Many-Body Problems with Low Momentum Nuclear Interactions

Scott Bogner
Institute for Nuclear Theory, Seattle
with
A. Schwenk (OSU), T.T.S. Kuo (Stony Brook), A. Nogga (INT)
Conventional Nuclear Many-Body Problem

\[H = \sum_{i=1}^{A} T_i + \sum_{i<j}^{A} V_{ij} + \sum_{i<j<k}^{A} V_{ijk} \]

- fit Point-like non-relativistic nucleons
- \(V_{NN} \) models constrained to:
 - \(\delta_{NN}(E) \) (\(E_{lab} < 300-350 \) MeV) \(\chi^2 \sim 1 \)
 - \(E_D = -2.2246 \) MeV
- Calculate nuclear structure using MBT

But 2 complications immediately arise…
Handling the Hard Core

Conventional approach:
- re-sum V_{NN} vertices into Brueckner G-matrices

\[G(\omega) = V_{NN} + V_{NN} \frac{Q_{pp}}{\omega - H_0} G(\omega), \quad Q_{pp} = \sum_{n,n' > k_f} |nn'\rangle \langle nn'| \]

Annoying features of G
- G parametrically depends on COM momentum
- G is energy dependent \Rightarrow “starting energies” (spectator dependence), additional self-consistency requirements
- G must be re-calculated for different mass regions
- Double counting issues

Lots of work to tame strong high k (\sim GeV) components that are not constrained by low E observables!
Model Dependence in Nuclear MBT

- **QCD non-perturbative at low energies:**

 No “unique” V_{NN} in the low E limit of QCD
 (no “coulomb’s law” as in electron many-body systems)

- **V_{NN} models based on meson exchange/phenomenology**

 - Model Dependent at mid-to-short distances

 - form factors, treatment of the repulsive core

 - 2π physics (fictitious σ, dispersion theory, QFT)

 - Model Independent 1 π tail

same deuteron/phase shifts $E_{lab} < 350$ MeV \Rightarrow separation of scales
<table>
<thead>
<tr>
<th>model</th>
<th>V_{long} (~2 fm)</th>
<th>V_{mid} (~1 fm)</th>
<th>V_{short} (~.5 fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paris</td>
<td>1π</td>
<td>2π (dispersion theory)</td>
<td>OBE (ω), sharp cutoff at ~ .8 fm</td>
</tr>
<tr>
<td>AV-18</td>
<td>1π</td>
<td>1π “squared”</td>
<td>Woods-Saxon, exponential FF</td>
</tr>
<tr>
<td>Nijmegen 1</td>
<td>1π</td>
<td>Local OBE (σ)</td>
<td>Local OBE (δ, ρ, ω)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>exponential FF</td>
</tr>
<tr>
<td>Nijmegen 2</td>
<td>1π</td>
<td>Non-local OBE (σ)</td>
<td>Non-local OBE (δ, ρ, ω)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>exponential FF</td>
</tr>
<tr>
<td>cd-Bonn</td>
<td>1π</td>
<td>Non-local OBE (σ)</td>
<td>Non-local OBE, (\delta, \rho, \omega) dipole FF</td>
</tr>
</tbody>
</table>
Very different k-space matrix elements

- Different short distance treatments
 - High k modes unconstrained by low energy NN data

- Gives model-dependent many-body results
 - In-medium nucleons offshell sensitive to high k modes
Low Energy Effective Theories

Main Idea: low E processes insensitive to short distance dynamics (separation of scales)

- Trade complicated (or unknown) dynamics for simple effective interactions
 - e.g., Effective Range Theory

\[
T(k) \approx \frac{1}{\frac{1}{a} - \frac{1}{2}r_0^2}
\]

- infinitely many V(r) models give the same (a, r_0) parameters!
Building Effective Theories

- separation of scales

\[H = H_0 + V_L + V_H \]

\[V_L = \text{unambiguous long wavelength interaction} \]
\[\text{(e.g., } 1-\pi \text{ exchange in } V_{NN}) \]

\[V_H = \text{unknown or complicated high } E \text{ dynamics} \]
\[\text{(e.g., strong repulsion at small } r \text{ in } V_{NN}) \]

- **Step 1: Impose a cutoff } \Lambda \]

- } \Lambda \text{ has physical meaning}
 (dividing line between } V_L \text{ and } V_H \)

- } keep } V_L \text{ explicit; replace } V_H \text{ w/something simpler}
- **Full theory:** (all states summed over)

 Schematically...

 \[
 \mathcal{T}_{fi} = V_{fi} + \sum_{n=0}^{\infty} \frac{V_{fn} V_{ni}}{E_i - E_n} + \cdots
 \]

