimental data with the modification for scattering angle explained in the text. Bottom: $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$ strength for different choices of maximum scattering angle calculated using the Alder-Winther model of Coulomb excitation.
being excited, and velocity of the beam at mid-target. The experimental cross section curve should have the same shape over the range of scattering angles smaller than the scattering angle at which the angular straggling begins to affect the data, as seen in Fig. 5 for ${ }^{38} \mathrm{~S}$ and Figure 8 for ${ }^{40} \mathrm{~S}$. The $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength is proportional to the scaling factor of the curve. The theoretical cross section was parametrized as $a_{t} \theta^{2}+b_{t} \theta+c_{t}$ where θ is the maximum scattering angle. Similarly, the experimental data were parameterized as $a_{e} \theta^{2}+$ $b_{e} \theta+c_{e}$ for experimental laboratory-frame scattering angles from 10 to 35 mrad. A quadratic modification factor was then applied to the experimental scattering angles where the value of this factor was chosen to minimize $\left(a_{t} / b_{t}-a_{e} / b_{e}\right)^{2}$. Since the minimization is based on the ratios a_{t} / b_{t} and a_{e} / b_{e}, the shape of the experimental curve is adjusted to match the shape of the theoretical curve without matching the absolute scaling. Therefore, the $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength is not assumed beforehand in the modification procedure. The best fit scaling factor for the theoretical curve after modifying the experimental data corresponds to a $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength of $326 e^{2} \mathrm{fm}{ }^{4}$.

The ${ }^{42} \mathrm{~S}$ data were taken in two separate sets of beam time, one in the middle of the experiment and one at the end of
the experiment. The data from the first set and the second set show the same correlation between $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{2}^{+}\right)$strength and laboratory scattering angle shown in Fig. 12. For example, the cross sections found for the 40 mrad laboratory-frame scattering angle cut from the first and second data sets are 48.4 and 48.2 mb , respectively. The experimental data for each of the neutron-rich sulfur isotopes was taken in the following order: ${ }^{38} \mathrm{~S},{ }^{40} \mathrm{~S},{ }^{42} \mathrm{~S}$ (first half), ${ }^{43} \mathrm{~S}$ (see $[23,37]$), ${ }^{44} \mathrm{~S}$, and ${ }^{42} \mathrm{~S}$ (second half). The ${ }^{43} \mathrm{~S}$ data $[23,37]$ and ${ }^{44} \mathrm{~S}$ data discussed later do not clearly show the same correlation between choice of scattering angle cut and $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{2}^{+}\right)$strength observed for ${ }^{42} \mathrm{~S}$. Therefore, the issue did not appear at a certain time and persist for the remainder of the experiment. Based on this, it is hypothesized that the problem is with the scatteringangle reconstruction on an incoming beam basis rather than a scattering-angle-dependent loss in γ-ray detection efficiency.

The $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$in ${ }^{42} \mathrm{~S}$ measured in intermediateenergy Coulomb excitation by Scheit et al. was 397(63) $e^{2} \mathrm{fm}^{4}$ [8]. The lifetime of the 2_{1}^{+}state in ${ }^{42} \mathrm{~S}$ has also been measured using the recoil-distance method to be $20.6(15) \mathrm{ps}$ [12] and $21.5_{-0.9}^{+1.1} \mathrm{ps}$ [47]. Using an excitation energy of $903(5) \mathrm{keV}$, the corresponding $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strengths are $329(26)$ $e^{2} \mathrm{fm}^{4}$ from [12] and $315_{-16}^{+18} e^{2} \mathrm{fm}^{4}$ from [47]. The value of $326 e^{2} \mathrm{fm}^{4}$ found after applying the modification to the scattering angle is in very good agreement with these previous measurements. The uncertainty in the extracted $B\left(E 2 ; 0_{1}^{+} \rightarrow\right.$ 2_{1}^{+}) strength was estimated by varying the number of experimental data points included in the fit and using both linear and quadratic modification factors. Including an additional 10% systematic uncertainty, the adopted value is $326(48) e^{2} \mathrm{fm}^{4}$. Since this value is close to the uncertainty-weighted average from the previous measurements of $323 e^{2} \mathrm{fm}^{4}$, the $B(E 2)$ values to the higher-lying 2^{+}states reported below are the same as those calculated relative to the previously measured $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength.

The Coulomb excitation cross section to the $3002-\mathrm{keV}$ state was found using the 35 mrad laboratory-frame scattering angle cut from the yields of the detected $2100-\mathrm{keV}$ and 3002keV deexcitation γ rays. The $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{2}^{+}\right)$strength was calculated using the same modified scattering angle used to extract the adopted result for the $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength to be $27(14) e^{2} \mathrm{fm}^{4}$. SDPF-MU shell-model calculations predict a $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{5}^{+}\right)$strength of $16 e^{2} \mathrm{fm}^{4}$ for the level at 5003 keV . The predicted reduced transition strengths to the 2_{3}^{+}and 2_{4}^{+}states are less than $0.001 e^{2} \mathrm{fm}^{4}$ and about $4 e^{2} \mathrm{fm}^{4}$, respectively. The 2_{4}^{+}level at 4924 keV decays with a relative branching ratios of 100% to the ground state and 54% branching ratio to the 2_{1}^{+}state (with smaller branching ratios to other states) while the 2_{5}^{+}level decays with relative branching ratios of 100% to the 2_{1}^{+}state and 11% to the ground state in the calculation. Employing the same method used for the $3002-\mathrm{keV}$ level, the reduced transition strength to the level at $5053(110) \mathrm{keV}$ that decays via a $4150(110)-\mathrm{keV} \gamma$ ray to the $903-\mathrm{keV} 2_{1}^{+}$state was calculated to be $11(9) e^{2} \mathrm{fm}^{4}$ assuming an $E 2$ excitation from the data using the 35 mrad scattering angle cut. Lunderberg et al. report γ-ray transitions at 4102(8) and 4266(7) keV that were not placed in the level scheme [15].

FIG. 13. Doppler-corrected energy spectrum for the ${ }^{44}$ S projectiles identified in the S800 gated on scattering angles smaller than 40 mrad in the laboratory frame. The red curve shows the total fit function. The blue curves are the individual components of the fit function derived from GEANT4 simulations along with a double exponential background. The $1329-\mathrm{keV} 2_{1}^{+} \rightarrow 0_{1}^{+}$transition and $949-\mathrm{keV} 2_{3}^{+} \rightarrow 2_{1}^{+}$transition were included in the fit.

Due to its large energy uncertainty, the 4150 (110)- keV feature may correspond to one or a combination of these transitions.

