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Summary �

This report includes all the �Notes� written on di�erent versions of the Code ECIS	 The
Chapter I relates the evolution of these codes since the 
rst study of how to solve coupled�
channels equation by the method of �Equations Coupl�ees en It�erations S�equentielles�	 The
Chapter II indicate how these codes have been used on various computers� because such
indications can help to solve future problems	
Chapter III present the �generalised optical model� in the Dirac and the Schr
odinger

formalism and the numerical methods	 Chapter IV deals with the special treatment of long
range interaction	 Possibilities to describe excitation of particle and target are the subject
of Chapter V and zero�range transfer reactions are presented in Chapter VI	 Miscellaneous
topics are gathered in Chapter VII and Chapter VIII is a description of the last version of
the code� called ECIS��	

Sommaire �

Ce rapport reprend toutes les �Notes� �ecrites sur les di��erentes version du programme
ECIS	 Le Chapitre I retrace l��evolution de ces programmes depuis la premi�ere �etude de
la r�esolution des �equations de voies coupl�ees par la m�ethode des �Equations Coupl�ees en
It�erations S�equentielles�	 Le Chapitre II montre comment ces programmes ont �et�e utilis�es sur
di��erents ordinateurs car ces indications peuvent �etre pr�ecieuses pour l�avenir	
Le Chapitre III pr�esente le �mod�ele optique g�en�eralis�e� dans le formalisme de Dirac et de

Schr
odinger ainsi que les m�ethodes num�eriques	 Le sujet du Chapitre IV est le traitement
des int�eractions �a longue port�ee	 La possibilit�e de d�ecrire l�excitation de la particule et de la
cible est �etudi�ee dans le Chapitre V et celle de r�eaction de transfert avec port�ee nulle dans
le Chapitre VII	 Divers sujets sont rassembl�es dans le Chapitre VIII et le Chapitre IX est la
description de la derni�ere version du programme� appel�ee ECIS��	





Chapter I

Introduction � History

The name �ECIS� is made of the 
rst letters of �Equations Coupl�ees en It�erations S�equentielles�� by
reference to the method of solution used in the codes� although the usual method of solution is also
present and has been written with as much care	

A Numerical methods

The numerical methods are a generalisation of those studied for the optical model in � ��� MELKANOFF�
M	A	� SAWADA� T	 and RAYNAL� J	� 	Nuclear Optical Model Calculations
� published in �Methods in
Computational Physics	�� Nuclear Physics� ALDER� B	� FERNBACH� S	 and ROTENBERG� M	� eds	
�Academic Press� New York� ����� page �	 The application to coupled equations has been presented
in � ��� RAYNAL� J	� 	Optical�Model and Coupled�Channel Calculations in Nuclear Physics
� published
in �Computing as a Language of Physics�� ICTP International Seminar Course� Trieste� Italy� Aug	�����
���� �IAEA� ������ page ���	

A�� Integration methods

The programmeuses integration methods related to the Numerov method described in � ��� NOUMEROV�
B	 V	� 	A Method of Extrapolation of Perturbations
� Monthly Notices Roy	 Astr	 Soc	 �� ������ page
���	 The Numerov method do not deal with the function but with a combination of the function and its
second derivative depending on the step size	

Unhappily� the name of Numerov method is used in many Numerical Analysis books�
in many articles of Journal of Computational Physics and of Computational Physics Com�
munications for another method which deals only with the functions and which is named
Cowell method in Ref� ��	 and �
	 as it can been found in � ��	 COWELL� P� H� and CROM�
MELIN� A� C� D�� Appendix to Greenwich Observations for ��
�� Edinburgh ����
� page
��	

The text of Ref	 ��� is unambiguous on this point	 NOUMEROV presents his method for an inhomo�
geneous equation �see Equation ���� of Ref	 ���� and begins by �

�I have pointed out in my previous work� the advantage which is to be got in the numerical
integration of the equations of perturbed motion by the introduction of special rectangular
co�ordinates	 In fact� if we denote by x� y� z the special co�ordinates connected with ordinary
heliocentric rectangular co�ordinates by the equations
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where k is the Gaussian constant� � the interval of integration� and r the radius vector�� � ��

The reference ��� given above by NOUMEROV himself is quite di cult to 
nd� but Ref	 ��� can be found
in any Astronomy library	

In astronomical problems� NOUMEROV had to solve a third order equation at each step	 In coupled
channel calculations� the use of his method leads to solve a system of linear equations at each step	 In Ref	
��� was presented a method which replaces this resolution by a matrix multiplication	 This �Modi
ed
Numerov method� has a truncation error of the same order� but of reversed sign for a constant potential	
Details� comparison with methods used by other authors and discussions can be found in Ref	 ���	

The programme ECIS uses the �Modi
ed Numerov method� of integration with the usual methods of
coupled channels calculations �LO�����	TRUE	�� but only in the Schr
odinger formalism	 With iterations
�LO�����	FALSE	�� which are compulsory with deformed spin�orbit and in Dirac formalism� it uses the
�Modi
ed Numerov method� if LO��
��	FALSE	 or the Numerov method if LO��
��	TRUE		 The option
LO�����	TRUE	 �LO��
��	TRUE	 in ECIS
�� given as �integration stabilised for long range potentials�
means the inclusion of the truncation error as described in Ref	 ���� assuming a constant potential�
for usual coupled equations �LO�����	TRUE	�� only the diagonal potential is taken into account� no
improvement of the inelastic scattering has to be expected from that and it e�ects mainly the elastic
result	

More details will be given in section �III	C�	

A�� Iteration methods

The iteration methods are described Ref	���	 The 
rst description was in � ��� RAYNAL� J	� 	Equations
coupl�ees et D�W�B�A�
� published in �Sur quelques M�ethodes de Physique Nucl�eaire Th�eorique� Aussois
�France� Feb �� � March � ���� �Institut de Physique Nucl�eaire de Lyon� �LYCEN������ pages ���
and another one can be found in � ��� RAYNAL� J	� 	Recurrence relations for distorted�wave Born
approximation Coulomb excitation integrals and their use in coupled channel calculations
� Phys	 Rev	
C
� ������ page ����	

A�
�a Scheme of iterations

The principle of the iterations is to write all the non�diagonal terms as inhomogeneous terms of single
equations	 The procedure is obtained by considering an expansion of the solution in powers of the strength
of these inhomogeneous terms and by setting a recurrence relation between di�erent powers	 However�
this notion of power expansion is not respected because the last known solution is used to compute the
inhomogeneous term with the hope to obtain a quicker result	 The computation will depend upon the
order of equations� it is why these iterations are called �sequential�	

In ECIS
�� if LO�����	FALSE	� the inhomogeneous di�erential equations are solved� ��Di�erential
method��	 If LO�����	TRUE	� an irregular solution of the single inhomogeneous equations is obtained� a
Green�s function is built with it and the �optical� solution and its integral with the inhomogeneous term
computed ��Integral method��	 There is no noticeable di�erence of time between these two methods	
However� the solution by the �Di�erential method� can involve di�erences of large numbers and fail to
give the good result� it is the case when there is a closed channel with a large Q value� for which the
�Integral method� gives good results	

