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RSIC CODE PACKAGE PSR-338

. NAME AND TITLE

DWBA91: Code System for Fully Microscopic Analyses of Nucleon-Nucleus Scattering.

AUXILIARY PROGRAM
DWBAUOI1 - Interaction: generates input data for DWBAO91 for the two-body interaction for a
given energy based on the energy and density dependent effective
interaction table.

CONTRIBUTORS

Service de Physique Theorique, CEA Saclay, Gif-sur-Yvette, France, and Theoretische
Kernphysik, University of Hamburg, Hamburg, Germany through the NEA Data Bank, Issy-les-
Moulineaux, France.

CODING LANGUAGE AND COMPUTER
Fortran IV; VAX, CRAY, and IBM mainframe (P00338/MNYCP/00).

. NATURE OF PROBLEM SOLVED

Direct interaction reaction cross sections and angular distributions are calculated. The relativistic
cinematics option is included.

. METHOD OF SOLUTION

The distorted wave Born approximation is used. DWBAG91 includes a fully microscopic nonlocal
optical model obtained with the description of the target by its occupation numbers and with the two-
body interaction for the initial and final distorted waves. The effective interaction is input as a quasi
potential operator which generates plane wave t-/g-matrix elements equal to those generated from some
nucleon nucleon potentials. The effective interaction may comprise central, tensor, (LS), L**2 and
(LS)**2 operator components with Yukawa form factors and complex density dependent strengths.

Minimum relativity makes allowance for DWBA91 to be used for projectiles at low and medium
energy.

RESTRICTIONS OR LIMITATIONS
None noted.

. TYPICAL RUNNING TIME

Sample problem execution times on a VAX 6000-420 with a 20% load percentage:
Sample problem 1 4 minutes 46 seconds
Sample problem 2 19 minutes 9 seconds
Sample problem 3 26 minutes 39 seconds

COMPUTER HARDWARE REQUIREMENTS

The codes run on Vax, IBM, Cray and CDC computers. Sample problem 3 requires slightly more
than 15000 blocks of free space for the creation of scratch file (logical unit 8 - FOR008.DAT).
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9. COMPUTER SOFTWARE REQUIREMENTS
A Fortran compiler is required. DWBA91 was tested at RSICC using VAX Fortran on a VAX
6000-420 running VMS 5.5-2.

10. REFERENCES
J. Raynal and H. V. von Geramb, “A New Microcscopic DWBA Code Version and Some
Applications” (1992).
J. Raynal, “Notes on DWBA91” (September 9, 1991).

11. CONTENTS OF CODE PACKAGE
Included are the referenced documents and 1 DS/HD (1.2 MB) diskette which contains the source
code, sample input/output, and a README.RSI file which describes the installation and operation of
DWBAS91 and DWBAS91 - Interaction written in DOS compressed self-extracting files.

12. DATE OF ABSTRACT
October 1993.

KEYWORDS: NUCLEAR MODELS
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A New Microscopic DWBA Code Version
and Some Applications

J. Raynal
Service de Physique Theorique, CEA-Saclay
91191 Gif-sur—Yvette Cedex, France

H.V. von Geramb
Theoretische Kernphysik, Universitat Hamburg

A new level of fully microscopic analyses of nucleon—nucleus scattering has been reached
with the version DWBA91[1]. As compared to versions prior to 1990, a fully microscopic
nonlocal optical model for the initial and final distorted waves has been included which
makes use of a complex, energy and medium dependent effective interaction. The ef-
fective interaction is input as a quasi potential operator which generates plane wave
t—/g-matrix elements equal to those generated from some nucleon nucleon potentials.
The effective interaction may comprise central, tensor, (LS), L? and (LS)? operator
"components with Yukawa form factors and complex density dependent strengths. All
features of the older versions of DWBAxx are still available as options despite the fact
that many parts of the program have been rewritten or restructured. Minimum relativ-
ity makes allowance for the code to be used for projectiles at low and medium energy.

In this contribution we distinguish studies of the elastic scattering with the nonlocal
optical models as compared to others with local microscopic and phenomenological
optical models and studies of inelastic scattering.

The computations show that elastic scattering differential cross sections and spin
observables are better reproduced with the nonlocal optical model as compared with
local equivalents. The major change comes from the inclusion of L? and (LS)? opera- -
tors in the effective interaction. With the new parametrization scheme [2] we greatly
improved the reproduction of reference half-off shell t—/g—matrices in all partial waves
with ¢ < 5 and eliminated problems with the unitarity which were present in older
formulations of effective interactions. Inelastic scattering uses the same effective inter-
action as transition operator and we made applications to some benchmark transitions
in 12C. Cross sections and angular distributions of spin observables for 12C(p,p’), 17,
T=0,1 at 12.71 and 15.11 MeV were computed and compared with some data at 1853,
200, 318 and 400 MeV. The contributions from the L? and (LS)? operators to the spin-
flip transitions are unexpectedly large. We attribute this to malfunction in very high
partial waves of the effective interaction which the program generates and whose limits
are only determined from the cutoff in partial waves and exchange multipoles. Similar
results and conclusions can be drawn from calculations done for **Ca and 2°®Pb. The
program is not restricted to the here used form of the effective interaction but other
parameterizations, which may be favored by a user, can be used as well.

1. J.Raynal, for inquiries use the E-mail address:
RAYNALG@GPOSEIDON.SACLAY.CEA.FR
2. H.V. von Geramb, K. Amos, L. Berge, S. Brautigam, H. Kohlhoff and I. Ingemars-
son, Phys.Rev. C44 (1991) 73.
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DIWBATO

1 Date 20/09/1991

1. -DWBATO

The codes DWBAxx computes the inelastic scattering of nucleons on a target of which the excited state
is described microscopically by particle-hole configurations, with a two body interaction. It is based on the
‘helicity formalism of the multipole expansion of this interaction.

1.1. — THE TWO HELICITY FORMALISMS

=(+)
-

The expansion of a distorted wave is usually written as:

(F

yF)= T
.7

ST 1 . Lo T RN /
2 Z 2k < li,ua'ljm ><izp'e’ljm > YPT(R)YE (7)o > (I-1)

PR NI

where & is the spin projection of the in going plane wave on an arbitrary axis and ¢’ its projection at

the point 7 on the same axis.

