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a b s t r a c t

A high-performance Fortran code is developed to calculate the spin- and parity-dependent shell model
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implies exact calculation of the first and secondHamiltonianmoments for different configurations at fixed
spin and parity. The proton–neutron formalism is used. We have applied the method for calculating the
level densities for a set of nuclei in the sd-, pf -, and pf + g9/2- model spaces. Examples of the calculations
for 28Si (in the sd-model space) and 64Ge (in the pf + g9/2-model space) are presented. To illustrate the
power of the method we estimate the ground state energy of 64Ge in the larger model space pf + g9/2,
which is not accessible to direct shell model diagonalization due to the prohibitively large dimension,
by comparing with the nuclear level densities at low excitation energy calculated in the smaller model
space pf .
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Restrictions:
The program uses two-body interaction in a restricted single-level basis. For example, GXPF1A in the pf-
valence space.
Running time:
Depends on the system size and the number of processors used (from 1 min to several hours).

Published by Elsevier B.V.
1. Introduction

The nuclear reaction theory requires exact knowledge of nu-
clear level densities. In the majority of cases, especially those
important for reactions at stellar conditions, experimental infor-
mation on the excited nuclear states is not sufficient and the calcu-
lations typically use the estimates based on the Hauser–Feshbach
approach [1], where the level density for specific quantum num-
bers Jπ of nuclear spin and parity is a necessary ingredient. The
large uncertainty in nuclear level densities causes correspond-
ing uncertainty in the calculated reaction rates, especially in the
Gamowwindow of excitation energies around the particle thresh-
old [2,3].

The theory of the nuclear level density has a long history start-
ing with the combinatorial calculation by Bethe [4] that leads to
the back-shifted Fermi gas approximation [5,6] that was improved
over the years. The modern approaches going essentially in the
same direction [7–9] use, instead of the Fermi-gas, an independent
particle model in a mean field. It is understood that many-body
correlations may significantly change the resulting level density,
in particular moving down certain families of vibrational and rota-
tional states. At the same time, pure collective models used on top
of the single-particle excitations may suffer from double counting
and have to be cut off in some way.

The many-body correlations are fully accounted for by the ex-
act diagonalization of the shell-model Hamiltonian. One of the
advantages of using a Shell Model nuclear level density is that
the Shell Model with sufficiently large orbital space can simul-
taneously describe both spherical and deformed bands of exci-
tations [10] preserving exact constants of motion, while a mean
field approach [7] often requires rotational and vibrational ampli-
fication factors to the nuclear level densities. Here the problems
come from the prohibitively large dimensions that make it nec-
essary to truncate the orbital space, a step not always well con-
trolled. Alternatively, one canuseMonte-Carlo techniques [11–16],
or other methods of statistical spectroscopy [17–21]. Most of
these methods [2,11–13,17–19,22,23] calculate the total density of
states and later use a spin-weight factor that includes an energy-
dependent cut-off parameter to extract the level density for
specific quantum numbers of spin, parity and isospin. When such
calculations are compared with the experimental data, the agree-
ment is often not bad [19]. The power of our method is that being
formulated on a more fundamental basis of the Shell Model with
effective interactions, which describes very well a large amount
of experimental data, it could be more reliable in predicting nu-
clear level densities for nuclei far from the stability line. Although
there are recent efforts to improve the accuracy of such param-
eterizations [23], it was shown that the cut-off parameter has
very large fluctuations at low excitation energy [24]. The parity is
usually taken as equally distributed, although there are attempts
[14,25] to model the effect of the uneven parity-dependence of the
level densities at excitation energies of interest for nuclear astro-
physics.

Recently, we developed a consistent approach [24,26–29] to
calculate the spin- andparity-dependent shell-model level density.
The neweffective interactions for the appropriatemodel spaces are
developed startingwith theG-matrix [30] and fixing themonopole
terms or/and linear combinations of two-body matrix elements to
experimental data. Extending the efficient methods of statistical
spectroscopy [31,32] we exactly calculate the first and second
moments of the Hamiltonian for different configurations at fixed
spin and parity. As a practical tool we use the exact decomposition
of many-body configurational space into classes corresponding to
different parity and number of harmonic oscillator excitations.
An accurate estimate of the shell-model ground state energy is
required, being generally as time consuming as the previous steps.
This stage can be improved by using the exponential convergence
method suggested and applied in Refs. [33–35], or/and the recently
developed projected configuration interaction method [36,37].
In reverse, some knowledge about the level density can be
helpful for extracting the ground state energy. The Moments
Method works with any shell-model Hamiltonian, and therefore
agreement with experiment would be essentially the check for
the used Hamiltonian rather than for the method of calculating
level densities. The proof of the correctness of the method is
its agreement with the full shell model calculation. We recently
compared nuclear level densities obtained with the Moments
Methodwith the experimental data (see for example, 28Si and 26Al,
Figs. 4 and 5 in [38] or 28Si, Fig. 1 in [24]) and found a very good
agreement.