D. ${ }^{44} \mathrm{~S}$

Figure 13 shows the Doppler-corrected spectrum of γ rays measured with CAESAR in coincidence with ${ }^{44}$ S projectiles at the S800 focal plane. Here, a laboratory-frame scattering angle cut of 40 mrad was employed. The previously-observed 1329.0(5)-keV γ ray corresponds to the $2_{1}^{+} \rightarrow 0_{1}^{+}$transition [10]. Other works report the energy of this transition as 1297(18) keV [7], 1350(10) keV [44], 1319(7) keV [11], 1321(10) keV [48], and 1320(8) keV [49]. The energy of the transition measured in this work is $1324(6) \mathrm{keV}$. The $949(5)-\mathrm{keV} 2_{3}^{+} \rightarrow 2_{1}^{+}$transition reported in the literature [40] is more clearly observed in the background-subtracted projection of the two-dimensional $\gamma-\gamma$ coincidence matrix gated on 1329 keV for events with exactly two detected γ rays shown in Fig. 14. The energy for the $2_{3}^{+} \rightarrow 2_{1}^{+}$transition measured in this work is 941 (19) keV . This transition has also been reported recently at an energy of 954(4) keV [21]. SDPF-MU shell-model calculations predict that the 2_{3}^{+}state decays with relative branching ratios of 100% to the 2_{1}^{+} level and 14% to the ground state. Due to low statistics, the possible ground state branch was not observed in this experiment or in previous works. The $2150(11)-\mathrm{keV}$ transition reported in the literature is tentatively assigned as the γ decay of the 2_{2}^{+}state to the ground state [11,12]. Due to the Doppler-corrected 1460-keV laboratory-frame background, the possible presence of this transition in this work is not well constrained.

The angle-integrated cross section for the $1329-\mathrm{keV}$ transition, corrected for feeding by the $949-\mathrm{keV}$ transition, is shown in the top panel Fig. 15 as a function of the choice of maximum scattering angle. As seen in the bottom panel of Fig. 15, the corresponding $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength does not

FIG. 14. Doppler-corrected γ-ray spectrum in coincidence with the $1329-\mathrm{keV}$ transition from the 2_{1}^{+}level to the ground state in ${ }^{44} \mathrm{~S}$. Background subtraction has been applied. The $949-\mathrm{keV}$ transition can be seen and is included in the red fit curve derived from Geant4 simulations.
decrease with scattering angle cut with the same large slope observed for ${ }^{42} \mathrm{~S}$. Furthermore, ${ }^{45} \mathrm{Cl}$ nuclei were present as a component of the cocktail incoming secondary beam in the ${ }^{44} \mathrm{~S}$ setting. The $B(E 2)$ strength measured in this experiment from the $\left(1 / 2^{+}\right)$ground state of ${ }^{45} \mathrm{Cl}$ to the $\left(5 / 2^{+}\right)$level at 928(9) keV was 82(29) $e^{2} \mathrm{fm}^{4}$ using a laboratory-frame scattering angle cut of 40 mrad [37]. This result is in excellent agreement with the previous intermediate-energy Coulomb excitation measurement of $87(24) e^{2} \mathrm{fm}^{4}$ [24], providing additional evidence that the modification necessary for ${ }^{42} \mathrm{~S}$ is not required for ${ }^{44} \mathrm{~S}$. The $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength extracted for ${ }^{44} \mathrm{~S}$ using a 35 mrad laboratory-frame scattering angle cut is $221(28) e^{2} \mathrm{fm}^{4}$. The nominal maximum scattering angle in the laboratory frame from the touching spheres plus 2 fm approximation is 48 mrad . Using the same angle cut and the yield of the $949-\mathrm{keV} 2_{3}^{+} \rightarrow 2_{1}^{+}$transition, the $B\left(E 2 ; 0_{1}^{+} \rightarrow\right.$ 2_{3}^{+}) strength was determined to be $10(6) e^{2} \mathrm{fm}^{4}$.

The $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength reported from intermediateenergy Coulomb excitation by Glasmacher et al. is 314(88) $e^{2} \mathrm{fm}^{4}$ [7] which overlaps with the value in this work of $221(28) e^{2} \mathrm{fm}^{4}$ within mutual uncertainties. No feeding transitions were observed in the work of Glasmacher et al. [7]. If feeding is neglected in this work, the $B\left(E 2 ; 0_{1}^{+} \rightarrow\right.$ 2_{1}^{+}) value increases to $231 e^{2} \mathrm{fm}^{4}$, slightly improving the agreement.

IV. DISCUSSION

A. $B(E 2)$ strengths in the even neutron-rich sulfur isotopes

In general, the $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strengths extracted in this work for ${ }^{38,40,42,44} \mathrm{~S}$ are slightly lower than those published by Scheit et al. [8] and Glasmacher et al. [7], as seen in Table I. In the previous works, transitions feeding the 2_{1}^{+}states were not observed due to limited statistics preventing feeding subtraction from being performed when determining the excitation cross sections. Furthermore, the $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strengths in ${ }^{42} \mathrm{~S}$ calculated from recent lifetime measurements of 329(26)

FIG. 15. Top: measured feeding-subtracted, angle-integrated cross section for the 2_{1}^{+}state in ${ }^{44} \mathrm{~S}$ as a function of choice of maximum scattering angle cut (black circles). The theoretical cross section for a $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength of $221 e^{2} \mathrm{fm}^{4}$ is shown in red. Bottom: $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength calculated for different choices of maximum scattering angle using the model of Coulomb excitation developed by Alder and Winther.
$e^{2} \mathrm{fm}^{4}$ [12] and $315_{-16}^{+18} e^{2} \mathrm{fm}^{4}$ [47] are slightly below the value of 397 (63) $e^{2} \mathrm{fm}^{4}$ from Scheit et al. and are in good agreement with the value of $326(48) e^{2} \mathrm{fm}^{4}$ found in the present work. Figure 16 shows a visual comparison of the measured $B(E 2)$ strengths and the $B(E 2)$ strengths predicted using shell-model calculations with the SDPF-MU interaction for several 2^{+} states. Overall, there is very good agreement in both the pattern and magnitude of the excitation strengths between experiment and theory from $N=22$ to $N=26$. However, at $N=28$, the experimental value for the $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$ strength is about a factor of 2 lower than the predicted value.

In ${ }^{38} \mathrm{~S}$, the $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{2}^{+}\right)$strength was measured as $21(8) e^{2} \mathrm{fm}^{4}$ from the $1513-\mathrm{keV} 2_{2}^{+} \rightarrow 2_{1}^{+}$transition while the reduced transition strength from the ground state to the newly observed level at $3800(25) \mathrm{keV}$ was found to be 11(8) $e^{2} \mathrm{fm}^{4}$ from the $2508-\mathrm{keV}$ transition to the 2_{1}^{+}state. Based on comparison to the theoretical calculations (see Fig. 16 and Table I), the newly observed $3800(25)-\mathrm{keV}$ level is inferred to have structure most similar to the shell-model 2_{3}^{+}state. The 2_{2}^{+}state at 2805 keV was observed to γ decay to the 2_{1}^{+} level but not to the ground state, consistent with the previous experimental measurements $[15,17]$ and with the dominance of the $2_{2}^{+} \rightarrow 2_{1}^{+}$branch predicted by SDPF-MU shell-model calculations.

TABLE I. $B(E 2)$ strengths for the neutron-rich sulfur isotopes studied in this work compared to the results of previous intermediateenergy Coulomb excitation experiments and theoretical calculations using the SDPF-MU Hamiltonian with effective proton and neutron charges of 1.35 and 0.35 , respectively.