1.1.1. - DESCRIPTION OF A DISTORTED WAVE

If we choose this arbitrary axis along /, we introduce the usual helicity defined in [1] M.
JACOB and G. C. WICK, Ann. of Phys. 7 , 404 (1959). with ) instead of o:

o >= SR (x> (1-2)
A

The helicity formalism for multipole expansion as defined in (2] J. RAYNAL, Nucl. Phys.
AO7. 593 (1967). and also described in (3] J. RAYNAL, in The structure of Nuclei (IAEA,
Vienna, 1972). consists in a similar projection of ¢/ > along 7. If ¢,,6, and ¥, are the Euler
angles between a frame with its :-axis along F and a frame with its z-axis along 7, this wave
function may be written as:

- - 1 . —i )y ™ YRV :
SHE A = == (2 + 1L W (kr)RYL (00, 8r )X > (I1-3)
. 2k 27 i '

where the helicity functions = ,, are:

g-%

=i —,‘{— .(kr)+‘i(—)'\—xst=;‘+%.j(kr)} t-4

"'/\,A'.: ':1=J."§7-J

They do not have a well-defined parity.

1.1.2. — DESCRIPTION OF A BOUND STATE

NQCTES ON DWBA91

The usual description of the bound state of a spin L particle with orbital angular momentum
[, a total angular momentum j and its projection m on the guantisation axis is:

ljm>= f[j(l‘)z < l%;wljm > ¥H (0. 0)le > (I-3)

p.o

I-1 Jacques RAYNAL



DWBAT0 3 Date 20/09/1991

1.2.1. — SYMMETRIES OF THE MULTIPOLE FXPANSION

Some synunetry properties are also required, in general, of the two-body force. In order
to study their consequences. it is simpler to choose the axis of quantisation along 7 together
with a frame of reference for particle 2 given by the Euler angles (0,6,0) and obrain:

. . o ‘_ J :
Fagaganna(1:2) = 20 Whasama (L0, u9) (1-12)
7

The action of the parity operator P is the same as for standard helicity because ¥ and impulsion
behave similarly:

7 ([ 2\ = 1] &
"'\;)‘fy'\l’\’-‘(l’z) - “'/\;—'\-';-"r\x—f\n(]" 2) {(I1-13)
Time reversal invariance depends on the nature of the operators:
Vi aona(1i2) = 77 (1.2) (1-14)
Xas A b ) = Vo Jag —ag-agth 2

where 7 = —1 for a derivative term or an expression odd in the permutation of A and A’
When the two nugleons are identical:

Wi ama(l2) = Viatasn (2:1) (I-15)

For a given value of J, the matrix ¥y a0 a,2,(1, 2) can be written on the basis of Kronecker
products of 2 x 2 matrices. They are two even matrices:

1 0 0 1
0 1y 1 o} (I-16)
and two odd ones: . .
-1 -1 _
lo 1 ll 0| (I-17)

If parity conservation applies, the two-body interaction can be separated into an even part:

Ty ol 0L |1 0] g oyl 0] 10 L
a(LZwO Jblo ISR O] PORDE - B
(1-18)
gy oy |0 1L 0] s o]0 1] ]0 1
and an odd part:
20 oon =1 0 =1 0) s oy )= O] |0 -1
d(Lnlo 1'@,0 | T2 ll®ll o‘
(1-19)
Ter o]0 =1 1 o), .7, 0 =1]_]0 =1
+¢(1,2) | o‘oto . Tf(Lm‘l 0 1 0
If the two particle are identical:
J2=d 2.1, Y= JLa=J@Q0. 1 - 20)
Jaa=J2n,  dJan=<2y  faa=ren, i
NOTES ON DIWBAYL I-3 Jacques RAYNAL




I DWBATO 5 Date 20/09/1991
| and for its odd part:

(J+1)

J
c]-’(]_ 2] __2(7 +r'q { 37 = 11 1{ry.ra) + EVES)

‘J?l(’lar")}—'17’
(J = 1) oy M2 1T 10, J+)JI+2)
, {(ZJ'—l)(’Jw-l)‘J"?(“”g)T('ZJ Ter+3) 2)+(2J+1(‘2J+3)h+2(71’r2)}
4 \/J J" '
e’(1,2) = (:2:1 3 ( {U-;(Ix.l«)—'¥J+1(71,7"')}+"11"\/~7_(T:T)

J-1 i R
{(ZJ—-I)(U-!-l) =t mr ey T T Gy 1)(2.] 5Vl }

J+1) J .,
F(1.2)=-(3 (2.7 ) Ta1(r1, )+ Em"1+1(7‘1, "2)} - rra
J-DU+1) 102+ 107 =9 J(J+2)
(

Vi(r,ra) +

BTt ar 13 o ”3)}
(1 - 29)

ey —nar=y e S G e T

1.3. - MATRIX ELEMENT BEFTWEEN BOUND STATES

After integration over angles, using the helicity formalism for the interaction and the bound

states:
< jymy| < jamb|V(L, 2)jimy > [jama >
. . inJoq ja J 2 (I - 30)
— PRV SR o P KNS : '.],., s
B g( ) 27 Tl)<m’1 7] —nzl)(mi u - mg) Tititis
where
Fisyigs = \/(ZJ +1)(275 + 1)(251 + 1)(2j2 + 1)
A;,A' S
, . . P
‘ N (_)j1~A1+j-'_--o\:(J1 I 1 )(J'-’ J J2 ) (I-31)
A A =X =AM, Ag=AL =,

X//"',\'2,\;.,\1,\3(1:'2)<Pf\';("'1}¢);('7( 2)A (1)L (ra)r ridrdra

1.3.1, — PARTICLE-PARTICLE AND PARTICLE-HOLE MATRIX ELEMENT

The antisymmetrised particle-particle matrix element is:

< Jy Jas TMIV(L,2)]51 jas JM >
= Z < j1jrmy malJ M >< ji jymy mh|J M >

m{,m4,my,ma

. . - 39)
x {< jimi] < jf_,m'a,]V L 2)(ljimy > ljama > =|jama > |jimy >)} (I-32)

, i o v oja Iy,
| =;( )J+Jx‘r]~(2.] +1){J,'2 i }leJ jw-—;(b' +1){)’1 Jf_, 7 }fJJ‘J‘. Jait

29

NOTES ON DWBA9I I-5 Jacques RAYNAL
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and when the matrix is non diagonal, the geometry is:

| P
(i +nei+ o ) "

1 1
-3 1 -3

) = a‘;xj{Gfu'( (I - 39)

Recurrence relations between Clebsh-Gordon coefficients gives:

yUL+3) + (PG + )

J o \h+ii- .
ajjy = () ACESY (I - 40)
which can be expressed whith the eigenvalue v of I.7 as follows:
=71 Y
—_— for a natural parity
of =4 VD (T-41)
i N+ +2 h

, for an unnatural parity
VI +1)

or with the quantum number « of Dirac equation because x = v + 1.