The code described in this paper is based on nuclear statistical
spectroscopy [32]. It allows one to calculate the spin- and parity-
projectedmoments of the nuclear shell-model Hamiltonian, which
can be further used for an accurate description of the level
density up to about 15 MeV excitation energy. It can be also
applied to other mesoscopic systems, such as interacting cold
atoms in harmonic oscillator traps. The code is parallelized
using the Message Passing Interface (MPI) [39] and a master-
slaves dynamical load-balancing approach. The parallel code
was thoroughly tested on the massively parallel computers at
NERSC [40], and it shows very good scaling when using up to 4000
cores.

The paper is organized as follows. In Section 2 the method
of fixed spin- and parity-dependent configuration moments is
revisited. The method allows one to trace such quantum numbers
as parity and angular momentum explicitly. The extension of
the algorithm to the proton–neutron formalism is discussed in
Section 3. In Section 4 we introduce the structure of the program
and supply the examples of input files. Examples of calculations are
presented and compared to exact shell model results in Section 5.
Section 6 is devoted to conclusions.

2. Theory outline

In this work we closely follow the approach proposed in
Ref. [29] (see also Refs. [26,27]). For claritywe repeat here themain
ideas and equations we are going to use for calculating the level
density.

According to the method of moments one can calculate the
density ρ(E, α) of levels with a given set of quantum numbers as a
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function of excitation energy E as a sum

ρ(E, α) =


κ

Dακ · Gακ(E), (1)

where α = {n, J, Tz, π} includes all quantum numbers of interest,
namely the number of particles n (protons and neutrons), total spin
J , isospin projection Tz , and parity π . The subscript κ represents
a configuration of n particles distributed over q spherical single-
particle orbitals. Each configuration κ is fixed by a set of occupation
numbers, κ = {κ1, κ2, . . . , κq},where κj is the number of particles
occupying the spherical single-particle level j. The configuration
has a certain number of particles, total isospin projection, and
parity. The sum in Eq. (1) runs over all possible configurations
corresponding to given values of n, Tz , and π . The dimension Dακ

equals the number of correctly antisymmetrized many-fermion
states with given J that can be built for a given configuration κ .
The function Gακ is a finite-range Gaussian defined as in [26]:

Gακ(E) = G(E + Eg.s. − Eακ , σακ), (2)

G(x, σ ) = N ·


exp


−x2/2σ 2 , |x| ≤ η · σ

0, |x| > η · σ ,
(3)

where Eακ and σακ are the fixed-J centroids andwidths, which will
be defined later, Eg.s. is the ground state energy, η is the cut-off
parameter, and N is the normalization factor corresponding to the
following condition:


+∞

−∞
G(x, σ )dx = 1.

A very important ingredient of the method is the accurate
knowledge of the ground state energy Eg.s.. It is also necessary to
find an optimal value of the cut-off parameter η, see the discussion
in [29].

Assuming a two-body shell-model Hamiltonian,

H =


i

ϵia
Ď
i ai +

1
4


ijkl

Vijkla
Ď
i a

Ď
j alak, (4)

we have to calculate traces of the first and second power of this
Hamiltonian, Tr[H] and Tr[H2

], for each configuration κ , whichwill
determine the fixed-J centroids and widths in Eq. (2):

Eακ = ⟨H⟩ακ , (5)

σακ =


H2


ακ

− ⟨H⟩
2
ακ , (6)

where

⟨H⟩ακ = Tr(ακ)
[H]/Dακ , (7)

H2
ακ

= Tr(ακ)
[H2

]/Dακ . (8)