- **Effective theory:**
 - only keep well-understood low energy states that mostly probe \(V_L \) (e.g., cutoff loop momenta)

 \[
 \mathcal{T}_{fi} = V_{fi}^{\text{eff}} + \sum_{n=0}^{\Lambda} \frac{V_{fn}^{\text{eff}} V_{ni}^{\text{eff}}}{E_i - E_n} + \cdots
 \]

 \[
 V^{\text{eff}} = V_L + \delta V_{ct}
 \]

 \(\delta V_{ct} \) corrects for truncating Hilbert space and excluding \(V_H \)

 mimics the effects of \(V_H \) on low \(E \) processes
- **Step 2: Impose RG Invariance**

 - Low E observables independent of Λ

 \[
 \frac{d}{d\Lambda} T_{fi} = 0 \Rightarrow \frac{d}{d\Lambda} V^{\text{eff}} = \beta[V^{\text{eff}}(\Lambda)]
 \]

 - V^{eff} must run with Λ to preserve low E physics

- **Step 3: Scale out high E modes via RG equation**

 - Bare V as large Λ_0 initial condition

 - RG evolution ‘filters’ out detailed high E dynamics that are not important for low E processes

 - Encodes detail-independent effects of high E dynamics in V^{eff} that are important for low E processes
General Form of V^{eff}

- V_H couples to high-lying intermediate states
 - highly virtual intermediate states; propagate only for short distances
- Low momentum probes “see” smeared out contact interactions

$$V^{\text{eff}} = V_L + C_0 \frac{1}{\Lambda^2} \delta^8(r) + C_1 \frac{1}{\Lambda^4} \nabla^2 \delta^8(r) + C_2 \frac{1}{\Lambda^6} \nabla \cdot \delta^8(r) \nabla$$

- ALL possible counterterms consistent with symmetries (e.g., rotational invariance)
- System-specific dynamics swept into C’s (operator structure independent of V_H)

‘Model Independent’ (i.e., no dynamics assumed)
“Bottom-Up” Approach (EFT)

- V_H unknown or too hard to perform exact RG decimation (e.g., QCD)

- General form of δV_{ct} still holds (Weinberg’s “folk theorem”)

- match the C_{2n}’s to low E data (EFT)

- truncate δV_{ct} (power counting) to leading terms
 - residual Λ dependence (limited accuracy in k/Λ)
 - Non-trivial power counting (unaturally large $a >> 1/m_\pi$)

- EFT treatments not as accurate as conventional V_{NN}
 - Need higher order to get same accuracy
Our Approach ("Top Down")

- Start from high-precision models of V_{NN} based on meson exchange and phenomenology

- Perform an exact, non-perturbative RG decimation

$$V_{NN} \ [0 \leq k \leq \infty] \xrightarrow{} V_{\text{low-k}} \ [0 \leq k \leq \Lambda]$$

- $V_{\text{low-k}}$ contains 'all' counterterms
 - no power counting difficulties (no fitting to data)
 - no residual Λ dependence

$V_{\text{low-k}}$ gives same NN properties as "high-precision" V_{NN}

- No ambiguous high k components to introduce model dependence in many-body calculations!

- No hardcore = No Brueckner
Calculating $V_{\text{low-k}}$ by RG equations

Full-space half-on-shell T-matrix:

$$T(k', k) = V_{NN}(k', k) + \int_0^\infty \frac{V_{NN}(k', p)T(p, k)}{k^2 - p^2} p^2 dp$$

$$\tan \delta(k) = -kT(k, k)$$

Low-k effective theory:

$$T_{\text{low-k}}(k', k) = V_{\text{low-k}}(k', k) + \int_0^\Lambda \frac{V_{\text{low-k}}(k', p)T_{\text{low-k}}(p, k)}{k^2 - p^2} p^2 dp$$

$$T_{\text{low-k}}(k', k) = T(k', k) \ \forall \ (k,k') < \Lambda$$

Integrate down to $\Lambda \ll \Lambda_0$ to construct $V_{\text{low-k}}$
Solution of RGE ($V_{\text{low-k}}$) becomes \sim independent of input V_{NN} model for $\Lambda \sim 2.1$ fm$^{-1}$!
Similar RG evolution in other partial waves

1S_0

3S_1-3D_1

$V_{\text{low-k}}$ collapses onto one “universal” curve at $\Lambda \sim 2.1 \, \text{fm}^{-1}$
Form of \((\delta V_{ct} = V_{NN} - V_{low-k})\) generated by RG

- main effect is \(\approx\) constant shift + polynomial in \(k\) (in agreement with general RG expectations)
Other partial waves ($\Lambda = 2.1 \text{ fm}^{-1}$)