The coefficient G}'ij’ is given by the summed formula which holds for 3-j coefficients of
2B
which the magnetic quantum numbers are zeros:

. faad2 i+ 7 +J
G'}-Ij, _ (__)1,,(&1._24) g(j+7 +J7+1) (1 - 42)

- g(J+i—ie(J+7 =G+ =7

where

\Fx‘zl x-.,_ X (n—l)’ when n is odd
3x3x...xn

— : (I-43)
\/7 2x4x...%xn . '
, when n is even

=3
A o)

g(n) =

IxSx...x(n=1)

1.3.3. — PARITY OF THE PARTICLE-HOLE MATRIX FLEMENT

With the elementary matrices, the sum on the helicities of one particle involves two terms

.. and the geometrical coefficient is:

4

1 . ‘ . . h J o
Sr_Vi—=M ERUE LT 95+ 1424 — a4
G e e s (s T, D) (1-49)

where 7 is the symmetry of the matrix.
Therefore, there are two kind of particle-hole matrix elements

the "natural parity” matrix elements for which [; +1] +J is even. All the contri-
bution of the interaction comes from its even part:

AP =Gl f [0 (1,2) + 1167 (2, Vg1 (r)én, (r)ridr
. (I - 45)
BJJUI = G']Iu{ /[61(1,2) -+ Q}-’lj;CJ(l, 2 ]é}zj;(1‘1)¢1xj1(r1)r;drl

NOTES ON DWBAYL 1-7 Jacques RAYNAL
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and for the odd part, the multipoles are:

2= —-)](_({J:——ll)—{) = (ohur) = (o) Jo7m = v
\/?7(___

Tiv oy (9 T2 _ N
e(1L,2) = - T+ D {7+ - @7 +1)? S+ (7 = DV _—
~ (sl ) {(J+1 Vro 1—(DJ—l)--t +JVJ+1}]
L= -5 —{+ 1 wnm}ﬂ (Z+ 2
In the even part, the multipole b is the sum of a derivative term:
Jay = YIU AN et ey e (T T ey s
bi(1,2) = 37+ 1 [(‘1—1 ‘1-1-1)(7.617_1 "I )+ 2(2171)(11 1_2)(01‘1-1.6-114-1)] (I-31)

(where ¢; = J + 1 and ¢2 = J, but where ¢; = J — 1 and ¢2 = J + 2 if the functions are
multiplied by r as usual)

and a term odd for the peunutat10n of ji and j» with ji and j5:

Ty oy 1 EE) (J1 DI
b2(12)= 2/7(J + 1) { “+1-1{”+1" ”’fﬂ"“” I-32
L -3
(a2 -.1_; — (- J:+J:-r-1(]./_,+-;1}) . r IRY P ( )
! 2QJ [-f—": "Jl J-1+ 57T ,_{1 J-l-l}}
i3 2

the departure from the previous geometry appears by this terms and the presence of o in the
"natural parity” two-body form factor ¢’ and in the "unnatural parity” ones ¢/ and ¢”.

There are five one body form factors for a natural parity excitation:

(I‘ - ‘f (Il --lv D)
Frs=A(r)+ B(')'————(J = + Ai(7) '—"——J(J 0 + Balr)(5i + 7 + 2) _—
-3
(3i = 5075 + 77 +2) -7) 1 d
Aa(r A:
+ Aa(r) T7+1) +{ 3(r) +B_3(r) _—-—J(J-i-]_ }dr
an only three for unnatural parity excitation:
Yi T 7 2 i+ 7+ 2 2 -
Fus(r) = Cry+ D ELLED L ¢, )“——1’—)— (1-354)

T +1)

1.4.2. —- EXPANSION FOR SMALL RANGES

In fact, the two body interaction is separated into four parts which are respectively
Vis=6,r=0)- Vis=1.T7=0), “'Zs:o’?':l) agd ¥s=1,r=1)- The tensor and the spin orbit interactions
are pure S = 1. For a central interaction:

, 1—=3y.54 3+ .02 .
\/(5=0) =V —-'—4'—'- Vi‘5=1) =V -——'—4—— (I - OO)
for identical particles, V=g do not contribute

NOTES ON DIWBA9L I-9 Jacques RAYNAL
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This is easily understood in relative coordinates. For a relative angular momentum L, the
svmmetrised states are those with L 4+ § + T odd. The zero-range implies L = 0 and the next
term is L = 1. As the spin orbit is § = 1, its zero-range limit must be T = 1 because it is for

= 1.

1.4.4. — COMPARISON WITH MACROSCOPIC MODELS

When the excited state is collective, there are many contributions with different values of
7p and yx which must cancel out. V¥ (r) is the transition form factor. Using:

d 1,.d 2 1
S Gl a0} = {3l (eh) =5 (1 - 62)

we get for a natural parity state, taking the Hermirtian part:

lj(r) Vi(r) d

1
Vestr) = [t = )3 =77 + 1) = I + D] 2 =252 (S 205 + 203y — 70 2L

(I-63)

to be compared to the macroscopic result:

. Vo _ql.d._. Vi (r d v, r)
V{VinyM ()} < o= [;{Z;“J(T)}‘/ﬁ i)t =5 I+ = (v =)= +1)}}
(I - 64)
and for an unnatural parity state:
. . V. 1 1d_, . _
Vis(r) = [(-,-i T F D+ - J(J+1>] ’7( -+ )= {z 70} (I - 65)

In the peculiar case J = 0 and natural parity, summation over all the nucleons must lead
to the optical model. The interaction is:

. o(r)d . 1,d ..
Vis(r) =27 01(_2 + 2(7p = ‘/'i);{‘[FVo(‘l‘)} (I -66)

where the factors 7, disappear after summation on two complete shells with the same anguler
momentum [ and the same radial functions.

— APPLICATION TO NUCLEAR REACTIONS AND CODE DWBAT0

For an incoming particle in the direction &; with the helicity o; on a nucleus without spin described
by ¥/' and an outcoming particle in the direction ky with an helicity oy, the residual nucleus having

the helicity py described by a particle j, and a hole ji, ‘Ili’, the reaction is described by the helicity
amplitudes:

forupo(Binky) = =20 [2E < Z0E, UL VIES Ry TS > (1-67)

where v; and vy are the velocities in the initial and the final state. The normalisation has been chosen
in such a way that:

[~ 9

)

)

]
[N ==

S N foupioiki By (I-68)

CATL-FRY ¥4

NOTES ON DWWBASI I-11 Jacques RAYNAL
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(L.5) for identical and different particles. Central and (L.S) interactions can have zero range

limirc.