If the many-body states |ν, J⟩ with a certain set of quantum
numbers α ≡ {ν, J}, including spin J , form a complete set for
the configuration κ , the symbol of trace, Tr(ακ)

[· · ·], means the
sum of all diagonal matrix elements,


⟨ν, J| · · · |ν, J⟩, within this

subspace. Technically, it is more convenient to derive these traces
in a basis with a fixed spin projection |ν,Mz⟩, Tr(Mz )[· · ·], rather
than in the basis with fixed total spin |ν, J⟩, Tr(J)[· · ·]. J-traces can
be easily expressed through the Mz-traces, given the rotational
symmetry of the Hamiltonian,

Tr(J)[· · ·] = Tr(Mz )[· · ·]


Mz=J

− Tr(Mz )[· · ·]


Mz=J+1

. (9)

For simplicity, in Eq. (9) we omitted all quantum numbers, except
the projectionMz and the total spin J .

Hereafter we use the label α to denote a set of quantum
numbers that includes either the fixedMz or the fixed J , keeping in
mind that Eq. (9) can always connect them. In every important case
wewill point outwhich set of quantumnumbers is used. Following
the approach of [41], we can obtain the following expressions for
the traces in Eqs. (7) and (8):

Tr(ακ)
[H] =


i

ϵiD[i]
ακ +


i<j

VijijD[ij]
ακ , (10)

Tr(ακ)
[H2

] =


i

ϵ2
i D

[i]
ακ

+


i<j


2ϵiϵj + 2(ϵi + ϵj)Vijij +


q<l

V 2
ijql


D[ij]

ακ

+


(i<l)≠l


q


2VliiqVljjq − V 2

ijql


+ 2ϵlVijij


D[ijl]

ακ

+


(i<j)≠(q<l)


V 2
ijql + VijijVqlql − 4VqiilVqjjl


D[ijql]

ακ , (11)

where i, j, l, and q are single-particle states with certain spin
projections and possible occupation numbers equal 0 or 1.

Notice that the single-particle orbitals we have used to define
the configurations in Eq. (1) can host all particles with all possible
spin projections corresponding to spin of the orbital. The dimen-
sion factor D[i]

ακ = Tr(ακ)
[aĎi ai] can be interpreted as a number of

many-body states, possible for the configuration κ , with the fixed
projection Mz (if we consider Mz-traces) and under the condition
that the single-particle state i is occupied:

D[ij]
ακ = Tr(ακ)

[aĎi a
Ď
j ajai],

D[ijq]
ακ = Tr(ακ)

[aĎi a
Ď
j a

Ď
qaqajai], . . . . (12)

These D-structures were called propagation functions in [41]. For
completeness, we repeat here the recipe used for calculating them.
One can show [41] that

D[r1r2···rs]
ακ =


s≤t≤n

(−1)t−s


t1+···+ts=t

Dα′κ ′ , (13)

where all ti are non-negative integers, the configuration κ ′
=

{κ ′

1, κ
′

2, . . . , κ
′
q} can be derived from the original configuration κ =

{κ1, κ2, . . . , κq} by removing t particles from the single-particle
states r1, r2, . . . , rs. A formal expression for the new configuration
κ ′ can be written as follows:

κ ′

j = κj −

i (ri∈j)

ti, (14)

where the sum includes only those values of i for which the corre-
sponding single-particle state ri belongs to the single-particle level
j. We also assume that all the occupation numbers κ ′

j must be pos-
itive, which imposes certain restrictions on the possible values of
the amplitudes ti. For every new configuration κ ′ one can easily
define new quantum numbers, α′

= {n′M ′
zT

′
zπ

′
}, entering Eq. (13).

Examples are the new number of particles n′
= n − t and the new

spin projection,

M ′

z = Mz − t1mr1 − t2mr2 − · · · − tsmrs , (15)

where mri is the Mz projection of the single-particle state ri. The
new isospin T ′

z and parity π ′ are defined similarly.