${ }^{A} \mathrm{~S}$	Excitation	This work $\left(e^{2} \mathrm{fm}^{4}\right)$	Prior work $\left(e^{2} \mathrm{fm}^{4}\right)$	SDPF-MU $\left(e^{2} \mathrm{fm}^{4}\right)$
${ }^{38} \mathrm{~S}$	$0_{1}^{+} \rightarrow 2_{1}^{+}$	$229(19)$	$235(30)[8]$	160
	$0_{1}^{+} \rightarrow 2_{2}^{+}$	$21(8)$		25
	$0_{1}^{+} \rightarrow 2_{3}^{+}$	$11(8)$		26
${ }^{40} \mathrm{~S}$	$0_{1}^{+} \rightarrow 2_{1}^{+}$	$284(26)$	$334(36)[8]$	300
	$0_{1}^{+} \rightarrow 2_{2}^{+}$			3
	$0_{1}^{+} \rightarrow 2_{3}^{+}$	$26(17)$		54
${ }^{42} \mathrm{~S}$	$0_{1}^{+} \rightarrow 2_{1}^{+}$	$326(48)$	$397(63)[8]$	370
	$0_{1}^{+} \rightarrow 2_{2}^{+}$	$27(14)$		38
	$0_{1}^{+} \rightarrow 2_{5}^{+}$	$11(9)$		16
${ }^{44} \mathrm{~S}$	$0_{1}^{+} \rightarrow 2_{1}^{+}$	$221(28)$	$314(88)[7]$	450
	$0_{1}^{+} \rightarrow 2_{2}^{+}$			12
	$0_{1}^{+} \rightarrow 2_{3}^{+}$	$10(6)$		11

For ${ }^{40} \mathrm{~S}$, the reduced transition probability from the ground state to the presumed 2^{+}level at $3356(23) \mathrm{keV}$ was found to be $26(17) e^{2} \mathrm{fm}^{4}$. Based on its observation in this work, the

FIG. 16. $B\left(E 2 ; 0_{1}^{+} \rightarrow 2^{+}\right)$strengths in the even-even sulfur isotopes for the 2^{+}states measured in this work compared to predictions from shell-model calculations utilizing the SDPF-MU Hamiltonian for the first five 2^{+}states.

3356(23)-keV level corresponds more closely to the collective shell-model 2_{3}^{+}state shown in Fig. 16 and Table I. The predicted relative branching ratios for the 2_{3}^{+}state are 100% to the 2_{1}^{+}level and 8% to the ground state. Here, only the $2_{3}^{+} \rightarrow 2_{1}^{+}$branch of the newly-reported $3356(23)-\mathrm{keV}$ state was observed, consistent with the theoretical predictions given the level of statistics. The 2_{2}^{+}state is predicted to decay to the 2_{1}^{+}level with a 99.4% branching ratio but has a predicted $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{2}^{+}\right)$value of only $2.9 e^{2} \mathrm{fm}^{4}$ compared to the predicted $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{3}^{+}\right)$value of $54 e^{2} \mathrm{fm}^{4}$. In the single-particle picture discussed by Lunderberg et al. [15], the neutron $1 p_{3 / 2}$ occupancy for the ground state is very similar to the neutron $1 p_{3 / 2}$ occupancies for the 2_{1}^{+}and 2_{3}^{+}states, both of which states were observed in the present work. The SDPFMU neutron $1 p_{3 / 2}$ occupancy of the unobserved 2_{2}^{+}level is only slightly higher but is nearly identical to the neutron $1 p_{3 / 2}$ occupancy of the 0_{2}^{+}state, which is predicted to be at nearly the same excitation energy (see Fig. 20 of Ref. [15]).

As seen in Table I for ${ }^{42} \mathrm{~S}$, SDPF-MU shell-model calculations predict a $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{2}^{+}\right)$strength of $38 e^{2} \mathrm{fm}^{4}$ compared to the measured value of $27(14) e^{2} \mathrm{fm}^{4}$. The branching ratios of the tentatively assigned 2_{2}^{+}level at $3002-\mathrm{keV}$ to the 2_{1}^{+}state and the ground state measured by Lunderberg et al. were in remarkable agreement with the predictions from SDPF-MU shell-model calculations [15]. Here, the 3002keV state was confirmed as the 2_{2}^{+}level. Therefore, both the rapid change in decay pattern for the 2_{2}^{+}state from ${ }^{40} \mathrm{~S}$ to ${ }^{42} \mathrm{~S}$ and the quadrupole collectivity of the 2_{2}^{+}state are successfully captured in shell-model calculations using the SDPF-MU interaction. The shell-model calculations also predict a $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{5}^{+}\right)$strength of $16 e^{2} \mathrm{fm}^{4}$. Assuming an $E 2$ excitation, the reduced transition strength to the level observed in the present work at $5053(110) \mathrm{keV}$ is $11(9) e^{2} \mathrm{fm}^{4}$. However, the $4150(110)-\mathrm{keV}$ transition from the 5053(110)keV state may correspond to multiple unresolved transitions, such as the $4102-\mathrm{keV}$ and $4266-\mathrm{keV}$ transitions reported in Ref. [15]. Overall, the predictions from shell-model calculations using the SDPF-MU Hamiltonian for the energies of 2^{+} states and $B(E 2)$ strengths in ${ }^{42} \mathrm{~S}$ are in very good agreement with the experimental results, as seen in Fig. 16, supporting the single-particle evolution sketched with the neutron $1 p_{3 / 2}$ occupancy in Fig. 20 of [15].

For $N=28{ }^{44} \mathrm{~S}$, the $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{2}^{+}\right)$and $B\left(E 2 ; 0_{1}^{+} \rightarrow\right.$ 2_{3}^{+}) strengths from the shell-model calculation are $12 e^{2} \mathrm{fm}^{4}$ and $11 e^{2} \mathrm{fm}^{4}$, respectively (see Table I). The experimental value for the $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{3}^{+}\right)$strength measured from the $949-\mathrm{keV}$ transition of the $2278-\mathrm{keV}$ state is $10(6) e^{2} \mathrm{fm}^{4}$ while the yield of possible $2150-\mathrm{keV}$ transitions from the decay of the 2_{2}^{+}level to the ground state was not well constrained due to Doppler-corrected 1460-keV laboratory-frame background.

From the experimental results in the present work, the $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength peaks at $N=26$ for the sulfur isotopes between $N=22$ and $N=28$. Shell-model predictions using SDPF-MU, however, put the maximum collectivity at $N=28$ rather than $N=26$ over this range of neutron numbers. The SDPF-MU $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strengths for ${ }^{44} \mathrm{~S}$ and ${ }^{46} \mathrm{~S}$ are nearly the same at about $450 e^{2} \mathrm{fm}^{4}$ while the SDPF-MU $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength for ${ }^{48} \mathrm{~S}$ is lower at
around $330 e^{2} \mathrm{fm}^{4}$. The measured $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength of $221(28) e^{2} \mathrm{fm}^{4}$ for ${ }^{44} \mathrm{~S}$ is roughly half of the predicted value.

Overall, the experimental $B(E 2)$ strengths and branching ratios measured in this work indicate that the picture of shape and configuration coexistence in the transition into the $N=28$ island of inversion painted by shell-model calculations using the SDPF-MU Hamiltonian is largely supported. Detailed tests for the predictions of shapes will be possible through low-energy Coulomb excitation experiments with FRIB beam rates. In addition, experimental evidence has mounted showing that single-particle strengths in this region seem to be well-described by shell-model calculations using SDPF-MU and SDPF-U, which were both developed to describe the $N=28$ island of inversion, suggesting that the evolution of the single-particle shell gaps is properly captured (see, e.g., $[10,20,48-52]$). Therefore, the observed disagreement in $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength at $N=28$ may be related to the effective charges utilized in the shell-model calculations as discussed in the following subsection.

