Spin-Isospin Properties of Light Nuclei

Toshio Suzuki

(1) Role of \(3\bar{F}F \) interaction
 - Improved shell model Hamiltonian
 - Effects on spin-dependent modes
 Gamow-Teller transitions
 Magnetic moments
 - Near drip-lines
 \(N=7,8 \)
 Role of LS interaction

(2) Role of tensor interaction
 - Monopole terms of energies
 - Effects on spin-dependent modes
\[v_M^{T=0} (\text{n-p spin-flip}) \]

\[M = \text{monopole} \]

Less mixing of \(0p_{1/2} \) and \(0p_{3/2} \) orbits

GT, M1 transitions can become more single-particle-like

Weakening of quenching effects in GT and M1 transitions

(Attraction between \(p_{1/2} \) and \(p_{3/2} \) balances this in normal stable nuclei for the energy levels.)
Shell-model interactions

- PSDMK2: p: CK (8-16)2BME , p-sd: MK
 sd, p²-(sd)²: Kuo’s G-matrix
 = 0.3 MeV

- OFU*: Otsuka et al., PRL 87, 082502 (2001)
 = 3.85 MeV
 Vₘ⁰ (p½ , p³ : J= 1, 2 ; T= 0)
 =-2.0MeV
 For use in the 0-1 configuration space

- SFO:
 = 3.92 MeV
 Vₘ⁰ =-2.14 MeV
 p² - p² renormalized by 0.93
 p² - sd² : renormalized by 0.75
 These renormalizations are
 important to get better agreement of
 spectra in O-isotopes (Sebe).
 For use in the 2-3 configuration space

(present = SFO)
Monopole terms in p-shell

Monopole matrix elements

\[(\text{MeV}) \]

\[T=0 \]

\[\begin{array}{cccc}
\text{C} & \text{T} & \text{Is} & \text{S} \\
(1,1) & & & \\
(2,1) & & & \\
(2,2) & & & \\
\end{array} \]

CK
SFO

C=central T=tensor Is=LS S=Sum

1=0p_{1/2} 2=0p_{3/2}
Energy levels of B and C isotopes
B(GT) values for $^{12}\text{C} \rightarrow ^{12}\text{N}$
B(GT) for $^{11}\text{B} \rightarrow ^{11}\text{Be}$
$^{11}\text{B}(\bar{\nu}_e, e^- \mu^-)^{11}\text{Be}$
Magnetic Moments

s.p. : \[[p_{1/2} \quad [p_{3/2}] \] \]¹¹¹
\((-g_{p} q + 1/2 g_{q}^s) + 1/2 g_{q}^s = - 0.12 N\)

CK : \(q = 0.778 N \) \(p \) Mixing of \(p_{1/2} \) and \(p_{3/2} \)

![Graph showing M.M. (\(\mu_N \)) for different isotopes and configurations.](image)
Magnetic moments of p-shell nuclei
Magnetic moments with effective g factors
Magnetic moments with effective g factors
Near Drip-Lines

N=7,8

(1) Effective single-particle energies
(2) Structure and magnetic moments of ^{11}Be
(3) Levels and transitions in ^{12}Be
(4) 2-body LS interaction from M3Y
(5) Energy levels of ^{11}Be and GT transitions in ^{11}Li and ^{12}Be
Effective single-particle energies for $N=7$
Effective single-particle energies for N=8
Structure of ^{11}Be

- present = SFO
- present' = SFO': $\Box \Box (1s_{1/2}) = -0.5 \text{ MeV}$
- + paring
Levels and E2 transitions in 12Be

Life time of 0^{2+}

330ns ~ 100ns ~ 5 s

exp: Shimoura et al.
Spin-dipole transitions in 12Be

12Be

$0^- + 1^- + 2^-$

SFO, SFO': Splitting of the strength
2-body LS force from M3Y

Monopole matrix elements

(MeV)

LS T=1 MK M3Y

j_1 j_2
3 1 0p_1/2
3 2 0p_3/2
4 1 0d_3/2
4 2 0d_5/2
5 1 1s_1/2
5 2

1=0p_{1/2} 2=0p_{3/2} 3=0d_{3/2} 4=0d_{5/2} 5=1s_{1/2}
LS potential

![Graph showing the LS potential with MeV on the vertical axis and fm on the horizontal axis. The graph includes curves labeled LS odd, M3Y, and MK.]
Levels of 11Be with 2-body LS from M3Y
GT transitions in 11Li and 12Be