3. The algorithm for the method of moments in the pro-
ton–neutron formalism

Here we describe some technical features of the algorithm
developed for the calculation of the nuclear level density. We treat
protons and neutrons separately, so that the basis of many-body
wave functions is represented by a product of proton and neutron
parts:

|ν,Mz⟩ = |νp,M(p)
z ⟩ · |νn,M(n)

z ⟩, (16)
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Fig. 1. Speedup is defined as T1/Tn , where Tn is the calculation time, when
n processors were used. These calculations were performed on the FRANKLIN
supercomputer at the National Energy Research Scientific Computing Center
(NERSC) [40].

where M(p)
z + M(n)

z = Mz . The wave functions (16) have the fixed
isospin projection Tz , but do not have a certain isospin T . As we
already mentioned, it is more convenient to use the basis of the
wave functions with the fixed spin projection Mz , rather than the
one with the fixed spin J .

One could gain essential advantages from such a separation of
the basis. One of them is related to the number of configurations
that appear in the sum of Eq. (1). Naturally, the number of
configurations with fixed Tz is much greater than the number
of configurations with fixed isospin. This allows the use of
many-cores computers with greater efficiency. In other words,
the calculation of the sum in Eq. (1) with a larger number of
configurations can be more efficiently distributed over a larger
number of processors. Fig. 1 presents the speedup (calculation
speed gain) as a function of the number of used processors. One
can see that the case with the larger number of configurations,
68Se, scales better than the case with the lower number of
configurations, 64Ge. Up to 2000 cores, the speedup is almost
perfect (the dotted line presents an ideal speedup). At this point
the calculation time is about 1–2 min and further improvement is
hardly achievable.

Another significant advantage of the proton–neutron formalism
is the new algorithm for calculating the dimensions Dακ ,D[i]

ακ ,D
[ij]
ακ ,

etc. Because of the proton–neutron separation one can calculate all
proton and neutron dimensions separately. Later, the dimensions
we are interested in can be easily constructed from the proton and
neutron parts using the convolution,

DMzκ =


M(p)

z +M(n)
z =Mz

DM(p)
z κp

· DM(n)
z κn

, (17)

where, instead of the whole set of quantum numbers α, only the
spin projection Mz was explicitly indicated. Here κp and κn are
the proton and neutron parts of the configuration κ . Eq. (17) can
be easily applied to all types of dimensions, D[···]

α... , needed in the
formalism of Section 2. The advantage comes from the fact that
one can calculate and keep in memory all proton and neutron
dimensions, DM(p)

z κp
and DM(n)

z κn
, for all possible projections M(p)

z

andM(n)
z , and for all possible configurations κp and κn. Afterwards,

using Eqs. (17) and (13), one can calculate very fast all the
dimensions: Dακ ,D[i]

ακ ,D
[ij]
ακ , etc., for all Mz and J .

One more technical detail, which allows a significant speed up
of the algorithm, is that by using the proton–neutron separation
one can avoid multiple computations of the most time consuming
structures, such asD[ijql]

ακ . Let us consider a casewhen all four single-
particle states {ijql} are protons. One can then use an equation
similar to Eq. (17),

D[ijql]
Mzκ

=


M(p)

z +M(n)
z =Mz

D[ijql]

M(p)
z κp

· DM(n)
z κn

. (18)

For all configurations κ that have the same proton parts κp one
would have to recalculate D[ijql]

M(p)
z κp

for each neutron configuration.

Alternatively, one can calculate D[ijql]

M(p)
z κp

only once, and store the

results in memory. That strategy, however, would require a
large amount of storage. More efficiently, one can only store the
contributions of the D[ijql]

ακ structures to the width, Eq. (11), that is,
one can only store the following T -structures,

TM(p)
z κp

=


(i<j)≠(q<l)


V 2
ijql + VijijVqlql − 4VqiilVqjjl


D[ijql]

M(p)
z κp

, (19)

where all single-particle states are protons. Thus, instead of using
Eq. (18) one can calculate the contribution to thewidth directly via
the convolution,

Tr(ακ)
[H2

] = · · · +


M(p)

z +M(n)
z =Mz

TM(p)
z κp

· DM(n)
z κn

, (20)

which is very similar to Eqs. (17) and (18). Thenewapproach avoids
multiple calculations of D[ijql]

M(p)
z κp

. Storing the structures Eq. (19), one

may significantly speed up the algorithm for large cases, such as
68Se in pf + g9/2 model space. The downside is that the calculation
of the T -structures, TM(p)

z κp
, TM(n)

z κn
, does not always scale well on

a large number of cores, since the number of these T -structures is
much smaller than the total number of configurations.