B. Collectivity around $N=\mathbf{2 8}$ within the shell model

Shell-model calculations also overpredict $B(E 2)$ strengths in sulfur at $N=27$. In ${ }^{43} \mathrm{~S}$, the $B\left(E 2 ; 3 / 2_{1}^{-} \rightarrow 7 / 2_{2}^{-}\right)$strength of $91(18) e^{2} \mathrm{fm}^{4}[23,37]$, measured in the same experiment as the results reported here, is two times smaller than the value of $181 e^{2} \mathrm{fm}^{4}$ from calculations with the SDPF-MU Hamiltonian (using proton and neutron effective charges of 1.35 and 0.35 , respectively) and about three times smaller than the value of $284 e^{2} \mathrm{fm}^{4}$ predicted from shell-model calculations using the SDPF-U effective interaction (using proton and neutron effective charges of 1.5 and 0.5 , respectively) [22]. The $B\left(E 2 ; 7 / 2_{1}^{-} \rightarrow 9 / 2_{1}^{-}\right)$strength for ${ }^{43} S$ is $101(42)$ $e^{2} \mathrm{fm}^{4}$ [23,37], which is smaller than but still consistent within uncertainty with the SDPF-MU prediction of $137 e^{2} \mathrm{fm}^{4}$. The prediction from shell-model calculations using SDPF-U for the $B\left(E 2 ; 7 / 2_{1}^{-} \rightarrow 9 / 2_{1}^{-}\right)$strength is $191 e^{2} \mathrm{fm}^{4}$. The same phenomenon has been observed at $Z=17$ as well. Shellmodel calculations using SDPF-MU predict $B(E 2)$ strengths from the $1 / 2^{+}$ground state to the $3 / 2_{2}^{+}$and $5 / 2_{1}^{+}$states in $N=28{ }^{45} \mathrm{Cl}$ of 159 and $153 e^{2} \mathrm{fm}^{4}$, respectively. However, the $1 / 2_{1}^{+}$and $3 / 2_{1}^{+}$states in ${ }^{45} \mathrm{Cl}$ are within 200 keV in the calculation and the spin-parities of the ground and firstexcited states have not been clearly established experimentally [48,53,54]. The theoretical $B(E 2)$ strengths from the $3 / 2_{1}^{+}$ state to the $3 / 2_{2}^{+}$and $5 / 2_{1}^{+}$states are 83 and $148 e^{2} \mathrm{fm}^{4}$. In the intermediate-energy Coulomb excitation experiments reported here and in Ref. [24], only the $\left(5 / 2_{1}^{+}\right)$state was excited from the ground state with measured $B(E 2)$ strengths of $82(29)$ and $87(24) e^{2} \mathrm{fm}^{4}$, respectively, which are both around a factor of 2 smaller than both the $1 / 2_{1}^{+} \rightarrow 5 / 2_{1}^{+}$and $3 / 2_{1}^{+} \rightarrow 5 / 2_{1}^{+}$shell-model predictions. The $\left(3 / 2_{2}^{+}\right)$level was not clearly observed in either experiment.

Furthermore, a similar overprediction of the $B\left(E 2 ; 0_{1}^{+} \rightarrow\right.$ $\left.2_{1}^{+}\right)$strength by shell-model calculations has been reported for $N=28{ }^{46} \mathrm{Ar}$, two protons above ${ }^{44} \mathrm{~S}$. While a lifetime measurement obtained a value of $570_{-160}^{+335} e^{2} \mathrm{fm}^{4}$ [55], intermediate-energy Coulomb excitation experiments have re-

TABLE II. Empirical proton and neutron effective charges (e_{p} and e_{n}) used by shell-model interactions in different model spaces.

Model space	Mass region	e_{p}	e_{n}	Ref.
$s d(p n)$	${ }^{28} \mathrm{Si}$	1.37	0.45	$[58]$
$f p(p n)$	${ }^{56} \mathrm{Ni}$	1.5	0.5	$[59]$
$s d(n), f p(p)$	${ }^{40} \mathrm{~S}$	1.35	0.35	$[16]$

sulted in consistent strengths of 196(39) $e^{2} \mathrm{fm}^{4}$ [8], 218(31) $e^{2} \mathrm{fm}^{4}$ [25], and 225(29) $e^{2} \mathrm{fm}^{4}$ (absolute), and 234(19) $e^{2} \mathrm{fm}^{4}$ (relative to ${ }^{44} \mathrm{Ca}$) [26]. Shell-model calculations with several interactions including SDPF-MU predict a $B\left(E 2 ; 0_{1}^{+} \rightarrow\right.$ 2_{1}^{+}) strength roughly a factor of 2 larger at over $500 e^{2} \mathrm{fm}^{4}$ [26]. Likewise, the $B(E 2)$ strength from the $3 / 2^{-}$ground state to low-lying states for $N=29{ }^{47} \mathrm{Ar}$ [27] are overpredicted by shell-model calculations using the SDPF-U and EPQQM interactions [56] by roughly a factor of 2 . At $N=30$, the reported $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength of 346(55) $e^{2} \mathrm{fm}^{4}$ is in better agreement with theoretical calculations but is still about 1.5 to 2 standard deviations lower than predicted [27].

The proton and neutron effective charges were varied in order to examine their effect on the calculated $B(E 2)$ strengths using different shell-model interactions. The model space consisting of $\left(0 d_{5 / 2}, 0 d_{3 / 2}, 1 s_{1 / 2}\right)(s d)$ for protons and $\left(0 f_{7 / 2}, 0 f_{5 / 2}, 1 p_{3 / 2}, 1 p_{1 / 2}\right)(f p)$ for neutrons was utilized. The SDPF-MU [16] and SDPF-U Hamiltonians [22] were developed in this model space for nuclei in the mass region we consider. Both of these Hamiltonians give good agreement with experiment for energy spectra and one-nucleon transfer properties for the nuclei we consider (see Ref. [57], for example). For the E2 matrix elements we use harmonic-oscillator radial wave functions with $\hbar \omega=45 A^{-1 / 3}-25 A^{-2 / 3}$.

The limitation of the valence shell model is most obviously manifest in the electric quadrupole ($E 2$) observables. The valance orbitals contribute only part of the $E 2$ matrix elements. The $E 2$ matrix elements for the valence space must be supplemented by effective charges. The bare value of the charge e for a proton and 0 for a neutron are modified to $e_{p}=\left(1+\delta_{p}\right) e$ for a proton and $e_{n}=\left(0+\delta_{n}\right) e$ for a neutron. The δ are usually treated as parameters to best reproduce the $B(E 2)$ data for a given model space. The empirical values for δ for three model spaces are given in Table II. These are the $s d$ model space with $8 \leqslant Z, N \leqslant 20$ for protons and neutrons [58], the $f p$ model space with $20 \leqslant Z, N \leqslant 60$ for protons and neutrons [59], and the $s d-p f$ model space with ($8 \leqslant Z \leqslant 20$) and protons $20 \leqslant N \leqslant 60$ for neutrons [16]. It is observed that the δ parameters are model space dependent.