However� since the code ECIS�� as described by ��� RAYNAL� J	� 	Coupled Channel Calculations
and Computer Code ECIS
� published in �Workshop on Applied Nuclear Theory and Nuclear Model Cal�
culations for Nuclear Technology Applications�� Trieste� Italy� Feb	 ���March ��� ������Trieste� ������
MEHTA� M	� K	 and SCHMIDT� J	� J	� eds	 �World Scienti
c� ����� page ���� the generalisation of
the Optical Model in the Dirac phenomenology introduced by ��� ARNOLDS� L	 C	� CLARK� B	 C	�
MERCER� R	 L	 and SCWANDT� F	� Dirac potential model analysis of �p���Ca elastic scattering at ���
MeV and the wine�bottle�bottom shape
� Phys	 Rev	 C
� ������ page ���� can be used	 The equations
to solve have been described in � ���� RAYNAL� J	� 	Coupled Channels Description of Inelastic Scattering
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with a Dirac Equation
� published in �Proceedings of the �th International Symposium on Polarization
Phenomena in Nuclear Physics�� Osaka� Japan� Aug	 ������ ����� KONDO� M	� KOBAYASHI� S	 and
TANIFUJI� M	� eds	� J	 Phys	 Soc	 Japan �� �Suppl	� ������ page ���� in � ���� RAYNAL� J	� 	Formal�
isme des Voies Coupl�ees et Programmes ECIS
� published in �R�eunion des Sp�ecialistes sur l�Utilisation
du Mod�ele Optique pour le Calcul des Sections E caces Neutroniques au�dessous de ��MeV�� NEANDC�
��� �U�� Paris� France� Nov	 ������ ���� �OCDE� ����� page �� and in � ���� RAYNAL� J	� 	Ambiguity
on the imaginary potentials in the Dirac formalism for the elastic and the inelastic scattering of nucle�
ons
� Phys	 Lett	 B��� ������ page �	 If these equations are correctly solved and not approximated
as described in � ���� RAYNAL� J	 and SHERIF� H	� S	� 	Comparison between Dirac Equation and its
Equivalent Schr
odinger Equation for Inelastic Scattering
� published in �Proceedings of the �th Inter�
national Symposium on Polarization Phenomena in Nuclear Physics�� Osaka� Japan� Aug	 ������ �����
KONDO� M	� KOBAYASHI� S	 and TANIFUJI� M	� eds	� J	 Phys	 Soc	 Japan �� �Suppl	� ������ page
���� it is di cult to include the reorientation terms in the left side �uncoupled equations� of the iteration
procedure	 So� since ECIS��� the reorientation terms are not used in the calculation of the uncoupled
solutions� except if LO�����	TRUE	� which can be used only in the Schr
odinger formalism	

Because the �Di�erential method� of iterations has no practical equivalent for Dirac equations and no
clear advantage in the Schr
odinger formalism� there is only the �Integral method� �Green�s function� since
the code ECIS��	 �The option LO���� of ECIS
�� �matching with derivatives� has also been discarded�	

A�
�b Pade approximants

This iteration procedure is not converging in all cases	 Problems arise chie!y for neutron scattering at
very low energy or for heavy ions scattering for the �grazing� J�value	 After four iterations� the code looks
after the convergence of Pade approximants �see in � ���� PADE� H	� 	Sur la repr�esentation approch�ee
d�une fonction par des fractions rationnelles� Ann	 Sci	 Ec	 Norm	 Sup	 Paris � ������ page � and ��
������ page ��� and in � ���� WALL� H	 S	� 	Continued Fractions
� Van Nostrand� New York ����� built
with the results already obtained	

To explain the role of the Pade approximants let us multiply the inhomogeneous terms by some factor
x	 There are some values �complex� of x for which there are solutions of the system which are purely
outgoing for all the equations� there are theWeinberg states� and the x�s are the Weinberg eigenvalues	
The solution of the system of coupled equations can be expressed with Weinberg eigenfunctions and
eigenvalues	 If one does not use the �sequential� method but does an exact power expansion� this
expansion converge only when the smallest jxj is smaller than unity	 The Pade approximant generates
poles which are the Weinberg eigenvalues and can be smaller than unity	 It can be veri
ed� in case of
non�convergence that the poles of the Pade approximants with small absolute value are the same for all
the equations	 The use of the sequential approach do not change this situation	

The ability of Pade approximants to construct the poles from the power series depends drastically of
the precision of the intermediate calculations	 The limit is about jxj � ��� and is better with the CDC
version of the programme than with the IBM version	 It can be useful to use the CDC version on an IBM

after doubling its precision	 However� for low energy neutrons� the computation with the usual methods
�LO�����	TRUE	� can be quite quick and can be used if one is not interested by spin�orbit deformation	

If LO�����	TRUE	 � Pade approximants are not used	 If LO�����	FALSE	 Pade approximants are
computed after the fourth iteration if there is no natural convergence and if convergence has been obtained
for all the precedent equations in this iteration	 There is convergence when two Pade approximants di�er
by less than the precision required� even if there are not the ones evaluated with the maximumnumber of
parameters	 The iteration procedure stops when the maximum number of iterations is reached or when
a phase�shift in the last iteration was larger than ���� because there is no more hope to 
nd a precise
result	

When convergence has not been obtained with Pade approximants� if LO�����	TRUE	� the equations
for this J�value and parity are solved by usual methods as if LO�����	TRUE	 and a warning printed	
On the contrary� if LO�����	FALSE	� in the last iteration� the Pade approximants are computed even if
the precedent equations did not converge and the mean value of the two nearest results is kept as the
solution	 The shift to usual methods of integration is forbidden in Dirac formalism	
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See also section �III	D	��	

A�
�c Increase of the imaginary potential

In low energy neutron scattering on a target with �� � �� � �� rotational band� there are usually
convergence problems which come from a large di�erence between coupled and uncoupled solutions of
the Schr
odinger equations� the imaginary potential needed in coupled channel equations is weaker than
the one needed to describe elastic scattering	 An attempt to avoid this problem is to use a stronger
imaginary potential and to introduce the di�erence as a reorientation term	 For that� the reorientation
terms must be in the second member �LO�����	FALSE	�	 The ratio of increase is a data of the input	
Some examples are given in Ref	 ��� and Ref	 ����	

Advantages of this process in heavy�ion inelastic scattering have not been studied	

B History of di�erent versions

The Buck and Hill�s code INCH for coupled channels was the starting point of ECIS	 Some features remains�
chie!y in the input of data	 The names given to the di�erent versions are those with which they have
been kept on a tape for the oldest one� and those which have been explicitly introduced into the code for
the latest ones	

B�� Earlier codes

B���a Code ECIS��

In ECIS�� the integration method of the code INCH was changed into the Numerov Method with matching
at two points as described in Ref	 ��� in order to get more precise results	 The geometrical coe cients
were replaced by those written at the D�epartement de Calcul Electronique of Saclay by � ���� LAFON�
R	� 	Sous�Programmes DFCG�DFC�J� DFR�J et DFR�J �IBM ����
� Report DCE�Saclay No	 ��� ������	
There was only the �Di�erential ECISmethod�� including Pade approximants	 The use of a large working
space cut into arrays by calls to subroutines to avoid 
xed dimensions� was already introduced	 This code
was used to compare the ECISmethod to the usual methods	 There was no comparison with experimental
data	 Results can be found in Ref	 ��� and in � ���� RAYNAL� J	� 	An iterative procedure for coupled
channel calculations
� Communication IV���� in �Dubna publication D������ International Symposium
on Nuclear Structure� Dubna� URSS ������	