4. Description of the program

The program consists of two separate codes. The first code is
called MM, which is the main code in the program. MM code
performs calculation of the first and second moments for all the
configurations within the given range of spins and for certain
parity. It is the most complicated and resource demanding part
of the program. MM requires parallel computing. The second code
is very simple and fast. It takes the output of the MM code (the
first and second moments) and builds the nuclear level densities
according to Eqs. (1)–(3). It does not require parallel computing.

Below we will concentrate only on description of the MM code.
The detailed instructions on how to use the second code can be
found in the readme.txt file, which is in the main project directory.

4.1. The structure of the MM code

In theMMcode, the calculation of the first and secondmoments
for a given nucleus is carried out. To compile this code simply
follow the instructions in the readme.txt file (or type make) and
then run the executable filemm.out.

The code contains four files: mm_1.15.f90 (1.15 is the current
version) contains the main subroutines and calls subroutines from
other files to perform the calculation; interaction.f90 reads the
interaction file; angularme.for contains subroutines to work with
the angular matrix elements, for example, to calculate Clebsch-
Gordan coefficients; qsort.f contains quick-sort subroutines.

The flowchart of the mm_1.15.f90 is shown in Fig. 2, and some
important subroutines in themm_1.15.f90 are listed below.

The subroutine prepare_interaction calculates the T -structures
according to Eq. (19). This is an important part of the code which
allows one to speed up the program significantly.

The subroutine cc_density_calc contains the main loop over the
configurations (the loop back in Fig. 2), calculates the first and
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Fig. 2. The flowchart of the program. See text for details.

second moments based on Eqs. (7), (8), (10) and (20), and saves
the results. This subroutine uses the T -structures precalculated in
the subroutine prepare_interaction.

Both subroutines require parallel computing. The simplest
‘‘Master–Slave’’ parallel programming paradigm with Dynamic
Load Balancing was used.

4.2. MM input

The input files include input.dat and the files that define the
single-particle model space as well as the interaction in this model
space. A typical input.dat file that specifies the parameters in
the code is listed below. The parameters are followed by their
meaning:

6 6 ! Z N
1 0 22 2 ! P 2Jmin 2Jmax 2Jstep
int/sd.spl ! single-particle model space
int/usd.int ! interaction

Here Z and N are the number of protons and neutrons, respec-
tively, in the valence space; P is parity (P = 1 corresponds to pos-
itive parity and P = −1 to negative parity); 2Jmin, 2Jmax, and 2Jstep
define the range of total spin for which the moments are to be cal-
culated: the spin changes from theminimumvalue Jmin to themax-
imum value Jmax with the step Jstep. In the example listed above the
total spin changes from 0 to 11 with the step 1. The single-particle
model space and the interaction are defined by two separate files
and input.dat must have the names of these two files similar to the
shown example. Detailed descriptions of the *.spl and *.int files are
given in the readme.txt file.
Table 1
Elapsed times of nuclear level density calculations (for all J , positive parity) with
the MM code. The calculations were done on a 16 cores machine with 2.8 GHz CPU
frequency.

Element Space Total dim Elapsed time (s)
70Br pf + g9/2 1015 1.07 · 104

68Se pf + g9/2 1015 1.03 · 104

64Ge pf + g9/2 1014 0.76 · 104

60Zn pf 1011 37.4
52Fe pf 1010 13.6
28Si sd 106 0.7

The above example describes the 28Si nucleus in the sd-model
spacewith the USD interaction. Themomentswill be calculated for
positive parity and for all possible spins from 0 to 11.

4.3. MM output

The main output of the MM code is presented in files mm_
res_#.dat. These files are enumerated by spin number #, for ex-
ample mm_res_0.dat corresponds to spin J = 0, mm_res_1.dat
corresponds to spin J = 1/2, and so on (for more details see the
readme.txt file). Each output file contains the data needed for the
density calculation: dimensions, first and second moments.

Another output file mm_conf.dat contains information about
the configurations. This information is not used for the density
calculation, but could be useful for checking and testing purposes.

4.4. Density calculation

After all the moments are prepared, the density can be calcu-
lated with the code den.out. The full description of density calcula-
tion can be found in the readme.txt file. We just repeat once more
that there are several external parameters that need to be prepared
before the calculation. These parameters cannot be defined within
the method of moments, namely: η — the cut-off parameter, Eg.s.
— the ground state energy, and the energy interval (Emin, Emax) for
calculating the level density. For more details see the readme.txt
file.