In Fig. 17, we compare the experimental $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$ values for Ca, Ar, and S isotopes with different choices for the effective charges. The first is obtained by taking the proton effective charge from the $s d$ shell $\left(\delta_{p}=0.37\right)$ and the neutron effective charge from the $f p$ shell $\left(\delta_{n}=0.50\right)$. The second is obtained using the empirical values of $\delta_{p}=$ $\delta_{n}=0.35$ for the $s d-p f$ model space [16]. As expected, the

FIG. 17. $B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$predictions for the Ca, Ar, and S isotopic chains from shell-model calculations using the SDPF-MU Hamiltonian using different values for the proton and neutron effective charges compared to experimental results. SDPF-MU (1.37, 0.5) (red) uses $e_{p}=1.37$ (effective $s d$ shell value from Table II) and $e_{n}=0.5$ (effective $f p$ shell value from Table II). SDPF-MU ($1.35,0.35$) (blue) uses $e_{p}=1.35$ and $e_{n}=0.35$ as recommended in Ref. [16]. SDPF-MU (micro) (green) uses the microscopic effective charges of Table III calibrated to reproduce $e_{p}=1.37$ at $N=20$ and $e_{n}=1.50$ at ${ }^{56} \mathrm{Ni}$. SDPF-U (micro) (orange) is the same as SDPF-MU (micro) except the SDPF-U Hamiltonian is used. The $B(E 2)$ strengths for ${ }^{46} \mathrm{Ar}$ and ${ }^{48} \mathrm{Ar}$ are from Ref. [26] and Ref. [27], respectively. Experimental values for ${ }^{38,40,42,44} \mathrm{~S}$ are taken from this work. All other experimental values come from Ref. [60].
data are in best agreement with the results obtained with the smaller proton effective charge that was adjusted for this set of nuclei.

We investigate the origin of the model-space dependence of δ by using a microscopic model that is based on theoretical work done in the 1970s [61]. We evaluate the core-polarization diagrams shown in Fig. 18. In the original models, the vertical lines represent the valence orbital. Diagram (A) represents the interaction of the valence proton with the $E 2$ operator (the x). Diagrams (B) and (C) are the first-order core-polarization corrections, representing the admixture of proton particle-hole states into the initial (B) and final states (C). For δ_{p} the vertical line is a valence proton,

TABLE III. Microscopic neutron effective charges $\left(e_{n}\right)$ calculated from $0 f-0 f, 0 f-1 p$, and $1 p-1 p$ neutron-neutron two-body interactions for different nuclei.

Two-body interaction	${ }^{56} \mathrm{Ni}$	${ }^{40-48} \mathrm{Ca}[61]$	${ }^{42} \mathrm{Si}$
$0 f-0 f$	0.56	0.45	0.30
$0 f-1 p$	0.49	0.32	0.21
$1 p-1 p$	0.38	0.28	0.13

FIG. 18. Diagrammatic representation of core-polarization for a valence proton. The vertical lines represent the initial (a) and final (b) valence orbital with intermediate states (c) and (d). Diagram (A) represents the interaction of the valence proton with the $E 2$ operator (the x). Diagrams (B) and (C) are the first-order core-polarization corrections, representing the admixture of proton particle-hole (p-h) states into the initial (B) and final (C) states, respectively.
and for δ_{n} the vertical line is a valence neutron. The horizontal line is the interaction that connects the valence nucleon with the proton particle-hole states. The selection rules for $E 2$ in the harmonic-oscillator limit the contribution of particle-hole configurations to those that are $2 \hbar \omega$ higher in energy. These are same configurations that contribute to the giant quadrupole excitation.

We calculate δ with the model used in Ref. [61] that was obtained with a delta-function interaction. In Ref. [61] these diagrams were calculated for single-particle or single-hole valence states where there is a sharp Fermi surface surface between the proton particles and holes. The results for some closed-shell configurations are given in Table III. The polarization charges depend on the closed shell for protons and on the $(n, \ell)-\left(n^{\prime}, \ell^{\prime}\right)$ of the valance orbitals. In particular the average neutron effective charges for ${ }^{42} \mathrm{Si}$ is smaller than those for ${ }^{56} \mathrm{Ni}$. The neutron valence transition density associated with the vertical lines in Fig. 18 is the same, but the transition density associated with the proton particles and holes peaks at a smaller radius for ${ }^{42} \mathrm{Si}$ compared to ${ }^{56} \mathrm{Ni}$. This qualitatively explains the Z dependence of the phenomenological neutron effective charge parameters in Table II.

In this work we generalize the model of [61] by replacing the vertical lines in Fig. 18 with the complete of set of valence one-body transition densities together with a Fermi surface that depends on the proton orbital occupancies in each nucleus. This increases the number of proton orbitals that contribute to the transition by about a factor of five. The δ become nucleus and state dependent. The results compared to the experimental data are shown in Fig. 17. It is observed that the microscopic results are similar to those obtained with the smaller effective charge of $\delta_{p}=0.35$. As seen in Table III, the δ_{p} values for $1 p-0 f$ are smaller because of the node in their valence transition density [61]. This was idea was used to explain the relatively small $B(E 2)$ observed for the $1 / 2^{+}$to $5 / 2^{+}$transition in ${ }^{21} \mathrm{O}$ that is dominated by the valence $1 s$ - $0 d$ valence neutron transition density [62].

The valance transition densities for $N=28$ have relatively large contributions from $1 p_{3 / 2}-0 f_{7 / 2}$ neutrons. However, other
valence orbitals also contribute. The small microscopic effective charge for $1 p-0 f$ is not enough to explain why the experimental $B(E 2)$ drop at $N=28$ compared to the increase in theory.

A striking aspect of the comparison between experiment and theory is observed for the Ca isotopes. For ${ }^{42-44} \mathrm{Ca}$ the observed $B(E 2)$ are an order of magnitude large than the calculations in the $f p$ model space for neutrons. It is well known that this is due to mixing with low-lying "intruder" states that come from the excitations of protons from the $s d$ shell to the $f p$ shell. For example, for ${ }^{42} \mathrm{Ca}$ the dominant configuration is $4 \mathrm{p}-2 \mathrm{~h}$ with two proton holes in the $s d$ shell and an alpha-cluster type 4 p configuration in the $p f$ shell. The proton part of the $B(E 2)$ from this intruder admixture completely overwhelms the small $f p$ shell neutron contribution. Models have been developed that include these $s d$ to $p f$ admixtures [63,64]. These models are in better agreement with experiment but are still differ by up to factors of $2-3$ [65]. However, the practical applications of these models is at present restricted to nuclei near ${ }^{40} \mathrm{Ca}$.

In contrast, the experimental $B(E 2)$ values for ${ }^{48,50} \mathrm{Ca}$ are by far the smallest in this mass region and they are only about a factor of 2 larger than the $f p$ model space calculations. This change from ${ }^{42} \mathrm{Ca}$ to ${ }^{48} \mathrm{Ca}$ is related to the diminished mixing of $s d$ with $p f$ proton excitations. In ${ }^{42} \mathrm{Ca}$ the excitation energy of the $4 \mathrm{p}-2 \mathrm{~h}$ proton configuration is almost degenerate with that of the 2 p (neutron) configuration. In ${ }^{48} \mathrm{Ca}$ the 2^{+} state at 3.81 MeV is associated with the 8 p valence neutron configuration for the $B(E 2)$ given in Figure 17. The energy of the $10 \mathrm{p}-2 \mathrm{~h}$ proton excitation may be associated with the 0^{+} state at 4.28 MeV and the 2^{+}state at 5.31 MeV [66]. We are not aware of microscopic calculations that describe the $B(E 2)$ values in ${ }^{48} \mathrm{Ca}$ associated with $10 \mathrm{p}-2 \mathrm{~h}$ states and their mixing with the 8 p configuration.