In fact, in these calculations we use only Yukawa form factors because its multipole expan-
sion:

exp(=A|7 — )

N = STRL+1) i jrlidrg) KT (iNrs ) Pr(cosb) (I-73)
—— 2.

L=

(=]

is such that the double integral over r; and 2 reduces to three single integrals.

NOTES ON DWBAJL [-13 Jacques RAYNAL



DWBAS2 15 Dare 20/09/1991
orbit interaction as they were used in DVWWBAT(0. Notations for Skyrme force are usually 47 those of
DIWBATO.

The 1, term of the Skyrme force includes a double derivative on the wave function in relative
coordinates. So, it acts in relative L = 0 state and is the next term to the zero range scalar interaction:

. 17 5kyrme Skyrme -
h= 1'(_5==0,’I‘=1') + V(S:l.T:()) (Ir-m

The t2 term of the Skyrme force includes a single derivative on the wave function in relative
coordinates on the right and on the left. So, it acts in relative L = 1 and:

Skyrme Skyrme

ta = Vigoor=o) T Vis=1.7=1) (Il - 8)

Similar expressions are obtained for the zero range limit of the tensor interaction. There are two
parts: the tensor interaction in relative L = 1 state, which is T = 1 and the tensor interaction between
relative L = 0 and relative L = 2 state, which is T = 0:

T _ 1To—limit , {,T,0=limit _
V5= Visarr=0) + Viszir=1 (IT-9)

. . . . . . . ] . .
One has to take into account that this last interaction is the limit of 1-£;r acting in
relative coordinates.

NOTES ON DWBA9! -2 Jacques RAYNAL
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3.1.2. - STRUCTURE OF THE MULTIPOLES

1With these notations, the spin-orbit one body form factor reads:

Frs = A(r) + B(r)Y1 + A1(r)Y2 + Aao(r)¥3 + Ba(r)Ys + {-‘13(") + 33(")3'1}% (Ul - 2) "
for a natural parity excitation and:
Frs(r) = C(r) + D(r)¥1 + C1(r)Y2 (111 - 3)

for an unnatural parity excitation. Note that there is a difference of a factor \/J(J + 1) with
the previous definition for the form factors B(r), Ba(r) and D(r) and a factor J(J + 1) for
Ag(r), A2(r) and Ci(r).

The multipoles of an interaction for the computation of a particle hole matrix element f7
involve terms:

drte :
ULmt—’l ‘d'pd .;L {ry,72) : (11l - 4)
withm+n—p- q = 0 except for the tensor interaction in which m+n =2, p=¢ =0. The

parity of such term for the change ry— - is:

n= (_)m—p-i-L - (_)n—q-}-L

For a natural parity matrix element, y = (—)7 and for an unnatural parity matrix element,
n= (=)t So:

J-L

_yMm=p _ (_\P=¢ — (-) , for a natural parity =
=) =) {(—)J‘L“, for an unnatural parity (I - 3)

The total geometrical coefficient for this term which exists only if L > 0 is:

PLU)(JO /)BJ s .,'yBJ,‘ )
(=PG5, G : hcng f:(}J) S (=)

where Pr in: and Qr in: arve polynomials.

For all the interactions which we have in mind:
1) The denominator polynomial Qz in:(J) is a product of terms
) like (27 + 1), (27 = 1), (2J +3), (2J = 3) and so on,
b) but also (J +2), (J +1), J and {J — 1) ( these two last terms can give trouble when
J=0o0r J=1if they appear for L > J or L > J — 1 respectively ')
2) The numerator polynomial Pz ine(J, cxm,,,ﬁ’f”,, J{J,,JJ ad .) is of any degree in J and up
to the third degreein (aJ " '3.111.7 ) (ar‘), and BJ ) sepaxetely It has been found that
this dependence can be rewritten in terms of the 11 '\ and 11 ¥; only.

The X; and Y; has been chosen such that the terms with a dangerous denomi-
nator does not exist.
1) For J =0, a=0,3#0,s0 X, = -Xs, Xs = =Xy and all the other .\; vanish ( same
behaviour for the ¥7).
) ForJ=la=%x1,3#00ra# 0,3=10,s0 X5 =Xy = XNyg =-\11 =0 ( same behaviour
for the 7).

NOTES ON DWBAJL I - 2 Jacques RAYNAT
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The matrix element of {L.5;) has been divided in four parts:

1

NN SE
) % )«»Jvl rldr, o

5 L (u x{f}xﬂ }).51
(72 {a x [1}).51

vlu

(111 - 13)

IH.

) =
4 (L
and the polynomials Q(J) and P(J,...) obtained for each product. This job was done numeri-

cally for each term
1) by finding which is the polynomial Q(J) which gives integer values of P(J,.. )
2) by finding by difference on J the polynomials in a and ;3 which multiply each power
of Jin P(J,...)
3) by identifying these polynomials in o and 3.
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A similar operation has to be done in order to separate L(s=o;r=u): Liszgr=1y Lis=1.7=0)
and L(: =1,7=1) to obtain L2 (&,.54) with [? and (&1.54).

Three results have been obtained for natural paut.\. matrix elemema and thiee others for
unnatural parity matrix elements. They are those of L? [*(5,.64) and (L FL.aa).

- MULTIPOLES OF [? AND (£.5)? INTERACTIONS

Among six expressions needed. the L* for unnatural parity is the only one manageable to be

printed in one piece:

P = %(Vj_l + Vi -(%+%)VJ)(1—§&%)(1~7}(&%> (111 - 14)

3.2.1. ~ NUMBER OF MULTIPOLFES AND SYMMETRIES

All the others Ave interactions are of the form
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4) che tensor interaction has different multipoles which we can write:
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3.2.2.1, —- EVEN PARITY MULTIPOLE EXPANSION OF [?
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(I1I - 34)
For J = 0, the non vanishing values of the coefficients above are:

o Q-XOQ-Y) e (-X)E-F o 3Q-Xa@-Y e
Cs = 3 C; = — Csg=-— 32 (111 - 35)

with special formulae for C¢ and Cj.
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For J = 0. the non vanishing values of the coefficients above are:
(III - 41)

with special formulae for all.