5. Examples

Table 1 presents calculation times for different nuclei calculated
in different shell-model spaces. The calculations were done on a
16 cores machine with 2.8 GHz CPU frequency. One core (‘master’)
distributed all the work between other 15 cores (‘slaves’). One can
emphasize here that the listed times correspond to calculations of
the nuclear level densities for all J and for positive parity. For the
case of 68Se the largestm-schemedimension is about 1015. For each
J the m-scheme dimensions vary from 1012 to 1014, which makes
direct diagonalization impossible. Using the moments method
and our algorithm we are able to calculate the shapes of nuclear
densities for 68Se in less then three hours on a 16 cores machine.
For a number of processors reaching one thousand, it will take only
few minutes to complete the calculation.

5.1. 28Si, sd-model space

As a first example we consider the level density for the 28Si
nucleus in the sd-shell model space, where we use the USD
interaction [42]. Fig. 3 presents the comparison of the exact shell-
model level densities for different spins (solid lines) with those
obtained with the moments methods (dashed lines).

Eqs. (1) and (2) require the knowledge of the ground state
energy Eg.s. and the cut-off parameter η. While the ground state
energy of 28Si can be calculated in this case using the standard shell
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Fig. 3. 28Si, parity = +1. Comparison of nuclear level densities between the exact shell model (solid line) and the moments method (dashed line). Cut-off parameter
η = 2.8, interaction: USD, sd-shell.
Fig. 4. Level densities for the 64Ge nucleus, J = 0, 2 and positive parity. Solid line presents the calculation in the pf -shell with the GXPF1A interaction. For this calculation
we know the ground state energy, Eg.s.(pf ) = −304.25 MeV. Other three lines present calculations in the large model space, when level g9/2 is added. The ground state
energy for these cases is Eg.s.(pf + g9/2) = Egs(pf ) − ∆E, where ∆E is the energy shift. The cut-off parameter is η = 2.6.
model, Eg.s. = −135.94MeV, for the value of the cut-off parameter
ηwehave only a general idea that it should be around 3 [26,27]. For
a better description of level densities in the moments method we
can adjust the η parameter to optimally reproduce the exact shell-
model densities. From Fig. 3 one can see that choosing η = 2.8,
the level densities of the moments method reproduce quite well
the exact shell-model level densities. The cut-off parameter plays a
role similar to that of the width in a Gaussian distribution. Indeed,
if we increase the cut-off parameter, the density becomes wider
and lower, while decreasing it leads to a narrowing of the density.
One should alsomention that the exact spin- and parity-dependent
shell-model densitieswere calculatedwith theNuShellX code [43].

5.2. 64Ge, pf - and pf + g9/2-model spaces

As mentioned in the Introduction, one could envision using
information from the level densities to extract with a good
approximation the ground state energies. Using our algorithm and
the moments method one can easily calculate the nuclear level
density for any nucleus that can be described in the pf +g9/2 model
space. TheHamiltonian used for thismodel spacewas built starting
with the GXPF1A interaction for the pf model space, to which the
G-matrix elements that describe the interaction between the pf
orbits and g9/2 orbit were added. The single-particle energy for
the g9/2 orbit was fixed at −0.637 MeV. Even for the worst case,
the calculation takes about three hours for sixteen processors and
only a fewminutes for one thousand processors. Fig. 4 presents the
results obtained for 64Ge, nucleus that is believed to be a ‘‘waiting-
point’’ along the rp-process path [39–41]. We only present the
densities for J = 0, 2 and positive parity.

The corresponding input.dat file for 64Ge in pf -model space
looks like

12 12 ! Z N
1 0 22 2 ! P 2Jmin 2Jmax 2Jstep
int/pf.spl ! single-particle model space
int/gx1a.int ! interaction

Here we have twelve protons and twelve neutrons in the pf -
model space. The calculation is done for all spins between J = 0
and J = 11 and positive parity. The single-particle space is defined
in the pf.spl file and the interaction is in gx1a.int. For the pf + g9/2
model space we need to change the single-particle file to pfg9.spl
and the interaction file to pfg9.int.