A pattern similar to the calcium isotopes has been observed for the oxygen isotopes. The $B(E 2)$ values for ${ }^{18,20} \mathrm{O}$ are strongly enhanced by mixing with configurations coming from the excitation of protons form the p shell to the $s d$ shell. This mixing becomes smaller as the number of neutrons increases. As discussed above, the $B(E 2)$ observed for ${ }^{21} \mathrm{O}$ [62] is consistent with that expected from the microscopic calculations that result in a relatively small neutron effective charge for the $1 s-0 d$ component of the $E 2$ matrix elements. The equivalent transition for the calcium isotopes is the $3 / 2^{-}$to $7 / 2^{-}$transition in ${ }^{49} \mathrm{Ca}$, where only a lower limit on the lifetime of the $3 / 2^{-}$state is known. This should be measured.

Taking into account these observations for the Ca isotopes, we can interpret the comparison between experiment and theory for the argon and sulfur isotopes. The ${ }^{40,42,44} \mathrm{Ar}$ experimental $B(E 2)$ strengths are about 50% larger than those calculated. This is probably associated with the mixing of $s d$ to $f p$ proton excitations in parallel to ${ }^{42,44,46} \mathrm{Ca}$. The increase
is not as dramatic as the factor of ten observed for Ca because the valence space already contains some proton contribution and perhaps because the mixing with $s d$ to $f p$ proton configurations is smaller.

Our purpose for carrying out the relatively simple corepolarization calculations was to investigate the qualitative aspects of core-polarization. From this we were able to understand the model-space dependence of the average effective proton effective charge. As discussed above, there is an orbital dependence to the effective charge, but this is not enough to explain the deviation between experiment and theory at $N=28$ for Ar and S. The microscopic theory can be improved by using more realistic interactions, including higher-order diagrams, and using more realistic radial wave functions. These improvements should be investigated with regard to understanding the difference between experiment and theory at $N=28$. For instance, VS-IMSRG models similar to those used recently for the Si isotopes out to $N=28$ [67] should be used for the S and Ar isotopes.