B���b Code ECIS��

In ECIS��� the Coulomb functions for the open channels were replaced by those written at the Department
de Calcul Electronique Saclay by � ���� BARDIN� C	� DANDEU� Y	� GAUTIER� L	� GUILLERMIN� J	�
LENA� T	 and PERNET� J	M	� Note CEA�N���� ������ and ���� BARDIN� C	� DANDEU� Y	� GAU�
THIER� C	� GUILLERMIN� J	� LENA� T	� PERNET� J	�M	� WOLTHER� H	 H	 and TAMURA� T	�
	Coulomb functions in entire ��� 	��plane 
� Comp	 Phys	 Comm	 � ������ page ��	 The code was
largely rewritten to take into account the full Thomas form for the spin�orbit deformation	 In peculiar�
the helicity formalism as in � ���� JACOB� M	 and WICK� G	 C	� 	On the General Theory of Colli�
sions for Particles with Spin
� Annals of Physics � ������ page ��� or in � ���� RAYNAL� J	� 	Aspects
G�eometriques des R�eactions
� Note CEA�N�l��� ������ �see also in � ���� RAYNAL� J	� 	Utilisation de
Faisceaux de Deutons Polaris�es et D�etermination des Param�etres du Mod�ele Optique
� Thesis� Facult�e
d�Orsay� June �� ���� �Rapport CEA�N����������� and translation ANL�TRANS����� the Chapter II	�
was introduced for the amplitudes	 A �� points Gauss�Legendre integration was used for the form factors
of the rotational model	 Results obtained were reported in � ���� RAYNAL� J	� 	Couplage LS dans les de�
scriptions macroscopiques et microscopiques des r�eactions nucl�eaires
� published in �Symposium sur les
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M�ecanismes de R�eaction Nucl�eaire et Ph�enomenes de Polarisation� Qu�ebec� Canada� Sept	 ���� ���� �Les
Presses de l�Universit�e Laval� ����� page �� and in � ���� RAYNAL� J	� 	Potentiel spin�orbite d�eform�e en
�equations coupl�ees �abstract�
� published in �International Conference on Properties of Nuclear States��
Montreal� Canada� Aout ������ ���� HARVEY� M	� CUSSON� R	 Y	� GEIGER� J	� S	 and PEARSON�
J	� M	 eds	 �Les Presses de l�Universit�e de Montr�eal� ����� page ���	

B���c Code ECIS



The version ECIS

 is shortly described in Ref	 ���	 The asymmetric rotational model is added� the form
factors are calculated by integration on the sphere with �� points� the weights of which were obtained once
for all by the inversion of the matrix of rotation matrix elements at these points �this procedure means
that the potential is supposed to be expanded only with �� rotation matrix elements� the coe cients
of which are obtained by solving a set of �� linear equations�	 The number of multipoles is limited to
�� �id est 
 � �� whereas �� is 
 � ���	 In the usual method to solve coupled equations� a Schmidt�s
orthogonalisation procedure is introduced every n points to avoid a loss of independence between the
solutions	 There was also an attempt to write on a scratch tape the couplings between equations	 These
couplings are sums of form factors multiplied by a geometrical coe cient� if they are computed before
for the iteration method� the time can be divided by two in the rotational model	 The use of a scratch
tape turned out to be worse than the computation at each iteration	 Results obtained at that time
were presented in � ���� RAYNAL� J	� 	E�ets de l�interaction L�S nucl�eon�nucl�eon sur l�asym�etrie de
la di�usion in�elastique de protons
� Colloque sur les M�ecanismes des R�eactions Nucl�eaires� Grenoble�
France� March ������ ����� GUGENBERGER� P	� eds	 J	 Physique ��C
 ������ page ��� in � ����
LOMBARD� R	� M	� MAYER� B	 and RAYNAL� J	� 	Calculs d�asym�etrie de protons polaris�es de ����
MeV sur ��Mg� ��Mg et ��Si
� Colloque sur les M�ecanismes des R�eactions Nucl�eaires� Grenoble� France�
March ������ ����� GUGENBERGER� P	� eds	 J	 Physique ��C
 ������ page �� and in � ���� RAYNAL�
J	� 	Nuclear structure e�ects on asymmetry of proton scattering
� published in �Polarization Phenomen a
in Nuclear Reactions� Proceedings of the �rd International Symposium�� Madison� USA� Aug	�� � Sept	��
���� BARSCHALL� H	� H	 and HAEBERLI W	� eds	 �The University of Wisconsin Press� ����� page
���	

ECIS

 was given to Karlsruhe where Dr� G� SCHWEIMER adapted it for automatic
search on alpha inelastic scattering� In this code the spin orbit deformation was limited to spin one
half� only cross�section� polarisation� analysing power and spin�!ip were computed	

B���d Code ECIS
�

The ECIS
� code was an attempt to introduce automatic search in ECIS

	 The integral version of the
ECIS method was added and turned out to be equivalent to the di�erential version at the point of view
of time	 The spin orbit deformation is extended to any spin	 The di�erent attempts of automatic search
are described in Ref	 ���	

With ECIS
� began the rewriting of the subroutines for integration� geometrical coe cients and
reduced rotation matrix element in IBM Assembler language	 A subroutine written by RENARDY
de
nes as working array all the region left free by the programme and allows the use of a LOAD MODULE

with di�erent sizes	 At that time were written Ref	 ��� and ���� RAYNAL� J	� 	Spin�Orbit Interaction in
Inelastic Nucleon Scattering
� published in �The Structure of Nuclei�� International Course on Nuclear
Theory� Trieste� Jan	 �� � March ��� ����� �IAEA������ page ��	 Results can be found in � ���� RAYNAL�
J	� 	Interaction spin�orbite dans la di�usion in�elastique de nucl�eons
� published in �Sur Certains Aspects
Microscopiques des R�eactions Nucl�eaires�� La Toussuire� France� Feb	 ������ ���� �IPN� Univ�ersit�e
Claude Bernard� Lyon I� LYCEN ����� page C�	� and in � ���� De SWINIARSKI� R	 and RAYNAL�
J	� 	D�eformations dans la couche s�d et di�usion in�elastique de protons polaris�es
� published in �Sur
Certains Aspects Microscopiques des R�eactions Nucl�eaires�� La Toussuire� France� Feb	 ������ ����
�IPN� Univ�ersit�e Claude Bernard� Lyon I� LYCEN ����� page S�	�	
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B���e Code ECIS
�

In ECIS
�� there were further attempts of automatic search in the same approach as in ECIS
�	 The
vibrational model is generalised to mixtures of one phonon and two phonons states	 Publications of ����
are in � ���� LOMBARD� R	� KAMITSUBO� H	� RAYNAL� J	 and GOSSET� J	� 	Etude des �etats collectifs
de ��S et de ��S par di�usion in�elastique de protons polaris�es
� C	 R	 Acad	 Sci	 B
�� ������ page ����
in � ���� De SWINIARSKI� R	� BACHER� A	� D	� RESMINI� F	� G	� PLATTNER� G	� R	� HENDRIE� D	�
L	 and RAYNAL� J	� 	Determination of deformation parameters od ��Ne and ��Ne by inelastic scattering
of polarized protons
� Phys	 Rev	 Lett	 
� ������ page ���� and in � ���� RAYNAL� J	� 	Sur l�infuence
de l�interaction spin�orbite �a haute �energie
� published in �Compte�Rendu de la Conf�erence Europ�eenne
de Physique Nucl�eaire	 Vol ��� Aix�en�Provence� France� June �� � July �� ����� page ���	