<table>
<thead>
<tr>
<th></th>
<th>11Li</th>
<th>PSDMK2</th>
<th>SFO</th>
<th>SFO'</th>
<th>SFO-LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(p^7)$</td>
<td>88%</td>
<td>60%</td>
<td>39%</td>
<td>28%</td>
<td></td>
</tr>
<tr>
<td>12Be</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(p^8)$</td>
<td>85%</td>
<td>59%</td>
<td>44%</td>
<td>39%</td>
<td></td>
</tr>
</tbody>
</table>

![Graph comparing log ft for 11Li and 12Be]
Effects of tensor interaction

Monopole terms from tensor interaction

\[V_M(j_>, j_<) < 0 \] attractive

\[V_M(j_>, j_>) > 0 \] repulsive

\[V_M(j_<, j_<) > 0 \] repulsive

Monopole matrix elements

![Graph showing monopole matrix elements for different tensor interactions and models. The graph plots (MeV) against various j1 and j2 values, with labels for specific j values (1=0p_1/2, 2=0p_3/2, 3=0d_3/2, 4=0d_5/2) and different models represented by different symbols and styles.](image)
Monopole terms of SFO-T

Monopole matrix elements

tensor \ T=0

- SFO-T
- M3Y
- \pi+\rho
- SFO

\begin{array}{cccccccccc}
 j_1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 3 & 4 \\
 j_2 & 1 & 2 & 1 & 2 & 1 & 2 & 3 & 3 & 4 \\
 1=0_{p_{1/2}} & 2=0_{p_{3/2}} & 3=0_{d_{3/2}} & 4=0_{d_{5/2}}
\end{array}
Magnetic moments for SFO and SFO-T
Magnetic moments for SFO and SFO-T
Magnetic moments for SFO-T

\[|\mu(\text{cal}) - \mu(\text{exp})| \]

\[\delta g_l, \delta g_s, \delta g_p \]

Tensor \(\pi + \rho \)

\(^7\text{Li}^8\text{Li}^8\text{B}^9\text{Li}^9\text{Be}^9\text{C}^{10}\text{B}^{11}\text{Li}^{11}\text{Be}^{11}\text{B}^{11}\text{C} \)
Magnetic moments for SFO-T
Magnetic moment of 9C

Tensor $\vec{\mu}$

$| \mu p_{3/2} \mu p_{1/2}(J=1), \mu p_{3/2}; 3/2 ->$

J=1 cf. J= 2
S_z 0 0 0 0
L_z 1 -1 1 1
\[\mu p_{3/2} \mu p_{1/2} \mu \]
$S=1$ 0 0

attractive repulsive

\[(\mu p_{3/2} \mu p_{1/2}(J)) \]
\[(J=1) = \frac{5}{6} (\mu p_{3/2}) - \frac{1}{2} (\mu p_{1/2}) \]
\[= 3.29 \mu_N \]
\[(^9C) = -1.91 \mu_N^2 + 3.29 \mu_N^2 \]
\[\mu_N^2 = 0.9, \mu_N^2 = 0.1 \]
\[\mu exp = -1.39 \mu_N \]

\[(^9Li) = 3.79 \mu_N^2 - 1.91 \mu_N^2 \]
\[\mu_N^2 = 0.94, \mu_N^2 = 0.06 \]
\[\mu exp = 3.439 \mu_N \]
Magnetic moment of ^9C with skin effects

Skin, $<p_2(J, T=1)|V|p_2(J, T=1)>$ (Correspond to isospin and spin mixing)

<table>
<thead>
<tr>
<th></th>
<th>exp.-theory ((\mu_N))</th>
</tr>
</thead>
<tbody>
<tr>
<td>a: SFO</td>
<td>0.3</td>
</tr>
<tr>
<td>b: SFO-T</td>
<td>0.2</td>
</tr>
<tr>
<td>c: SFO-Skin</td>
<td>0.1</td>
</tr>
<tr>
<td>d: SFO-T-Skin</td>
<td>0.0</td>
</tr>
</tbody>
</table>

^9C: \(\delta g_l\), \(\delta g_s\), \(\delta g_p\)
Summary

1. Enhanced spin-flip n-p interaction and tensor component of monopole terms is enhanced with right signs (attractive for \(j_{<j>} \) and repulsive for \(j_{>j>} \) and \(j_{<j<} \)).

 • Weakening of quenching effects in GT transitions

 • Improvements of agreement of calculated magnetic moments with experiments in most of p-shell nuclei

2. Near drip-lines
 Effects are more apparent.
 2-body LS term is found to be important

3. Effects of enhanced tensor interaction are investigated.