Note: $\Lambda \sim 2 \text{ fm}^{-1}$ describes NN scattering up to $\sim 350 \text{ MeV}$ lab energy.
Check of $V_{\text{low-k}}$ phase shifts
Phase equivalence and the “uniqueness” of $V_{\text{low-k}}$

- Deviations from universal $V_{\text{low-k}}$ curve most pronounced for older Paris/Bonn V_{NN} models

- Fit to older PSA

Phase equivalence drives collapse, along with shared π physics
Idaho $\delta(E)$ strongly deviates from the rest $E > 100$ MeV (similarly, Idaho $V_{\text{low } k}$ deviates above this scale)

Lowering $\Lambda \sim 1 \text{ fm}^{-1}$, “universal” $V_{\text{low- } k}$ curve restored.
Summarizing so far...

- $V_{\text{low-k}}$ renormalizes to a universal interaction for $\Lambda \leq 2.1 \text{ fm}^{-1}$
 - Corresponds to scale ($E_{\text{lab}} < 350 \text{ MeV}$) of phase equivalence
 - Preserves δ_{NN} and B_d (Λ independence is exact)
 - Driven by phase equivalence and common pion tail
 - Gives “minimal” description of NN data
 - Short distance physics \Rightarrow model-independent contact terms
 - $V_{\text{low-k}}$ can serve as unique microscopic input to many-body calculations (affords several technical simplifications)
 - “soft” core \Rightarrow no more Brueckner resummations
 - energy-independent
Few-body results with $V_{\text{low-k}}$
(with A. Nogga and A. Schwenk)

• No huge/crazy 3-body forces induced by truncating to low k space

• Model dependence due to V_{NN} greatly reduced
 • $\Delta B_3 \sim .4$ MeV (bare V_{NN})
 • $\Delta B_3 \sim .15$ MeV ($V_{\text{low-k}} \Lambda = 2$ fm$^{-1}$)

• Can tune Λ to give experimental B_3 w/out 3-body V_{ijk} ($\Lambda \sim 2$)
 (caution: does not mean $V_{ijk} = 0$!)

Should look at 4-body system!
- B_4 and B_3 linearly correlated when using phenomenological V_{NN} models (Tjon-Line)
- 3-body V_{NNN} break this linear correlation
Tjon-line slightly broken (~same degree as V_{ijk})
- No crazy 3-body forces induced
- Still need V_{ijk} to get B_4, even if tune Λ to get B_3 exactly
Three-Nucleon Force

- $V_{\text{low } k} \sim \text{“Universal” } \Lambda < 2 \text{ fm}^{-1}$
- Chiral EFT also “low-momentum” theory ($\Lambda \sim 2-2.5 \text{ fm}^{-1}$)
- Numerical similarities between $V_{\text{low } k}$ and $V_{\text{EFT m.e.’s}}$

\[V_{\text{low } k} \text{ effectively parameterizes } V_{\text{EFT}} + \text{H.O.T.} \]

- EFT Ideology: induced (low k) and omitted DOF (Δ) 3NFs inseparable at low E’s

Absorb both effects by augmenting $V_{\text{low } k}$ with leading χ-EFT 3N force
\(\chi \)-EFT 3N Force

2\(\pi \)-exchange (notation of Friar et. al. PRC 59,53)

\[
V_{3N_F}^{2\pi} = \sum_{i<j<k} \left(\frac{g_A}{2 F_\pi} \right)^2 \frac{\sigma_i \cdot \vec{q}_i \sigma_j \cdot \vec{q}_j}{(q_i^2 + m_\pi^2)(q_j^2 + m_\pi^2)} F_{i,j,k}^{\alpha \beta} \tau_i^\alpha \tau_j^\beta
\]

LERCs also appear in the 2N force

\[
F_{i,j,k}^{\alpha \beta} = \delta_{\alpha \beta} \left[-\frac{4 c_1 m_\pi^2}{F_\pi^2} + \frac{2 c_2}{F_\pi^2} \sigma_i \cdot \vec{q}_i \right] + \frac{c_4}{F_\pi} \epsilon^{\alpha \beta \gamma} \tau_i^\gamma \sigma_i \cdot \vec{q}_i [\vec{q}_i \times \vec{q}_j]
\]

1\(\pi \)-exchange

\[
V_{3N_F}^{1\pi} = -\sum_{i<j<k} \left(\frac{g_A}{4 F_\pi^2} \right) \frac{c_D}{F_\pi^2 \Lambda_x} \frac{\sigma_j \cdot \vec{q}_j}{(q_j^2 + m_\pi^2)} (\tau_i \cdot \tau_j)(\sigma_i \cdot \vec{q}_i)
\]

contact term

\[
V_{3N_F}^c = \sum_{i<j<k} \frac{c_E}{F_\pi^4 \Lambda_x} (\tau_j \cdot \tau_k)
\]

Due to the antisymmetry of the 3N states, the number of independent LERCs in the 3NF terms at NNLO is reduced to 2!