3.2.3. - ODD PARITY MULTIPOLE EXPANSIONS

Let us give in these notations the multipoles of the other interactions:

1) the central interaction vanishes.
2) the (&1.62) has only two multipole:

U+ X)U+¥) g JH1=X) I 1= ) (111 - 42)

ci-t = L o
° 27 +1)J > (27 + 1)(J +1)

3) the spin orbit interaction has only:
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For J = 0, the non vanishing values of the coefficients above are:
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~ (AT 1 21T 200 = 18)Yy — (4T3 + 1377 + 4T = 8)¥s + (I + 7T = 6)¥7 + (477 +5J - §)¥;

+(J +4)Ys —3Yi0 + ]‘:_1 : {(47° + 197% + 197 - 8)Ya - (4J7 +9J — )¥7}
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(111 - 54)
J=3 _ _ J -2 _ _: I g ¢
cli-3 = SJ(J_I)(QJ_3)(2J_1)[(J D{( = 2(J +X1) + X = X} + X3
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L N . 1
(N + V) + BT = 272 =8 + 0 N3+ Y = Ny = Yy) + (P + 27 = 6)(X5 +V5) + 7
(7T +9J% =37 =48) X1 Y1 + (J2 + 27 — B)(XyYa + Xa¥y) + (5 — 6)(sY¥3 + X3¥35)}

l o 2 4 a5 3 ; ] E - - » 4 - 2 D - .
—_— (8% + 12J% = —34J% 4 15)X3Yy + (J —4J7% — 27 +6)(X3Y
+J(J+1){(°J +12J% = 2373 = 3477 + 137 + 15).X4 Y4 + ( (XY
— Xa¥1 + N0Ys = X0 + (T3 + 7% = 147 = 3)\3)s + (373 — 4J = 8)(5Yh + X1 ¥5)

3 2 _ 5-Y5}:5 2 27 =3
= (8J3 +9J% =197 - 13)(\5Yy + )}+———————J(J__U(JH)(3J 2 )
1

16][(7+ XA = 2)¥3 + JYs + Yr + Ya}

+{(J ~ DXNa + TNs + X+ Xa}(T + 1)
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i S N 4T HONNL g (6= YOV
° 16 ® 30 I - 57
co =Y e 12 — 6(Xy — ¥4) + X4¥5 — 4% (1L - 57)
TN 5T 13
with special formulae for C4 and C§.
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4.3. - LECT

This subroutine reads all che inpuc. This input stream is grouped into categoties preceded by an
integer ILECT which runs from 1 to 7. It allows part of the input stream to be changed in subsequent
caleulations. The first input stream must be read in the order of increasing ILECT. The
different categories are :

ILECT=1 Description of the single particle bound states.
ILECT=2 Description of two body interaction.
ILECT=3 Presentation of the results.

ILECT=4 Optical model of the initial channel.
ILECT=5 Optical model of the final channel.

ILECT=6 Description of the excited state.

ILECT=7 End of the input stream for this calculation.

For each category of data corresponding to ILECT=1 to 6, there is an upper limit of resident
quantities in the array. Intermediate computation are performed beyond the upper limit already in
use. If in a subsequent calculation the upper limit of new data is larger then the previous one, the
data for larger values of ILECT must be read again.

If this calculation is not. the first one and the previous calculation involved a surmmation on
J-transfer { LO(8)=.TRUE. ) and the has not been read ( LO(18)=.TRUE. in the last input ) the
subroutine reads the description of the new J-transfer ( in the category ILECT=@, but without reading
ILECT ).

In any other case, this input starts by a title card:

1) if this title is 'DESCRIPTION ’ from column 1, the description of the mput is printed by
calling the subroutines INPA and INPB.

2y if this title is 'FIN ’ from column 1, the calculation is stopped.

3) if the title card is neither "FIN ’ or 'DESCRIPTION ’, the subroutine LECT reads a card of
logical control.

4.3.1. - INPA-INPB

These two subroutine are called one after the other if the title is 'DESCRIPTION . They
include only WRITE statements and they have been generated from the text written on cards
with a special program available with ECISTY. After the printing, a new title card is read in

LECT.

The description of the subroutines called by LECT is given according to which value of ILECT uses
them.

4.3.2. — ILECT=1: Description of the single particle bound states.

The subroutine LECT reads only the number of configurations and the number of steps of
integration.
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the parameters are read. [t must be normalised to the units used for the input
of the densities.

3) the form factors are interpolated by a four points Lagrange formula:

i=4

. . r—zj :

Vi) =S &--(x.-)HL___l_’j (IV ~ 1)
i=1 Jjgi !t J

4) the square root of the form factor is calculated if the use of the geometric mean is
requested ( I4=1 ) or it is divided by 2 for the use of arithmetic mean ( 14 is stored
in KTF(K,3,J) ). In order to be able 1o obtain the square root, a teal form factor
should be always positive. A continuous square root of a complex form factor is
obtained by introducing a change of sign in the result when the real part of the form
factor is negative and the sign of its imaginary part changes.

- 4.3.4. - ILECT=3: Presentation of the results.

After the input of these data, the table of logarithms of factoilals used for geometrical
coefficients is computed.

4.3.5. — ILECT=4: Optical model of the initial channel.

If the two body interaction is used to compute the free wave functions, and they are not
read on a tape, the subroutine LECS described below with ILECT=6 is called for the input of
the description of the target ( note that the description of the target is in terms of occupation
numbers, that is scalar products of creation and annihilation operators and not in term of
their tensor coupling to zero ) and the subroutine DIRZ is called to initialise the working array
for microscopic potentials and, eventually, compute the macroscopic potential read in LECG.
In any case, some dimensions and reservations have to be computed. Then LECT calls the
subroutine FDIS with IG=1.

4.3.5.1, — FDIS

This subroutine is called first for the initial state ( IG=1 ) and after that for the
final state ( IG=2 ). This subroutine:
1) computes the center of mass energy and calls the subroutine POTE for the potentials.
2) computes wave number and Coulomb parameters and calls the subroutine FCOU
for the Coulomb functions.
3) in a DO LOOP on the partial waves:
a) computes the Coulomb functions at two different points from their value and
the value of their derivative in a middle point. Formulae are obtained from a
) five points derivation formula and three Numerov steps of integration with half
step size.
b) calls the integration subroutine INTE.
c) computes partial absorption and print them with the phase shifts if requested
( LO(33)=.TRUE.).
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anew one { LOX(3)=.TRUE. ) and some other quantities ( number of partial waves,
limic of exchange ) if LOX(6)=-TRUE. .
2} if the potentials are not to be read on a tape { LOX(3)=.FALSE. ),

a) computes them by calling the subroutines MULT and PTIP as done in sub-
routine DIRA for the transition to a 0% level in a loop on the configurations
of the target ( the subroutine GEOM, DERI and DER2 are also used in this
computation ); note that the geometrical factor given by the function DCGS in
the subroutine DIRA reduces to unity in this case.

b) computes the Coulomb potential if it is not requested from the two body inter-
action { LOX(2)=.FALSE. ), )

¢} computes the array VR from VS as described above,

d) if reguested ( LOX(4)=.TRUE. ), write on tape the number of steps, the step
size and the arrays VS and VR ( storage of about 14 times the number of steps.
in single precision ).