V. SUMMARY

The technique of intermediate-energy Coulomb excitation was used to probe electric quadrupole transition strengths from the ground states to the first 2^{+}excited states and to higher-lying 2^{+}levels in the neutron-rich sulfur isotopes ${ }^{38,40,42,44} \mathrm{~S}$. In general, the excitation energies and $B(E 2)$ values predicted from shell-model calculations using the SDPF-MU effective interaction were in good agreement with the experimental results for ${ }^{38,40,42} \mathrm{~S}$. For $N=28{ }^{44} \mathrm{~S}$, however, the theoretical calculations overpredict the $B\left(E 2 ; 0_{1}^{+} \rightarrow\right.$ 2_{1}^{+}) strength by about a factor of two. This fits into a picture of similar overpredictions by theory around $N=28$ in the nearby chlorine and argon isotopes. We discuss a possible explanation for this observation in terms of the model space dependence of the effective charges that are needed in shellmodel frameworks. The distribution of experimental $B(E 2)$ strengths in the rapidly changing sulfur isotopic chain will serve as important benchmarks for any nuclear model that aims to describe the development of collectivity in the $N=28$ island of inversion.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation (NSF) under Grants No. PHY-1102511 and No. PHY-1565546, by the DOE National Nuclear Security Administration through the Nuclear Science and Security Consortium, under Grant No. DE-NA0003180, and by the Department of Energy, Office of Nuclear Physics, under Grant No. DE-SC0020451. Work at LLNL was performed under Contract No. DE-AC52-07NA27344. B.A.B. acknowledges support from NSF Grant No. PHY-1811855.
[1] O. Sorlin and M.-G. Porquet, Prog. Part. Nucl. Phys. 61, 602 (2008).
[2] T. Otsuka, A. Gade, O. Sorlin, T. Suzuki, and Y. Utsuno, Rev. Mod. Phys. 92, 015002 (2020).
[3] A. Gade and S. N. Liddick, J. Phys. G 43, 024001 (2016).
[4] E. Caurier, F. Nowacki, and A. Poves, Phys. Rev. C 90, 014302 (2014).
[5] B. Bastin, S. Grévy, D. Sohler, O. Sorlin, Z. Dombrádi, N. L. Achouri, J. C. Angélique, F. Azaiez, D. Baiborodin, R. Borcea, C. Bourgeois, A. Buta, A. Bürger, R. Chapman, J. C. Dalouzy, Z. Dlouhy, A. Drouard, Z. Elekes, S. Franchoo, S. Iacob et al., Phys. Rev. Lett. 99, 022503 (2007).
[6] S. Takeuchi, M. Matsushita, N. Aoi, P. Doornenbal, K. Li, T. Motobayashi, H. Scheit, D. Steppenbeck, H. Wang, H. Baba, D. Bazin, L. Càceres, H. Crawford, P. Fallon, R. Gernhäuser, J. Gibelin, S. Go, S. Grévy, C. Hinke, C. R. Hoffman et al., Phys. Rev. Lett. 109, 182501 (2012).
[7] T. Glasmacher, B. A. Brown, M. J. Chromik, P. D. Cottle, M. Fauerbach, R. W. Ibbotson, K. W. Kemper, D. J. Morrissey, H. Scheit, D. W. Sklenicka, and M. Steiner, Phys. Lett. B 395, 163 (1997).
[8] H. Scheit, T. Glasmacher, B. A. Brown, J. A. Brown, P. D. Cottle, P. G. Hansen, R. Harkewicz, M. Hellström, R. W. Ibbotson, J. K. Jewell, K. W. Kemper, D. J. Morrissey, M. Steiner, P. Thirolf, and M. Thoennessen, Phys. Rev. Lett. 77, 3967 (1996).
[9] S. Grévy, F. Negoita, I. Stefan, N. L. Achouri, J. C. Angélique, B. Bastin, R. Borcea, A. Buta, J. M. Daugas, F. De Oliveira, O. Giarmana, C. Jollet, B. Laurent, M. Lazar, E. Liénard, F. Maréchal, J. Mrázek, D. Pantelica, Y. Penionzhkevich, S. Piétri et al., Eur. Phys. J. A 25, 111 (2005).
[10] C. Force, S. Grévy, L. Gaudefroy, O. Sorlin, L. Cáceres, F. Rotaru, J. Mrazek, N. L. Achouri, J. C. Angélique, F. Azaiez, B. Bastin, R. Borcea, A. Buta, J. M. Daugas, Z. Dlouhy, Z. Dombrádi, F. De Oliveira, F. Negoita, Y. Penionzhkevich, M. G. Saint-Laurent et al., Phys. Rev. Lett. 105, 102501 (2010).
[11] D. Santiago-Gonzalez, I. Wiedenhöver, V. Abramkina, M. L. Avila, T. Baugher, D. Bazin, B. A. Brown, P. D. Cottle, A. Gade, T. Glasmacher, K. W. Kemper, S. McDaniel, A. Rojas, A. Ratkiewicz, R. Meharchand, E. C. Simpson, J. A. Tostevin, A. Volya, and D. Weisshaar, Phys. Rev. C 83, 061305(R) (2011).
[12] J. J. Parker, I. Wiedenhöver, P. D. Cottle, J. Baker, D. McPherson, M. A. Riley, D. Santiago-Gonzalez, A. Volya, V. M. Bader, T. Baugher, D. Bazin, A. Gade, T. Ginter, H. Iwasaki, C. Loelius, C. Morse, F. Recchia, D. Smalley, S. R. Stroberg, K. Whitmore et al., Phys. Rev. Lett. 118, 052501 (2017).
[13] Y. Utsuno, N. Shimizu, T. Otsuka, T. Yoshida, and Y. Tsunoda, Phys. Rev. Lett. 114, 032501 (2015).
[14] J. L. Egido, M. Borrajo, and T. R. Rodríguez, Phys. Rev. Lett. 116, 052502 (2016).
[15] E. Lunderberg, A. Gade, V. Bader, T. Baugher, D. Bazin, J. S. Berryman, B. A. Brown, D. J. Hartley, F. Recchia, S. R. Stroberg, D. Weisshaar, and K. Wimmer, Phys. Rev. C 94, 064327 (2016).
[16] Y. Utsuno, T. Otsuka, B. A. Brown, M. Honma, T. Mizusaki, and N. Shimizu, Phys. Rev. C 86, 051301(R) (2012).
[17] B. Fornal, R. H. Mayer, I. G. Bearden, P. Benet, R. Broda, P. J. Daly, Z. W. Grabowski, I. Ahmad, M. P. Carpenter, P. B. Fernandez, R. V. F. Janssens, T. L. Khoo, T. Lauritsen, E. F. Moore, and M. Drigert, Phys. Rev. C 49, 2413 (1994).
[18] A. Winther and K. Alder, Nucl. Phys. A 319, 518 (1979).
[19] T. Glasmacher, Ann. Rev. Nucl. Part. Sci. 48, 1 (1998).
[20] A. Gade, B. A. Brown, J. A. Tostevin, D. Bazin, P. C. Bender, C. M. Campbell, H. L. Crawford, B. Elman, K. W. Kemper, B. Longfellow, E. Lunderberg, D. Rhodes, and D. Weisshaar, Phys. Rev. Lett. 122, 222501 (2019).
[21] L. A. Riley, D. Bazin, J. Belarge, P. C. Bender, B. A. Brown, P. D. Cottle, B. Elman, A. Gade, S. D. Gregory, E. B. Haldeman, K. W. Kemper, B. R. Klybor, M. A. Liggett, S. Lipschutz, B. Longfellow, E. Lunderberg, T. Mijatovic, J. Pereira, L. M. Skiles, R. Titus et al., Phys. Rev. C 100, 044312 (2019).
[22] F. Nowacki and A. Poves, Phys. Rev. C 79, 014310 (2009).
[23] B. Longfellow, D. Weisshaar, A. Gade, B. A. Brown, D. Bazin, K. W. Brown, B. Elman, J. Pereira, D. Rhodes, and M. Spieker, Phys. Rev. Lett. 125, 232501 (2020).
[24] R. W. Ibbotson, T. Glasmacher, P. F. Mantica, and H. Scheit, Phys. Rev. C 59, 642 (1999).
[25] A. Gade, D. Bazin, C. M. Campbell, J. A. Church, D. C. Dinca, J. Enders, T. Glasmacher, Z. Hu, K. W. Kemper, W. F. Mueller, H. Olliver, B. C. Perry, L. A. Riley, B. T. Roeder, B. M. Sherrill, and J. R. Terry, Phys. Rev. C 68, 014302 (2003).
[26] S. Calinescu, L. Cáceres, S. Grévy, O. Sorlin, Z. Dombrádi, M. Stanoiu, R. Astabatyan, C. Borcea, R. Borcea, M. Bowry, W. Catford, E. Clément, S. Franchoo, R. Garcia, R. Gillibert, I. H. Guerin, I. Kuti, S. Lukyanov, A. Lepailleur, V. Maslov et al., Phys. Rev. C 93, 044333 (2016).
[27] R. Winkler, A. Gade, T. Baugher, D. Bazin, B. A. Brown, T. Glasmacher, G. F. Grinyer, R. Meharchand, S. McDaniel, A. Ratkiewicz, and D. Weisshaar, Phys. Rev. Lett. 108, 182501 (2012).
[28] A. Gade and B. M. Sherrill, Phys. Scr. 91, 053003 (2016).
[29] D. Morrissey, B. Sherrill, M. Steiner, A. Stolz, and I. Wiedenhoever, Nucl. Instrum. Methods Phys. Res. B 204, 90 (2003).