B���f Code ECIS
�

In ECIS
�� the observables which can be taken into account for automatic search are generalised to any
one� in the notations of Ref	 ����	 They can be de
ned in the laboratory system or with an axis of
quanti
cation perpendicular to the reaction plane	 Publications of ���� are in � ���� De SWINIARSKI�
R	� GENOUX�LUBAIN� A	� BAGIEU� G	� CAVAIGNAC� J	� F	� WORLEDGE� D	� H	 and RAYNAL�
J	� 	A coupled�channels analysis of �� MeV proton scattering from low�lying positive�parity states in �	F �
��Ne� ��Ne
� Phys	 Lett	 ��B ������ page ��� in � ���� KUREPIN� A	� B	� LOMBARD� R	� M	 and
RAYNAL� J	� 	Method for identi�cation of the nuclear collective modes
� Phys	 Lett	 ��B ������ page
��� and in � ���� LOMBARD� R	� M	 and RAYNAL� J	� 	Polarized�proton inelastic scattering on ��S
and possible evidence for an hexadecapole phonon state
� Phys	 Rev	 Lett	 �� ������ page ����	

In the same time� Dr G	 SCHWEIMER used ECIS in Karlsruhe and introduced an automatic search
on parameters� using methods very di�erent of those of Ref	 ��� and ���	 He introduced also �

� the folding model�

� angular distribution which are sums of levels

but he was not interested in polarisation e�ects and could deal only with one cross�section for each level	
He used di�erent subroutines with the same name to treat di�erent problems� for example� the di�erence
between rotational and vibrational model is obtained by loading di�erent subroutines for nuclear matrix
elements and for form factors	

B���g Code ECIS
�

In June ����� in collaboration with Dr	 G	 SCHWEIMER� best points of the the Karlsruhe version were
included to the code� giving ECIS
�	 Each subroutine includes many comment cards� and in peculiar
explanation of inputs and outputs at their beginning	 This was already done by Dr	 G	 SCHWEIMER in
his KARLSRUHE version of ECIS	 All the cards are identi
ed by the four 
rst characters of the subroutine
and a sequence number in columns �����	

All personal attempts of automatic searches were stopped� the subroutines developed by Dr	 G	
SCHWEIMER in KARLSRUHE were introduced in the code	 However� the use of di�erent modules
instead of loading di�erent models at the same time with overlay� was not adopted	 The folding model was
introduced� after generalisation to the spin�orbit potential	 Its meaning is the folding of a nucleon�nucleus
potential with the intrinsic wave function of the incoming particle �the meaning of the KARLSRUHE
version was the folding of the density distribution of the target with an alpha�nucleon interaction�	 The
folding distribution can be Gaussian� the sum of two Yukawa or a Woods�Saxon distribution	

Other features from the KARLSRUHE version intruced in ECIS
� are �

� unresolved angular distributions�
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� constrained asymmetric rotational model�

� anharmonic vibrational model�

� use of the mean value of the two nearest Pade results	

Some other details were added independently�

� J�dependence of imaginary potentials �dropped since ECIS
���

� symmetrised �� for the cross�sections�

� factorisation of ��� x cos �� in the amplitudes�

� possibility to save a search on a tape� if limited by the time	

A description of the INPUT was written on cards ���� cards�	 All these cards images were inserted
in FORMATs in a programme� which could be used to reproduce the listing of these cards	 However� this
description was not inserted in the programme itself	

Publications of ���� are in � ���� RAYNAL� J	� 	Application des �equations coupl�ees
� published in
���eme Session d�Etudes Biennale de Physique Nucl�eaire�� La Toussuire� France� Feb	 ������ ���� �IPN�
Univ�ersit�e Claude Bernard� Lyon I� LYCEN ����� page C�	� and in � ���� RAYNAL� J	� 	Inelastic
Scattering �Coupled Channels�
� published in �Proceedings of the �th International Symposium on Po�
larisation Phenomena in Nuclear Reactions�� Zurich� Switzerland� Aug	 ����� ����� GRUEBLER� W	
and KONIG� V	� eds	� �Birkhauser� ����� page ���	

B���h Code ECIS
�

The code ECIS was adapted on a CDC computer by Dr	 Marek SIEMASKO� from Katowice	 At the
same time� Dr	 M	 SIEMASKO introduced Hauser�Feshbach corrections for compound nucleus	 To
do that in the IBM versions� eight subroutines had to be modi
ed� one of which was also translated
into Assembler language	 The resulting programme is ECIS
�� with his two mean versions� one for low
precision computers as the IBM and the other for large precision computers as CDC	 However� due to the
use of LOGICAL�� and INTEGER��� the IBM version cannot be run on other computers as UNIVAC� IRIS or
Japanese FACCOM � some modi
cations had to be done on an IRIS computer at Bordeaux� a SIEMENS in
Berlin� a FACCOM in Japan and an UNIVAC in Copenhagen� leading to a third version� the UNIVAC one	

B�� Codes with Coulomb corrections

B�
�a Code ECIS
�

With the introduction of Coulomb corrections for heavy ions� as described in Ref	 ���� the code has been
enlarged	 In peculiar� in collaboration with Prof	 H	 V	 von GERAMB� the possibility to use external
form factors has been added� but these form factors can be read only by points	 Publication of ����
in � ���� RAYNAL� J	� 	D�eformation de l�interaction spin�orbite� relations avec la structure nucl�eaire et
e�ets possibles sur la section e�cace de di�usion in�elastique
� published in �La Physique Neutronique et
les Donn�ees Nucl�eaires� Compte�Rendu�� Harwell� GB� Sept	 ���� �OCDE� ����� page ���	

B�
�b Code ECIS
�

In ECIS
�� the management of memories on CDC or UNIVAC computers has been changed	 In the previous
versions� it was possible to use a LOAD MODULE with di�erent sizes with respect to the problem� but this
size had to be known beforehand	 In ECIS
�� the core is requested when it is needed� as long as it is
available	 However� such procedure cannot be used on an IBM computer on which this management of
memories must stay dummy	
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The possibility of external potentials has been extended by the use of standard form factors as Woods�
Saxon and its derivatives� rotational form factors� Laguerre polynomials and bound states in a potential	

The code ECIS
� was given to the Nuclear Data Bank of the OCDE in ����	

Publications obtained with it are in � ���� RAYNAL� J	� 	Coupled channel calculations of heavy ion
inelastic scattering with DWBA approximation for Coulomb interaction �communicated paper�
� Interna�
tional Conference on Nuclear Physics� Berkeley� USA� Aug	 ����� ����� in � ���� RAYNAL� J	� 	Coulomb
e�ects in proton inelastic scattering on heavy target �communicated paper�
� International Conference on
Nuclear Physics� Berkeley� USA� Aug	 ����� ���� and in � ���� RAYNAL� J	� 	Strong channel coupling
method for cross�section calculations �lecture notes�
� Workshop on Nuclear Model Computer Codes� Tri�
este� Italy� Jan	 �� � Feb	 �� ����	 For heavy ions problems� they are in � ���� BILWES� B	� BILWES� R	�
BAEZA� A	� DIAZ� J	� FERRERO� J	� L	 and RAYNAL� J	� 	Inelastic scattering of ��S on ��Si
� ��th
Winter Meeting on Nuclear Physics� Bormio� Italy� Jan	 ����� ����� Ricerca Scienti
ca ed Educazione
Permanente �� �Suppl	� ������ page ���� in � ���� BAEZA� A	� DIAZ� J	� FERRERO� J	� L	� BILWES�
B	� BILWES� R	 and RAYNAL� J	� 	Mutual excitations of ��S� ��Si at �� and ����� MeV
� Phys	 Lett	
���B ������ page �� and in � ���� BAEZA� A	� BILWES� B	� BILWES� R	� DIAZ� J	� FERRERO� J	� L	
and RAYNAL� J	� 	Inelastic scattering of ��S on ��Si
� Nucl	 Phys	 A��� ������ page ��	