2) if requested ( LOX(5)=.TRUE. ), the potentials are read on a tape, but the program
stops if the number of steps and the step size do not agree with those of the run.
3) if requested ( LOX(7)=.TRUE. ), the proton, neutron and total density are printed.

If requested { LO(34)=.TRUE. ), the subroutine prints the potentials.

4.3.5.3. — FCOU

This subroutine and the subroutines called by it are a small modification of those
written at the Department de Caleul Electronique Saclay by: [10] BARDIN, C., DAN-
DEU, Y., GAUTIER, L., GUILLERMIN, J., LENA, T., PERNET, J.M., Note CEA-N-
906 (1968) and (11] BARDIN, C., DANDEU, Y., GAUTHIER, C., GUILLERMIN, ],
LENA, T., PERNET, J.-M., WOLTHER, H. H., TAMURA, T., Comp. Phys. Comm.
3 (1972) 72. They compute the regular and the irregular Coulomb functions and their
derivatives for a given n and p for different values of the angular momentum L, starting -
from L=0. In the original subroutines, the calculation of phase-shifts has been suppressed
except for L=0, the factorisation of some power of 10 has been changed from modulo 60
to modulo 15 in order to avoid overflow in the computation of Coulomb corrections on
a VAX computer. This subroutine calls FCZ0 to obtain Coulomb functions for L=0 and
computes the other ones by recurrence involving function and derivative at two values
of L. For the regular function, upwards recurrence is used if p < n+ +/L(L + 1) and
downwards recurrence in the other case. Upwards recurrence is used for the irregular
function.

4.3.5.3.1. — FCZ0

This subroutine computes the Coulomb functions for L=0. It calls the function
SIGM to obtain the phase-shift.
1) for 7 =0, the subroutine returns sin and cos,
2) for n > 28 or p < -8, the subroutine calls YFRI to use Riccati methods.
3) for p > pm = 7.3+ 5|n|/3, where pn is the asymptotic limit, the subroutine
calls YTAS to use asymptotic expansions.
4) for other values, the subroutine calls YFIR for the irregular function and:
a) if0<n<10and p <2oryn>10and n > (5p+6)/7, the subroutine
uses regular series at the origin for the regular Coulomb functions.
b) in all the other cases, it uses expansion in Chebyshev polynomials for the
regular function: ) between the origin and p = m if < 2.5 ( Clenshaw
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This subroutine uses the working array VS only for the microscopic optical modetl {
LO(37)=.TRUE. ). The main operations are:
1) the first part is an usual solution of the Schrédinger equation:

3)

b)

c)
d)

at the first call, for a microscopic potential including first and second derivative
term, the inverse of the second derivative terms in the Schrédinger equation is
computed. and the first derivative potential is multipied by it.

the potential for this equation is computed in the memories reserved to return
the wave function. It is obtained from the microscopic potential in VS or from
VR if there are no derivatives. In the first case, it is multiplied by the inverse of
first derivatives. For microscopic calculations, this potential is kept in VS(I.K)
for K=37 and 38.

2 + A?V/(1 - A%V/12) is computed and the equation is solved by Numerov
method.

phase shift and normalised solution are obtained. The subroutine returns for a
macroscopic potential.

2) the second part is the set up of the integro differential system of equations needed
with a microscopic potential ({ LO(37)=.TRUE. ):

NOTES ON DWBA9L

2)

a)

¢)

if the exchange is not included because it was not requested or because the
angular momentum is higher than the limit { LOX(6)=.TRUE. ): «) if there
is no derivative terms, the code returns; 3) if there are first derivative terms,
the wave function is derived by calling the subroutine DERI and the DWBA
effect of these derivative terms computed. If the effect is sinzll, the subroutine
returns and will return for higher angular momenta { LO(8) is set .TRUE. ).
if the potential has not to be read on a tape ( LOX(3)=.FALSE. ), the subroutine
initialises to 0 the working array XA(I,J,K) of which the two first dimensions
are the number of steps:

- the non derivative terms will be in K=1 and 2,

- the first derivative terms will be in K=3 and 4,

- the second derivative terms will be in K=3 and 6,

- K=7 is used as a working array in the subroutine PTIV,

- the final system of integro differential equations will be built and solved in
K=T and 8.

if exchange in the microscopic potential is requested ( LOX(6)=.FALSE. ) and
if the angular momentum or the J . transfer is not too large, there is a DO
LOOP on the J transfer including a call to the subroutine MULT to compute
the multipoles and a nested DO LOOP on the configurations wich a call to
the subroutine PTIP for the natural parity case or to the subroutine PTII
for the unnatural parity case. In this use, the subroutines PTIP and PTII
call the subroutine PTIV to build the matrices XA. The subroutine GEOM,

" DERI and DER?2 are also used inside the nested DO LOOP. Note that the

geometrical factor which is essentially in the subroutine ECHA the product of 2
6-j symbol given by the function DJGJ and two 3-j symbols given by the function
DCGS reduces here to the square of the 3-j symbol between the total angular
momentum of the free wave j and the bound state j* and the value J of the
transfer multiplied by —(2J +1)/{(2j+1)(2j' +1)}. If no contribution is found,
the exchange is suppressed by setting LOX(6)=.TRUE. .

if requested { LOX(4)=TRUE. ), the matrix XA is written on tape. This
storage is very large: it involves six times the square of the number of
steps in single precision for each total angular momentum and parity.
if the potential has to be read on a tape ( LOX(5)=.TRUE. ), the subroutine
reads it but set LOX(8)=.TRUE. if it finds a end of file.

IV -
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> INTEGRALS WITH REGULAR FUNCTIOQHS: (L+1) DIRECT BACKWARDS RECURRENCE
> 1 0.9773035048D-02 0.9773035021D-02
> 2 0.9758158329D-02 0.9758158318D-02

The integrals of products of irregular functions between themselves and with the
regular ones are obtained by upwards recurrence.

4.3.5.6. — SCEL

This subroutine is quite similar to the subroutine SCEF for which more details will
be given but simpler:

1) it compute the helicity phase shifts and the partial absorptions which are summed
to obtain the total reaction cross section,

2) for the angles given with ILECT=3, it computes the amplitudes with the reduced
matrices of rotation given by the subroutine EMRO and obtains the cross section.
the cross section divided by Rutherford’s cross section for charged particles, the
polarisation and the observable Q and print them,

3) it prints the total reaction cross section and calls the subroutine GRAL with indi-
“cations read with ILECT=3 Jor the elastic scattering.