[30] D. Bazin, J. Caggiano, B. Sherrill, J. Yurkon, and A. Zeller, Nucl. Instrum. Methods Phys. Res. B 204, 629 (2003).
[31] J. Yurkon, D. Bazin, W. Benenson, D. Morrissey, B. Sherrill, D. Swan, and R. Swanson, Nucl. Instrum. Methods Phys. Res. A 422, 291 (1999).
[32] A. Gade and T. Glasmacher, Prog. Part. Nucl. Phys. 60, 161 (2008).
[33] J. M. Cook, T. Glasmacher, and A. Gade, Phys. Rev. C 73, 024315 (2006).
[34] F. Delaunay and F. M. Nunes, J. Phys. G: Nucl. Part. Phys. 34, 2207 (2007).
[35] D. Weisshaar, A. Gade, T. Glasmacher, G. F. Grinyer, D. Bazin, P. Adrich, T. Baugher, J. M. Cook, C. A. Diget, S. McDaniel, A. Ratkiewicz, K. P. Siwek, and K. A. Walsh, Nucl. Instrum. Methods Phys. Res. A 624, 615 (2010).
[36] B. Elman, A. Gade, D. Weisshaar, D. Barofsky, D. Bazin, P. C. Bender, M. Bowry, M. Hjorth-Jensen, K. W. Kemper, S. Lipschutz, E. Lunderberg, N. Sachmpazidi, N. Terpstra, W. B. Walters, A. Westerberg, S. J. Williams, and K. Wimmer, Phys. Rev. C 96, 044332 (2017).
[37] B. Longfellow, Ph.D. thesis, Michigan State University, 2020 (unpublished).
[38] V. M. Bader, A. Gade, D. Weisshaar, B. A. Brown, T. Baugher, D. Bazin, J. S. Berryman, A. Ekström, M. Hjorth-Jensen, S. R. Stroberg, W. B. Walters, K. Wimmer, and R. Winkler, Phys. Rev. C 88, 051301(R) (2013).
[39] B. Longfellow, A. Gade, B. A. Brown, W. A. Richter, D. Bazin, P. C. Bender, M. Bowry, B. Elman, E. Lunderberg, D. Weisshaar, and S. J. Williams, Phys. Rev. C 97, 054307 (2018).
[40] Evaluated Nuclear Structure Data File (ENSDF), https://www. nndc.bnl.gov/ensdf/
[41] J. W. Olness, E. K. Warburton, J. A. Becker, D. J. Decman, E. A. Henry, L. G. Mann, and L. Ussery, Phys. Rev. C 34, 2049 (1986).
[42] E. K. Warburton, D. E. Alburger, and G. Wang, Phys. Rev. C 36, 429 (1987).
[43] Z. M. Wang, R. Chapman, X. Liang, F. Haas, F. Azaiez, B. R. Behera, M. Burns, E. Caurier, L. Corradi, D. Curien, A. N. Deacon, Z. Dombrádi, E. Farnea, E. Fioretto, A. Gadea, A. Hodsdon, F. Ibrahim, A. Jungclaus, K. Keyes, V. Kumar et al., Phys. Rev. C 81, 054305 (2010).
[44] D. Sohler, Z. Dombrádi, J. Timár, O. Sorlin, F. Azaiez, F. Amorini, M. Belleguic, C. Bourgeois, C. Donzaud, J. Duprat, D. Guillemaud-Mueller, F. Ibrahim, J. A. Scarpaci, M. Stanoiu, M. J. Lopez, M. G. Saint-Laurent, F. Becker, F. Sarazin, C. Stodel, G. Voltolini et al., Phys. Rev. C 66, 054302 (2002).
[45] K. L. Miller, Ph.D. thesis, Michigan State University (2003).
[46] K. L. Yurkewicz, D. Bazin, B. A. Brown, C. M. Campbell, J. A. Church, D. C. Dinca, A. Gade, T. Glasmacher, M. Honma, T. Mizusaki, W. F. Mueller, H. Olliver, T. Otsuka, L. A. Riley, and J. R. Terry, Phys. Rev. C 70, 054319 (2004).
[47] T. Mijatović, N. Kobayashi, H. Iwasaki, D. Bazin, J. Belarge, P. C. Bender, B. A. Brown, A. Dewald, R. Elder, B. Elman, A. Gade, M. Grinder, T. Haylett, S. Heil, C. Loelius, B. Longfellow, E. Lunderberg, M. Mathy, K. Whitmore, and D. Weisshaar, Phys. Rev. Lett. 121, 012501 (2018).
[48] L. Cáceres, D. Sohler, S. Grévy, O. Sorlin, Z. Dombrádi, B. Bastin, N. L. Achouri, J. C. Angélique, F. Azaiez, D. Baiborodin, R. Borcea, C. Bourgeois, A. Buta, A. Bürger, R. Chapman, J. C. Dalouzy, Z. Dlouhy, A. Drouard, Z. Elekes, S. Franchoo et al., Phys. Rev. C 85, 024311 (2012).
[49] L. A. Riley, P. Adrich, N. Ahsan, T. R. Baugher, D. Bazin, B. A. Brown, J. M. Cook, P. D. Cottle, C. A. Diget, A. Gade, T. Glasmacher, K. E. Hosier, K. W. Kemper, A. Ratkiewicz, K. P. Siwek, J. A. Tostevin, A. Volya, and D. Weisshaar, Phys. Rev. C 86, 047301 (2012).
[50] S. R. Stroberg, A. Gade, J. A. Tostevin, V. M. Bader, T. Baugher, D. Bazin, J. S. Berryman, B. A. Brown, C. M. Campbell, K. W. Kemper, C. Langer, E. Lunderberg, A. Lemasson, S. Noji, F. Recchia, C. Walz, D. Weisshaar, and S. J. Williams, Phys. Rev. C 90, 034301 (2014).
[51] K. Nowak, K. Wimmer, S. Hellgartner, D. Mücher, V. Bildstein, J. Diriken, J. Elseviers, L. P. Gaffney, R. Gernhäuser, J. Iwanicki, J. G. Johansen, M. Huyse, J. Konki, T. Kröll, R. Krücken, R. Lutter, R. Orlandi, J. Pakarinen, R. Raabe, P. Reiter et al., Phys. Rev. C 93, 044335 (2016).
[52] S. Momiyama, K. Wimmer, D. Bazin, J. Belarge, P. Bender, B. Elman, A. Gade, K. W. Kemper, N. Kitamura, B. Longfellow, E. Lunderberg, M. Niikura, S. Ota, P. Schrock, J. A. Tostevin, and D. Weisshaar, Phys. Rev. C 102, 034325 (2020).
[53] A. Gade, B. A. Brown, D. Bazin, C. M. Campbell, J. A. Church, D. C. Dinca, J. Enders, T. Glasmacher, M. Horoi, Z. Hu, K. W. Kemper, W. F. Mueller, T. Otsuka, L. A. Riley, B. T. Roeder, T. Suzuki, J. R. Terry, K. L. Yurkewicz, and H. Zwahlen, Phys. Rev. C 74, 034322 (2006).
[54] S. R. Stroberg, A. Gade, T. Baugher, D. Bazin, B. A. Brown, J. M. Cook, T. Glasmacher, G. F. Grinyer, S. McDaniel, A. Ratkiewicz, and D. Weisshaar, Phys. Rev. C 86, 024321 (2012).
[55] D. Mengoni, J. J. Valiente-Dobón, A. Gadea, S. Lunardi, S. M. Lenzi, R. Broda, A. Dewald, T. Pissulla, L. J. Angus, S. Aydin, D. Bazzacco, G. Benzoni, P. G. Bizzeti, A. M. Bizzeti-Sona, P. Boutachkov, L. Corradi, F. Crespi, G. de Angelis, E. Farnea, E. Fioretto et al., Phys. Rev. C 82, 024308 (2010).
[56] K. Kaneko, Y. Sun, T. Mizusaki, and M. Hasegawa, Phys. Rev. C 83, 014320 (2011).
[57] A. Gade, J. A. Tostevin, V. Bader, T. Baugher, D. Bazin, J. S. Berryman, B. A. Brown, C. A. Diget, T. Glasmacher, D. J. Hartley, E. Lunderberg, S. R. Stroberg, F. Recchia, A. Ratkiewicz, D. Weisshaar, and K. Wimmer, Phys. Rev. C 93, 054315 (2016).
[58] W. A. Richter, S. Mkhize, and B. A. Brown, Phys. Rev. C 78, 064302 (2008).
[59] M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Phys. Rev. C 69, 034335 (2004).
[60] B. Pritychenko, M. Birch, B. Singh, and M. Horoi, At. Data Nucl. Data Tables 107, 1 (2016).
[61] B. Brown, A. Arima, and J. McGrory, Nucl. Phys. A 277, 77 (1977).
[62] S. Heil, M. Petri, K. Vobig, D. Bazin, J. Belarge, P. Bender, B. Brown, R. Elder, B. Elman, A. Gade, T. Haylett, J. Holt, T. Hüther, A. Hufnagel, H. Iwasaki, N. Kobayashi, C. Loelius, B. Longfellow, E. Lunderberg, M. Mathy et al., Phys. Lett. B 809, 135678 (2020).
[63] W. Gerace and A. Green, Nucl. Phys. A 93, 110 (1967).
[64] E. Caurier, J. Menéndez, F. Nowacki, and A. Poves, Phys. Rev. C 75, 054317 (2007).
[65] K. Hadyńska-Klęk, P. J. Napiorkowski, M. Zielińska, J. Srebrny, A. Maj, F. Azaiez, J. J. Valiente Dobón, M. KicińskaHabior, F. Nowacki, H. Naïdja, B. Bounthong, T. R. Rodríguez, G. de Angelis, T. Abraham, G. Anil Kumar, D. Bazzacco, M. Bellato, D. Bortolato, P. Bednarczyk, G. Benzoni et al., Phys. Rev. C 97, 024326 (2018).
[66] B. A. Brown and W. A. Richter, Phys. Rev. C 58, 2099 (1998).
[67] T. Miyagi, S. R. Stroberg, J. D. Holt, and N. Shimizu, Phys. Rev. C 102, 034320 (2020).

[^0]: *Present address: Department of Physics, Florida State University, Tallahassee, Florida 32306, USA.