It is important to notice that in the pf model space the shell-
model calculations of the ground state energies can be done. For
64Ge in the pf -shell we obtain the following ground state energy:

Eg.s.(pf ) = −304.25 MeV. (21)

Using this ground state energy and the cut-off parameter η = 2.6,
we are able to calculate the level densities according to Eqs. (1) and
(2). The solid lines in Fig. 4 represent the density in the pf -shell.

To calculate the same level density in the pf + g9/2 model
space we have to adjust the ground state energy and the cut-off
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parameter for this space. For the cut-off parameter we use the
same value, η = 2.6, but it is practically impossible to calculate
by shell-model diagonalization the ground state energy since the
dimension is too large. The ground state energy for the larger
model space, that is pf + g9/2, must be lower compared to the
ground state energy for the smaller model space, that is pf . Let us
introduce this energy difference, ∆E, as

Eg.s.(pf + q9/2) = Eg.s.(pf ) − ∆E. (22)

The dotted lines in Fig. 4 show the level densities if we keep the
ground state energy for pf + g9/2 model space as it was in the pf
case keeping ∆E = 0. It is natural to expect only small differences
between the level densities calculated in those two model spaces
at low excitation energy since in the pf + g9/2 model space we use
the sameGXPF1A interaction for the pf subspace. By decreasing the
ground state energies for the pf + g9/2 model space (introducing
non-zero ∆E), one gets the dashed lines on Fig. 4. The dash-dotted
lines there correspond to ground state energy Eg.s.(pf + q9/2) =

−305.8 MeV of 64Ge, which was obtained by a truncated shell
model calculation with up to 6 particles excited from the f7/2
orbits and/or into the g9/2 orbit. The m-scheme dimension in this
calculation, 13.5 × 109, is at the upper limit of the state of the
art shell-model calculation. As one can see, this value does not
describe satisfactorily the level densities at low excitation energy.
In order to make the low-lying part of the two densities very close
(dashed and solid lines on Fig. 4), one has to adjust the ground state
energy for the pf + g9/2 model space to the following value:

Eg.s.(pf + g9/2) = −306.7 MeV for 64Ge. (23)

The ‘‘low-lying part of the density’’ should be chosen such that the
excitations to the g9/2 orbit do not give a significant contribution.
For these cases we use the interval 3–6 MeV in excitation energy.
We conclude that the adjustment of Eq. (23) can be treated as a
method for estimating the ground state energies in larger spaces;
for more details see [29].

6. Summary

In summary, we have developed an efficient Fortran code for
calculating the centroids and widths of the shell-model spin- and
parity-dependent configurations, which can be used for calculat-
ing the nuclear level densities. The code is parallelized using the
Message Passing Interface (MPI) [39] and a master-slaves dynam-
ical load-balancing approach. The parallel code was thoroughly
tested on the massively parallel computers at NERSC [40], and it
shows very good scaling when using up to 4000 cores. The algo-
rithm used takes advantage of the separation of the model space
in neutron and proton subspaces. This separation provides two im-
portant advantages: (i) the exponentially exploding dimensions
and propagators can be calculated more efficiently in proton and
neutron subspaces, and the full results can be recovered via sim-
ple convolutions; (ii) the number of configurations is significantly
increased in the proton–neutron formalism, considerably improv-
ing the scalability of the algorithm on massively parallel comput-
ers. Our tests indicate almost perfect scaling for up to 4000 cores.
The new algorithm is so fast that the bottleneck of the calcula-
tion is now that of the ground state energy. That is why we could
not test our algorithm for cases that take more than one minute
on 4000 cores. Therefore, we investigated the possibility of using
the calculated shapes of the nuclear level densities to extract the
ground state energy. We showed that by incrementing the model
space and the effective interaction, and imposing the condition
that the level density does not change at low expectation energy,
one can reliably predict the ground state energy, and further the
full level density. This new method of extracting the shell model
ground state energy for model spaces whose dimensions are un-
manageable for direct diagonalization opens newopportunities for
calculating shell model level densities of heavier nuclei of inter-
est for nuclear astrophysics, nuclear energy and medical physics
applications.

A further development of the application of statistical spec-
troscopy to nuclear level density is the removal of center-of-mass
spurious states from the level density for shell model spaces that
allow complete factorization of the center-of-mass and intrinsic
wave functions. A new algorithm implementing this idea was re-
cently presented [44], and a high performance codewas developed.
This new code could be made available upon request.
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