4.3.6. ~ ILECT=5: Optical model of the final channel.

Except for the input of Q instead of the laboratory energy, same as for ILECT=4 if the
optical model is changed ( LO(32)=.FALSE. ), but the subroutine FDIS is called with 1G=2
instead of 1 . If the optical potential is the same ( LO(32)=.TRUE. ) and is obtained from the

_ two body-interaction ( LO(37)=.TRUE. ) and the potential have been written ou a tape for
the initial state { LOX(4)=.TRUE., LOX(5)=.FALSE. ), they will be read from the tape for
the final state ( LOX(4)=.FALSE., LOX(53)=.TRUE. ).

4.3.7. —ILECT=6: Description of the excited state.

The subroutine reads number of configuration, angular momentumn and parity and calls
the subroutine LECG which uses subroutine XYIS.

4.3.7.1. —LECS

This subroutine:

1) reads the description of the configurations ( if called for the description of the target,
this description is in terms of occupation numbers, that is —-\/(‘2 J + 1) times the
usual value ) and checks the validity of angular quantum numbers,

) 2) with the use of BCS { LO(15)=.TRUE. ), calls the subroutine XYTIS with ID=4 to
transform the daca,

3) in case of different notation ( LOO(K)=.TRUE. ), calls the subroutine with ID=K,

4) with a macroscopic interaction ( LO(26)=.TRUE. ) reads the description of these
macroscopic form factors.
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.4, — DIRA

This subroutine computes the transition amplitudes in SOM(LJ.K) for the direct terrﬁ. After
calling the subroutine MULT to obtain the muitipole for the J of the transfer, there is:

1) 2 DO LOOP on the contribution of each of the configurations, successively for X and for Y.
The geometrical coefficient is obtained with the function DCGS and the subroutine GEOM. the
subroutines DERI and DER2 are used to derive the bound functions, the contribution of the zero
range interaction is computed in the subroutine PTI0, the contribution of finite range interaction
is computed in subroutine PTIP for natural parity transitions or subroutine PTII for unnatural
parity transitions. The working array VS(I,K) is used for the product of bound waves functions
and their derivative in K=43 to 43. Results are in the same array:

a) twelve non derivative complex form factors in K=3 to 26 to be used without coefficient and
with the 11 coefficients XG computed by the subroutine GEOMI,

b) six first derivative complex form factors in K=27 to 38 to be used without coefficient and
with the 5 first coefficients XG,

¢) two second derivative complex form factors in K=39 to 42 to be used without coefficient and
with the first coefficient XG.

2) if requested ( LO{14)=_FALSE. ) the subroutine DIRA print the existing form factors.

“3) two nested DO LOOPs on the total angular momentum of the initial particle and ‘the parity
which include the computation in VS(I,K) for K=43 to 66 of the product of the form factors with
the initial wave function and its derivatives obtained with the subroutine DERI and DER?2, and
a DO LOOP on the final waves with:

a) the computation of geometrical coefficients with the function DCGS and the subroutine
GEOM,

b) if requested ( LO(21)=.FALSE. ) evaluation of the Coulomb corrections using the subroutine
CORA,

¢) summation into ¥S(I,67) and VS (I,68) of the products of initial wave with form factors
multiplied by the geometrical coefficients computed in the subroutine GEOM and integration
of the result with the final wave.

4.4.1. - MULT

For a value of the transfer J, chis subroutine computes the arrays of multipoles AM(J,K,L)
of which the first dimension is the number of steps, the last one the number of ranges and the
second one is 18:

1) irregular multipoles ( Hankel functions of first kind for the variable i ) for V3_3 to Vy_ 3
in K=ltoT,
2) regular multipoles ( Bessel functions for the variable ir ) for V3_3 to V37 in K=8 to 13.

The subroutine is assumed to have been called already for a value J” given as argument (
at the first time, J’=~1 ). This subroutine do:

1) if there is a two body Coulomb interaction, the subroutine computes the irregular and the
regular Coulomb multipoles at the end of the array AM,

2) there are three nested DO LOOP’s on the range, on the integration points and on the J
values from the last one plus one ( J'+1 ) to the one requested in which:

a) if J=0, the multipoles for negative values are set to zero, the first regular multipole
and the first four irregular multipoles are computed; a backwards recurrence is used
to obtain the regular multipole, using the value for J=0 to normalise them,

b) if J20. all the multipoles are shifted down: a new irregular multipole is easily obtained
by upwards recurrence, a new regular multipole has to be obtained by backwards
recurrence which has to be done only ouce for 5 values of J, due to the extra storage,
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4.4.3.1. - DERI

< d " . .
Fompuce: h<- of a function where % is the step size. It assumes the value before
the first to be zero and needs at least 7 values. It uses:

1 )
;= @'[45(%4-1 = Yim1) = HWig2 — Yi-2) + Yi+3 — Vi-3) (IV -4

but for the first three points:

1 — - - -

= 35[ — TTy1 + 150y2 — 100y3 + 50ys — 15ys + 2ys]
1 -

Ia= %[ — 24y — 35y + 80ys — 30ys + 8ys — ys| N A)
1 )

23 = o5 [45(3a — y2) — 9(ys — 1) + s]

and for the last three points { n being the last one ):

1 : ] . )
In-2= 66 [yn—-ti —~B8Yn-5 + 30Un—2 — 8Cyn—3 + 38 % Yoz + 24ys1 — 2éln]
1 i
Tpnwl = ‘6_0 [ - 2y11—5 + 15.‘/11—5 - 50yn—-4 + 100']:'11—3 - 15U'yn-: -+ TTyn—l + loyu] (IV - 6)
1
Ln = 66 [loyn—é - 72yn-5 + 225.‘/1)—4 - 400%-3 + 450%-2 - 360yn-1 + l‘LTUn]

4.4.3.2. - DER2

a
2 d°

Computes h* £ of a function where /1 is the step size. It assumes the value before
the first to be zero and needs at least 7 values. It uses:

1 .. - , -
¥ = T [2T0(Ys41 + Yim1) = 2T(¥iz2 + Yim2) + 2Yis3 + 2yi-3 — 490y (Iv -17)

but for the first three points:

51 = 5[ = 14Ty = 2850 + 4700 = 28504+ 93 45 — L3us]
2y = %[-z-zsy1 — 4202 + 200y3 + 134 — 1295 + 2ys] (v -3)
1

and for the last three points { n being the last one ):