- 2 free parameters (\(c_D \) and \(c_E \)) -> fit to \(^3\)H and \(^4\)He B.E.’s
- \(c_i \) taken from NN PSA implementing \(\chi \)-\(2\pi \) piece (Rentmeester et.al., PRC67)
Determination of c_E and c_D

- Use $A=3,4$ B.E.'s to fix the free constants $c_E(\Lambda)$ and $c_D(\Lambda)$

- Linear relation ($\Lambda < 2$ fm$^{-1}$)

- $\Lambda=3.0$ fm$^{-1}$ gives wrong $A=4$ B.E. (~ 500 keV)
 (not too alarming since our identification of $V_{\text{low } k} \sim V_{\text{eff}}$ breaks down at larger Λ)

Guess 3NF can be treated in 1st order (verified numerically).
Expectation Values of different components

- Are the 3NF terms of “natural” size?

\[
\begin{align*}
\text{EFT: } & <V^3N> \sim (Q/\Lambda)^3 \quad <V^2N> \quad Q \sim m_\pi
\end{align*}
\]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\Lambda [\text{fm}^{-1}] & T & V_{\text{low }k} & c\text{-terms} & D\text{-term} & E\text{-term} \\
\hline
1.0 & 21.06 & -28.62 & 0.02 & 0.11 & -1.06 \\
1.3 & 25.71 & -34.14 & 0.01 & 1.39 & -1.46 \\
1.6 & 28.45 & -37.04 & -0.11 & 0.55 & -0.32 \\
1.9 & 30.25 & -38.66 & -0.48 & -0.50 & 0.90 \\
2.5(a) & 33.30 & -40.94 & -2.22 & -0.11 & 1.49 \\
2.5(b) & 33.51 & -41.29 & -2.26 & -1.42 & 2.97 \\
3.0(*) & 36.98 & -43.91 & -4.49 & -0.73 & 3.67 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\Lambda [\text{fm}^{-1}] & T & V_{\text{low }k} & c\text{-terms} & D\text{-term} & E\text{-term} \\
\hline
1.0 & 38.11 & -62.18 & 0.10 & 0.54 & -4.87 \\
1.3 & 50.14 & -78.86 & 0.19 & 8.08 & -7.83 \\
1.6 & 57.01 & -86.82 & -0.14 & 3.61 & -1.94 \\
1.9 & 60.84 & -89.50 & -1.83 & -3.48 & 5.68 \\
2.5(a) & 67.56 & -90.97 & -11.06 & -0.41 & 6.62 \\
2.5(b) & 68.03 & -92.86 & -11.22 & -8.67 & 16.45 \\
3.0(*) & 78.77 & -99.03 & -22.82 & -2.63 & 16.95 \\
\hline
\end{array}
\]

\[
<3\text{NF}> \sim 4\text{-}15\% \text{ of } <2\text{NF}> \text{ for } \Lambda \leq 3 \text{ fm}^{-1} \text{ in agreement with EFT expectations}
\]

Further confidence that our low-momentum theory
Doesn’t need crazy many-body forces
- No crazy effective operators induced by our truncation to low k
- $2N + 3N$ is less Λ dependent (as expected!)
Worried about saturation?

- Saturates in HF (no BHF, jastrow, etc.)
- Holds for other Λ too
- See a (relatively) satisfying insensitivity to cutoff
- Actual #’s aren’t too bad given the crude approximations
- Work in progress for “complete” 2nd+3rd order calculations
Conclusions

- **RG methods to eliminate model dependence of V_{NN} models**
 - unique $V_{\text{low-}k}$ for $\Lambda \leq 2$ fm$^{-1}$
 - cutoff version of inverse scattering problem
 - (phase shifts/pion tail \Rightarrow constrains $V_{\text{low-}k} (k,k)$

- **reproduces B.E. and δ_{NN} of “high precision” V_{NN} models**
 - w/out ambiguous high k components

- **“Unified” framework for S.M. calculation**
 - SAME input in different mass regions
 - no more “starting energies” etc.
 - \sim independent of force model
 - No more Brueckner-Faddeev resummation

Re-do low E nuclear structure with $V_{\text{low-}k} + V_{ijk} (EFT)$ with less computational effort