B�� Codes with Dirac formalism

B���a Codes ECIS�� to ECIS�


In the Spring ���� began some attempt to extend the Dirac phenomenology to inelastic scattering with the
collaboration of Pr	 H	 SHERIF who� for instance� provided comparison with other codes for the elastic
scattering	 One of the points was to avoid the use of relativistic Coulomb functions by using Coulomb
corrections as described in Ref	 ���� anyway� relativistic Coulomb functions do not take into account the
e�ect of the anomalous magnetic moment	 There was no di culty to compute these corrections as long
as they were used only for elastic scattering	 The formalismwas presented in Ref	 ���� and earliest results
were reported in Ref	 ���� and Ref	 ����	 Di�erence between ECIS�� and ECIS�
 is essentially external
form�factors generalised in Hamburg with Pr	 H	 V	 von GERAMB in November ����	 During the Spring
of ����� ECIS�
 was left in various places in Canada and United�States	 Results are presented in Ref	 �����
in � ���� De SWINIARSKI� R	� PHAM� D	� L	 and RAYNAL� J	� 	Analyse of ��� MeV inelastic polarized
proton scattering from ��O and 
�Fe through the coupled Schr
odinger or Dirac equations formalism
�abstract�
� published in �Conference on Nuclear Physics and Particle Physics�� Birmingham� GB� April
��� ���� �The Institute of Physics� page �� and in � ���� SHIM� S	� CLARK� B	� C	� COOPER� E	� D	�
HAMA� S	� MERCER� R	� L	� RAY� L	� RAYNAL� J	 and SHERIF� H	� S	� 	Comparison of relativistic
and nonrelativistic approaches to the collective model treatment of p���Ca inelastic scattering
� Phys	
Rev	 C�
 ������ ����	

B���b Code ECIS��

After completion of the relativistic Coulomb corrections� this code was described in Ref	 ��� and given to
the Nuclear Data Bank of the OCDE	 However� some points were still missing� as the Bessel expansion
of the form factors	

Results obtained in Dirac formalismor their comparison to results of the Schr
odinger formalism can be
found in � ���� RAYNAL� J	� SHERIF� H	� S	� KOBOS� A	� M	� COOPER� E	� D	 and JOHANSSON� J	�
I	� 	Dirac coupled channel calculations and nucleon scattering at large momentum transfer
� Phys	 Lett	
B
�� ������ page ���� in � ���� De SWINARSKI� R	� PHAM� D	� L	 and RAYNAL� J	� 	Dirac coupled�
channels analysis of inelastic scattering of ��� MeV polarized protons from ��O� ��Mg and ��Mg
� Phys	
Lett	 B
�� page ���� in � ���� RAYNAL� J	� 	Which potentials have to be surface peaked to reproduce
large angle proton scattering at high energy
� Australian J	 Phys	 �� ������ page �� in � ���� RAYNAL�
J	� 	Inelastic scattering of protons at ��� MeV on ��Ca at large angles
� �th International Conference
on Polarization Phenomena in Nuclear Physics� Paris� France� July ���� ����� Abstracts of contributed
papers� page ��F and in � ���� De SWINIARSKI� R	� PHAM� D	� L	 and RAYNAL� J	� 	Comparison
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of higher order deformations in several s�d shell nuclei obtained through Schr
odinger and Dirac coupled�
channel analysis of ��� MeV polarized protons inelastic scattering experiments
� Z	 Physik A��� ������
page ���	

Results related to heavy ions are given in � ���� KIENER� J	� GSOTTSCHNEIDER� G	� GILS� H	�
J	� REBEL� H	� CORCIALCIUC� V	� BASU� S	� K	� BAUR� G	 and RAYNAL� J	� 	Investigation of the
sequential break�up �Li � �Li������ � 
� d of ��� MeV �Li projectiles on ���Pb in the very forward
angle hemisphere
� Z	 Phys	 A��� ������ page ��� and in � ���� CORCIALCIUC� V	� REBEL� H	�
KIENER� J	� GSOTTSCHNEIDER� G	� GILS� H	� J	� RAYNAL� J	 and BAUR� G	� 	Analysis of the
sequential break�up �Li � �Li������ � 
 � d of ��� MeV �Li projectiles on ���Pb observed in the
very forward angle hemisphere �abstract�
� Fr
uhjahrstagung Darmstadt ���� � Physik der Hadronen und
Kerne� Darmstadt� Germany� March ����� ����� Verh	 Dtsch	 Phys	 Ges	 � ������ page �	 But they
still used primarily ECIS
�	

B���c Codes ECIS�� to ECIS�


At the end of ����� Dr A	 Ventura of the Centro di Calcolo ENEA at Bologna� Italy� was interested by
the Bessel expansion of form factors	 This part of the code has been completed with him	 Some other
changes have been done �

� use of the deformation lengths instead of the deformations when 
xed relative deformations
lengths are wanted�

� use of �symmetrised� Woods�Saxon form factors	

These codes have been given to some laboratories	

B���d Code ECIS��

This version will be the third given to the Nuclear Data Bank of the OCDE	 Besides the use of Bessel
expansion for form factors� the use of deformation lengths and the use of �symmetrised� Woods�Saxon
potentials� it includes �

� two bound states transitions for particle hole excitations� with the possibility of the particle in
the continuum�

� expansion of cross�sections in terms of Legendre polynomials�

� possibility of angular distribution for uncoupled states without giving explicitly all the reduced
nuclear matrix elements�

� for Coulomb excitation� use of a magnetic multipole	





Chapter II

Use on various computers

The code ECIS involves two versions with respect to the internal precision of the computer on which it is
used �

I If this precision is smaller than ����� potentials and wave functions are stored in single precision
but many quantities are in double precision� this happens for IBM� UNIVAC� VAX� PR�ME computers	

II If this precision is larger than ����� as it is for the CDC and CRAY computers� the code is completely
in single precision	

Some subroutines are identical between the two versions� for some others� the only di�erence is the
change of the card DOUBLE PRECISION into comment card by adding C in column �	

Note that it is possible to run the two versions on a CONVEX computer� using the ��cfc� option for the
CDC version	 In fact� it is the CDC version used this way which turns out to be the faster on a CONVEX

computer	

The code ECIS
� involved about ����� FORTRAN cards� including ���� COMMENT cards	 It was intended
to be run with an OVERLAY structure	 The code ECIS�� involved about ����� FORTRAN cards� including
���� COMMENT cards and the code ECIS�� involves about ����� FORTRAN cards� including ���� COMMENT
cards	 Most of the topics related in this Chapter are related to the code ECIS
�	As their knowledge
can help to solve future problem� these topics are not obsolete	

Even if the use of OVERLAY is no more of interest� there are two topics very machine dependent in the
code ECIS� the management of the working array and the control of the time limit of the job	 How to
by�pass these two points is explained on comment cards in the MAIN subroutine	 For example� the IBM
version of the MAIN subroutine of ECIS
�� ECIS�� and ECIS�� is �

�C ���
��
� IBM MAIN�




�C THE ASSEMBLER SUBROUTINE ECIS�I� DEFINES THE DOUBLE PRECISION ARRAY W MAIN�

�

�C AND CALLS CALC�W�W�W�IDMX� WHERE IDMX IS THE LENGTH OF W MAIN�

�

�C W IS ALL THE REGION LEFT FREE BY THE PROGRAM EXCEPT ��I K FOR BUFFERS MAIN�

�

�C THE SUBROUTINE ECIS CAN BE ELIMINATED WITH THE FOLLOWING MAIN� MAIN�

�

�C REAL�� W��



� MAIN�

�

�C CALL CALC�W�W�W��



� MAIN�

�

�C STOP MAIN�




�C END MAIN�

�

�C THE ASSEMBLER SUBROUTINE STIM�I� HAS NO FORTRAN EQUIVALENT MAIN�

�

�C IT GIVES THE REMAINING TIME FOR THE JOB IN UNITS OF �� MICROSECONDS MAIN�
�


�C IT CAN BE REPLACED BY� �ANY USE OF TIME WILL BE SENSELESS� MAIN�
��

�C SUBROUTINE STIM�I� MAIN�
��

�C DATA K �
� MAIN�
��

��
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�C K�K�� MAIN�
��

�C I�K MAIN�
��

�C RETURN MAIN�
��

�C END MAIN�
�


�C�����������������������������������������������������������������������MAIN�
��

� CALL ECIS��� MAIN�
��

� STOP MAIN�
�


� END MAIN�
��

As shown above� each subroutine begins by a comment card giving the date of last revision and on which
computer it can be used	 All the cards are identi
ed by the name of the subroutine in columns ������ a
�"� in column �� and by a number in columns ������ starting by ���	

A The IBM version

The dynamic allocation of memory is not possible on IBM	

A�� Use on IBM������� � AMDHAL� SIEMENS�FUJITSU

The FORTRAN subroutines of ECIS
� for integration and for geometrical coe cients has been translated
into ASSEMBLER language	 These subroutines involved around ���� cards and only the ���� cards of geo�
metrical coe cients and reduced matrix element can still be used in ECIS�� and ECIS��	 The translation
into ASSEMBLER language was done for an IBM��
��� or a similar computer� on which DO LOOP smaller
than �� machine instructions are very quick	 These ASSEMBLER subroutines can be used on other comput�
ers� their output statements do not work on a SIEMENS�FUJITSU	 However� the ASSEMBLER subroutines
ECIS and STIM are very machine dependent and cannot be replaced everywhere	

A���a Use with JCL

The subroutine ECIS de
nes as working array all the space available for the JOB in its region� except for
twice its argument �K� for BUFFERS	 It is �

�ECIS TITLE ����
��
��ECIS�CREATION DE ZONE DE TRAVAIL�ECIS
�� ECIS�




�ECIS CSECT ECIS�

�

�� APPEL PAR CALL ECIS�N� OU N EST LA TAILLE EN DOUBLES K RESERVEE ECIS�

�

�� AUX BUFFERS	 ECIS�

�

�� CE SOUS PROGRAMME CREE UNE ZONE DE TRAVAIL DE TAILLE MAXIMUM ECIS�

�

�� ET APPELE CALC EN LUI PASSANT TROIS FOIS LA ZONE CREEE ET SA TAILLE ECIS�

�

�� EN DOUBLE MOTS	 ECIS�

�

� SAVE ��������T�� ECIS�




� USING ECIS��� ECIS�

�

� LR ����� ECIS�

�

� SR ����� ECIS�
�


� SPM �� ECIS�
��

� LA ��SAVE ECIS�
��

� ST ������� ECIS�
��

� ST ������� ECIS�
��

� LR ���� ECIS�
��

� L ��
��� ECIS�
��

� L ��
��� ECIS�
�


� SLL ���� ECIS�
��

� ST ��MIN ECIS�
��
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� GETMAIN VU�A�ADGET�LA�MIN�SP�� ECIS�
�


�FREE L 
�MIN ECIS�
��

� O 
��X�
�





� W IN SUBPOOL � ECIS�
��

� FREEMAIN R�LV��
��A�ADGET ECIS�
��

� L 
�ADGET�� ECIS�
��

� S 
�MIN ECIS�
��

� SRL 
�� ECIS�
��

� ST 
�LONG ECIS�
�


� L ��ADGET ECIS�
��

� A ��MIN ECIS�
��

� ST ��ARG ECIS�
�


� ST ��ARG�� ECIS�
��

� ST ��ARG�� ECIS�
��

� LA ��ARG ECIS�
��

� L ����V�CALC� ECIS�
��

� BALR ����� CALL CALC�W�W�W�INT� ECIS�
��

� L �������� ECIS�
��

� RETURN ��������T ECIS�
�


�ADGET DS D ECIS�
��

�MIN DC A�
�MAX� ECIS�
��

�ARG DC A�
�
�
�LONG� ECIS�
�


�LONG DS A ECIS�
��

�SAVE DS ��A ECIS�
��

�MAX EQU X��




� �


K ECIS�
��

� END ECIS�
��

Use the indication at the end of a JOB to know the best REGION	 If data are read with a large BLOCKSIZE�
from a tape for example� this argument has to be changed into �

� CALL ECIS��
� MAIN�
��

instead of �

� CALL ECIS��� MAIN�
��

The subroutine STIM gives the remaining time for the JOB in units of �#����� seconds	 It is �

�STIM TITLE ����
��
��STIM�TEMPS D UNITE CENTRALE RESTANT�ECIS
�� STIM�




��� CALL STIM�N� N TEMPS RESTANT EN UNITES DE �� MICROSECONDES STIM�

�

��� N���� TEMPS RESTANT EN CENTIEMES DE SECONDES STIM�

�

��� VERSION COMPATIBLE MVT�VS��TSO STIM�

�

�STIM CSECT STIM�

�

� USING ���� STIM�

�

� STM 
�����
���� STIM�

�

� L RCVT��� ��CVT STIM�




� L RSHPC�����RCVT� ��SHPC�MVT� STIM�

�

� L RW�
��RCVT� ��TCBWORDS STIM�

�

� TM X�
���RCVT��X���� VS�� STIM�
�


� BO VS� STIM�
��

� L RTCB����RW� ��CURRENT TCB STIM�
��

� L RTCB�X�
C���RTCB� ��JOB STEP TCB STIM�
��

� L RTCB�X������RTCB� ��TCB DE L�INIT STIM�
��

� L RTME���
��RTCB� TCBTME STIM�
��

� SR RN�RN STIM�
��

�LTIM L RTOX�����RTME� TOX STIM�
�
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� LR RN�RTOX STIM�
��

� S RN�
��RSHPC� TOX�SHPC STIM�
��

� SLL RN�� UNITES ���			 MICROSECONDES STIM�
�


� A RN��
 TOX�SHPC�TIMER�EN �� MICROSECONDES STIM�
��

� C RTOX�����RTME� SHPC MODIFIEE� STIM�
��

� BNE LTIM STIM�
��

� SRL RN�� ���			 MICROSECONDES STIM�
��

� B STORE STIM�
��

� SPACE � STIM�
��

�VS� DS 
H STIM�
�


� L RA�����RW� ��ASCB STIM�
��

� L RW�X��
���RA� JOB STEP TIME LIMIT�SECONDES STIM�
��

� MH RW��H��

� CENTIEMES DE S STIM�
�


� LM RP�RI�X��
��RA� ELAPSED STEP TIME EN STCK STIM�
��

� SRDL RP��� BIN���� MICROSECONDES STIM�
��

� D RP��F��



� ��RP�MICROSECONDES�RI����

 DE S STIM�
��

� SR RI�RW �TEMPS RESTANT A L�ETAPE EN ���

 DE S STIM�
��

� M RP��F����� TIMER UNITS STIM�
��

� LPR RN�RI STIM�
��

�STORE L ��
��� STIM�
�


� ST RN�
���� STIM�
��

�RETOUR LM 
�����
���� STIM�
��

� BR �� STIM�
�


� LTORG STIM�
��

�RN EQU 
 STIM�
��

�RTOX EQU � STIM�
��

�RCVT EQU � STIM�
��

�RTCB EQU � STIM�
��

�RTME EQU � STIM�
��

�RSHPC EQU � STIM�
�


�RW EQU � STIM�
��

�RA EQU � ��ASCB STIM�
��

�RP EQU � REGISTRE PAIR STIM�
�


�RI EQU RP�� STIM�
��

� END STIM�
��

It can have to be changed by a local subroutine	

The OVERLAY cards are not the same for the di�erent codes	 Those of ECIS
� were �

� OVERLAY A OVLY�

�

� INSERT CALX OVLY�

�

� OVERLAY B OVLY�

�

� INSERT LECT�LECD�DEPH�OBSE OVLY�

�

� OVERLAY B OVLY�

�

� INSERT INPA OVLY�

�

� OVERLAY B OVLY�




� INSERT INPB OVLY�

�

� OVERLAY A OVLY�

�

� INSERT COLF�FCOU�FCZ
�PSI�YFRI�YFCL�YFAS�YFIR�COCL�SIGM�CORI�CORH OVLY�
�


� OVERLAY A OVLY�
��

� INSERT VARI�FIT��FIT��FITE�REST�EVAL OVLY�
��

� OVERLAY A OVLY�
��

� INSERT DJ�J OVLY�
��

� OVERLAY C OVLY�
��

� INSERT DJCG�REDM�VIBM�ROAM�ROTM OVLY�
��
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� OVERLAY C OVLY�
�


� INSERT CAL� OVLY�
��

� OVERLAY D OVLY�
��

� INSERT POTE�DERI�COPO OVLY�
�


� OVERLAY E OVLY�
��

� INSERT VIBP�ROTD�ROTP OVLY�
��

� OVERLAY E OVLY�
��

� INSERT FOLD�HULT�FINT OVLY�
��

� OVERLAY E OVLY�
��

� INSERT EXTP�INTP�STDP OVLY�
��

� OVERLAY D OVLY�
�


� INSERT QUAN�DJ�J�DCGS�SCAM�CORA�CORB OVLY�
��

� OVERLAY F OVLY�
��

� INSERT INTI�INSI�INSH�COUP�SECM�PADE OVLY�
�


� OVERLAY F OVLY�
��

� INSERT INCH�CPCC�LINS OVLY�
��

� OVERLAY D OVLY�
��

� INSERT SCHE�RESU�SCAT�GRAL�EMRO�RESC�CPSF OVLY�
��

Those of ECIS�� are �

� OVERLAY A OV���




� INSERT CALX OV���

�

� OVERLAY B OV���

�

� INSERT LECL�LECT�LECD�DEPH�OBSE OV���

�

� OVERLAY B OV���

�

� INSERT INPA�INPB�INPC OV���

�

� OVERLAY A OV���

�

� INSERT COLF�FCOU�FCZ
�PSI�YFRI�YFCL�YFAS�YFIR�COCL�SIGM�CORI�COR
�CORZ OV���




� OVERLAY A OV���

�

� INSERT VARI�FIT��FIT��FITE�REST�EVAL�EXTP OV���

�

� OVERLAY A OV���
�


� INSERT DJ�J OV���
��

� OVERLAY C OV���
��

� INSERT DJCG�REDM�VIBM�ROAM�ROTM OV���
��

� OVERLAY C OV���
��

� INSERT CAL� OV���
��

� OVERLAY D OV���
��

� INSERT POTE�DERI�COPO�ROTZ�ROTD�ROTP�FOLD�INTP�STDP�STBF OV���
�


� OVERLAY D OV���
��

� INSERT QUAN�DJ�J�DCGS�SCHE�CORA�MTCH�CONU�PADE�DIAG OV���
��

� OVERLAY E OV���
�


� INSERT INTI�INSI�INSH OV���
��

� OVERLAY E OV���
��

� INSERT INTR�INRI�INRH OV���
��

� OVERLAY E OV���
��

� INSERT INCH�LINS OV���
��

� OVERLAY D OV���
��

� INSERT SCIN�RESU�SCAT�GRAL�EMRO�RESC OV���
�


and none have been written for ECIS��	 The di�erence is SCAM instead of SCHE in OV����
 and SCHE�LCSP
instead of SCIN in OV����
	



�� CHAPTER II� USE ON VARIOUS COMPUTERS

A���b Use with MTS

This system do not allow OVERLAY� control of working space and of time	 Follow indications in COMMENT

cards of the MAIN routine	

A�� Use on UNIVAC

At the 
rst attempt to run the code ECIS
� on an UNIVAC computer� the following indications are inserted
at the top of the MAIN subroutine

�C �
�
���
 MAIN FOR UNIVAC ECIS
� ECIS�




�C THIS PROGRAM IS LIMITED TO ���K PLUS � TIMES THE PARAMETER OF ECIS�

�

�C �XQT�X WHERE X IS TRANSFORMED TO � FOR A TO �� FOR Z BY IOPTF	 ECIS�

�

�C THE SUBROUTINE PMARZ AVOIDS THE AUTOMATIC CHANGES OF PAGE	 ECIS�

�

�C������ TO BE ABLE TO USE A BLANK FOR 	FALSE	 THE USER OF UNIVAC MUS ECIS�

�

�C INTRODUCE� ECIS�

�

�C DO �� I����

 AND ECIS�

�

�C �� LO�I��	FALSE	 BEFORE CALX���� ECIS�




�C LX�	FALSE	 BEFORE LECD�
�� ECIS�

�

�C LT��	FALSE	 AND ECIS�

�

�C LT��	FALSE	 BEFORE OBSE�
�
 ECIS�
�


�C LO��
��	FALSE	 BEFORE EVAL�
�� ECIS�
��

�C LO�����	FALSE	 BEFORE REST�
�� ECIS�
��

�C�����������������������������������������������������������������������ECIS�
��

� REAL�� W��
��� ECIS�
��

� COMMON �LARGE� W ECIS�
��

� CALL PMARZ����
���� ECIS�
��

� CALL MEMINI�����IOPTF�
���� ECIS�
�


� CALL CALC�W�W�W��
��� ECIS�
��

� STOP ECIS�
��

� END ECIS�
�


Without these modi
cations� a LOGICAL read previously as 	TRUE	 cannot be read with a blank but must
be read with a F	 After ECIS
�� the logicals are set 	FALSE	 before being read	

The use of 
les is done with �

� N�TAB �����������
 � 
 � 
 	 NTAB�




� END 	 NTAB�

�

The subroutine IOPTF� written in Copenhagen� allows to run jobs with a larger core in special cases� for
instance overnight	