1
Ln-2 = T‘S-O'(Qyu—s = 12ya—s + 13yn=s + 200yn3 — 420y 2 + 228¢n 1 — 13ya)

1 .- - - ;
Fnei = TS-B(_B%‘& +93yn—3 — 285yn—s +470yn3 — 255y —0 — 14Tyn—1 + 13Tyn) (Iv -9)
In = T-8_0(137yn_6 —9T2yn—3 + 2970yn~s — 3080yn3 + 3268yp—2 — 3132yn—1 + 312y,)
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but the scalar interaction needs a correction:

. Ry
fscatar (1) = f(r) = 12:;1/(") (IV - 12)

which cancels out for tensor, spin orbit and otler interactious,
d) multiplication by the rs radial dependence,
¢) multiplication by a power of ry ( positive or negative ),
f) addition to the form factor.
The subroutine returns if it is called by the subroutine INTE for the exchange term
of the microscopic potential. In the other cases, the two body Coulomb contribution is
computed, if requested ( LO(16)=.TRUE. ).

4.4.4.2, —- PTCP

This subroutine returns if no L? or (].'-,..S:)2 interaction is used. If thev are used,
the subroutine computes with the coefficients XG the arrays SO(I,J,K), S1([.J.K) and
S2(1,J.K) respectively for the nou derivative, the first derivative and the second derivative
form factors. ? '

I =1 for the 1;3 interaction,

I =2 for the [? (§1.54) interaction,

I =3 for the (L.G1)(L.F) interaction,
J

J stauds for the geometrical dependence on the other particle { J=1 to 12 for
S0, J=1 w0 6 for S1, J=1 to 2 for S2 ),

K stands for the multipole involved { K=1 to 13 for SO, K=1 to 14 for SI,
K=1 to 3 for S2 ), but S1(I,3,8)==S1(L,J,7), S1(L.J,K+8)==S1(L.] K) with
contribution of S2 for K=1 to 6 and S2(I,J,2)=-52(1,J,1)-52(1.].3).

4.4.4.3. — PTII

This subroutine is very similar to the subroutine PTCI and is called from the same
subroutines, except for the subroutine POTE. The differences with the subroutine PTCP
are: _

1) it calls the subroutine PTCI instead of the subroutine PTIP, to obtain coefficients
for L* {&F1.04) and (f.il)(E.Eg) interactious only.

2) if some value VA were found, 334 complex coefficients are computed, with expressions
in this subroutine for the scalar, the tensor, the spin orbit and the L? interaction or
with results of the subroutine PTCI for the other interactions,

3} if not called from the subroutine INTE for the exchange term of a microscopic
potential, this subroutine acts like the subroutine PTCP but there are 39 groups of
operations instead of 42.

4) there is no Coulomb interaction.

4.4.4.4. - PTCI

. - . ’ . .a 7o r S\? :
Like the subroutine PTCP, this subroutine returns if no L2 or (L.5)* interacion
is used. If they are used, the subroutine computes with the coefficients XG the arrays
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3) addition to the form factors.

4.4.4.7. — PTCQ

This subroutine returns the coefficients needed in the subroutine PTIO.

4.4.5. — CORA

For given angular momenta. this subroutine returns the four coefficients needed in the
asymptotic region, if its last argument is .TRUE. ( see Ref [10] ). When this last argumenct is
FALSE., it returns also the four other coefficients nesded for finite integrals. This is limited
to a transfer of angular momentum 4. There are special formulae {or the on-shell corrections
which are necessary only for dipole excitation.

4.5. — ECHA

Inside five nested DO LOOP’s on the multipoles, on the configurations, on the contributions of
the amplitude X and Y, on the total angular momentum of the initial wave and on its parity, there is:
1) the computation of the form factors:

a) the geometrical coefficient is obtained with the function DCGS and the subroutine GEOM,

b) the particle wave function is multiplied with the initial wave function or its derivatives
obtained with the subroutines DERI and DER2,

¢) the form factors are obtained with the subroutine PTIP in the natural parity case and the
subroutine PTII in the unnatural parity case,

d) the forin factors in VS(I,K) for K=3 to 26 ( or less ) are multiplied by the hole wave function;
the other ones are multiplied by the first or the second derivative of the hole function obtained
with the subroutine DERI or DER2 and the result added to VS(I,K) for K=3 to 14 for the
first derivative, K=3 to 6 for the second derivative.

2) a DO LOOP on the final waves:

a) the zeometrical coefficient is obtained with the functions DJ8J and DCGS and the subroutine
GEOM,

b) the forn factors are summed into VS{I.K) for K=43 and 44,

¢j the integrals with the final wave are done and the result added to SOM(I,J,K) which contains
already the result of the direct calculation when this subroutine is called.

4.6. -~ SCEF

This subroutine prints results at equidistant angles. The input is the array of integrals SOM(1.J.K)
in which K is the total angular momentum of the initial wave plus one half, J corresponds to the total
angular momentum of the final wave, starting from one for the lowest one and the real parts are stored
in I=1 and 3, the imaginary parts in I=2 and 4 for the two integrals. After the output of the title of
the run, there is:
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LECT IHPA
——— INPB

—— L=C1 STDP MEMO

-—— —— MEXQ

-——- LEC2 MEMO

— FDIS POTE DERI

m——— === -—— DER2

———— ———- -—— GEQY

-—— -—— -—— MULT

- i -——- PTIP PTCP
- - ---= == PTIV
——— ——— -— PTIO DERI
-—— ———= -—-- -—=- DER2
-——- -=—= ---- —— PTCO
-——- -—— Fcau FCZO SIGH
-—— -——= -—-- ~—-- YFRI YFCL PSI
——— ———- ———- - YFAS
—— -—— -—-- -——- YFIR PSI
— -—— -—-- ——— — YFAS
— -—— INTE DCGS

——— -—— - DERI

——— ——- ———- DER2

e ——-- -—-- GEON

———- e e MULT

-—— e Cm——- PTIP PTCP
-—— -——= -— ——- PTIV
—— —— ——— PTII PTCI
—— e —-—— -—— PTIV
-—— e CORI CORE

— -—— - MENQ

—— e SCEL EMRQ

e e —-- GRAL

e - ———- MEMO

—— —- MEMO

——— LECS 1YIS

e —-—— MEMQ

—— DIRZ DERI

—— HORA STIN

——— MEMO

DIRA MULT
—-—— DCGS
——— GEQM
— DERI
——— DER2
—— PTIP PTCP?
———= —— PTIV
———- PTII PTCI
- ——— PTIV
——— PTIO PTCC
———= = DERI
-—== ———— DER2
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