� AXR� 	 IOPT�




������ IOPTF� ER OPT� 	 IOPT�

�

� JZ A
���X�� 	 IOPT�

�

� LSC A��A
 	 IOPT�

�

� ANA�U A��� 	 IOPT�

�

� LA A
�A� 	 IOPT�

�

� J ��X�� 	 IOPT�

�

� END 	 IOPT�




There is a dynamic allocation of core by the FORTRAN subroutine MEMO which is more similar to the one
used on CDC than to the one used on IBM	 This allocation is obtained by �
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�C ���
���
 UNIVAC ECIS
� MEMO�




� SUBROUTINE MEMO�IDMT�NPLACE�NQ�IX�W�LO� MEMO�

�

�C THIS SUBROUTINE GETS THE WORKING SPACE	 MEMO�

�

�C IDMT PREVIOUS SPACE MEMO�

�

�C NPLACE REQUESTED SPACE MEMO�

�

�C NQ SPACE TO BE UPDATED MEMO�

�

�C IX� CONTROL NUMBER IX�� FIRST CALL STORE MINIMUM SIZE IN ID MEMO�

�

�C IX�� DIMINUTION OF SPACE MEMO�




�C IX�� REQUEST NPLACE�ISTART� AT LEAST NPLACE MEMO�

�

�C IX�� REQUEST NPLACE MEMO�

�

�C IX�� ABSOLUTE REQUEST MEMO�
�


�C W� WORKING SPACE MEMO�
��

�C LO� LOGICAL CONTROLS IF LO�����	TRUE	 PRINT THE SIZE OF W MEMO�
��

�C OUTPUT VARIABLES� IDMT SIZE OF WORKING SPACE MEMO�
��

�C LO������	TRUE	 IF COMPUTATION CANNOT CONTINUE MEMO�
��

�C�����������������������������������������������������������������������MEMO�
��

� DIMENSION W��� MEMO�
��

� LOGICAL LO���
� MEMO�
�


� DATA ISTART�IMOD �������� MEMO�
��

� IF �IX��� � � � � � MEMO�
��

� � ID�IDMT MEMO�
�


� NT�MAX
��IMOD�ISTART�IDMT� MEMO�
��

� NPLACE�
 MEMO�
��

� GO TO � MEMO�
��

� � NT�MAX
�NPLACE�ID��IDMT MEMO�
��

� GO TO � MEMO�
��

� � NT�NPLACE�IDMT MEMO�
��

� IF �IX	NE	�� GO TO � MEMO�
�


� NT�NT�ISTART MEMO�
��

� � NT�IMOD��NT�IMOD��� MEMO�
��

� � CALL MEMORY�NT�NX�IR� MEMO�
�


� IDMT�IDMT�NT�IR MEMO�
��

� LO�������IDMT	LT	NPLACE�	AND	��IX�����IX���	EQ	
� MEMO�
��

� NQ�NQ�NT�IR MEMO�
��

� IF �LO����� WRITE ����


� IX�NT�IR�NPLACE�IDMT�NX MEMO�
��

� IF �	NOT	LO������ RETURN MEMO�
��

� WRITE ����

�� IX�IDMT�NPLACE MEMO�
��

� WRITE ����

�� MEMO�
�


� RETURN MEMO�
��

� �


 FORMAT ���H REQUEST�I���H FOR�I���H MEMORIES�I����H ARE MISSING	 MEMO�
��

� � NPLACE ��I��
H SIZE ��I����H TOTAL LENGTH �I�
�� MEMO�
�


� �

� FORMAT ���H NOT ENOUGH PLACE 					 REQUEST�I��I�
��H ALLOWED�I�
MEMO�
��

� ���
H REQUESTED�� MEMO�
��

� �

� FORMAT ����H 			STOP			 NEXT TIME� USE �XQT�Z�� MEMO�
��

� END MEMO�
��

with the machine language subroutine �

� AXR� 	 SUBROUTINE WRITTEN IN STRASBOURGMEMI�




����� 	 ON THE ���
���
 MEMI�

�

�MEMORY� 	 MEMI�

�

� L A���
�X�� 	 CALL MEMORY�I�J�K� MEMI�

�

� SZ ���X�� 	 I NUMBER OF MEMORIES REQUESTEDMEMI�

�

� L A
�LASTD 	 J RETURNS THE SIZE OF THE MEMI�

�

� JZ A��RETOUR 	 PROGRAM MEMI�

�

� A A
�A� 	 K RETURNS DIFFERENCE BETWEEN MEMI�
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� JP A��MORE 	 NUMBER OF MEMORIES GIVENMEMI�

�

� ER LCORE� 	 AND NUMBER OF MEMORIES MEMI�

�

� J LMCORE 	 REQUESTED MEMI�
�


�MORE TLE A
�MAXCOR 	 MEMI�
��

� J ERMCORE 	 MEMI�
��

� ANU A
�MAXCOR 	 MEMI�
��

� SN A�����X�� 	 MEMI�
��

� L A
�MAXCOR 	 MEMI�
��

�ERMCORE ER MCORE� 	 MEMI�
��

�LMCORE S A
�LASTD 	 MEMI�
�


�RETOUR S A
����X�� 	 MEMI�
��

� J ��X�� 	 MEMI�
��

�MEMINI� L A
��
�X�� 	 ENTRY USED TO STORE THE MAXIMUMMEMI�
�


� LSSL A
��
 	 SIZE FOR THE RUN MEMI�
��

� AN�U A
�� 	 MEMI�
��

� S A
�MAXCOR 	 CALL MEMINI�IMAX� MEMI�
��

� J ��X�� 	 IMAX MAXIMUM SIZE IN K MEMI�
��

���
� 	 MEMI�
��

�MAXCOR � 
 	 MEMI�
��

�LASTD � LASTD� 	 MEMI�
�


� END 	 MEMI�
��

The subroutine STIM has been also written in Copenhagen �

� AXR� 	 STIM�




������STIM� LXI�U A��PCTBD� 	 STIM�

�

� LA�U A��RPCTA� 	 STIM�

�

� LDJ A����� 	 STIM�

�

� LA A
�
��A� 	 STIM�

�

� ANA A
�
���A� 	 STIM�

�

� LDJ A����� 	 STIM�

�

� MI�U A
�

 	 STIM�




� DI�U A
��
 	 STIM�

�

� SA A
��
�X�� 	 STIM�

�

� J ��X�� 	 STIM�
�


� END 	 STIM�
��

The programme ECIS
� had to be used with following OVERLAY �

�SEG S�

�IN ECISR	ECIS�	CALC�	HORA�	STIM�	NTAB��	MEMO�	MEMORY

�SEG A��

�IN ECISR	CALX

�SEG B��

�IN ECISR	LECT�	LECD�	IOPTF

�SEG B���B�

�IN ECISR	DEPH�	OBSE

�SEG A���A�

�IN ECISR	COLF�	FCOU�	FCZ
�	PSI�	YFRI�	YFCL�	YFAS�	YFIR�	COCL�	SIGM

�IN ECISR	CORI�	CORH

�SEG A���A�

�IN ECISR	VARI�	FIT��	FIT��	FITE�	REST�	EVAL

�SEG A���A�

�IN ECISR	DJ�J

�SEG C��
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�IN ECISR	DJCG�	REDM�	VIBM�	ROAM�	ROTM

�SEG C���C�

�IN ECISR	CAL�

�SEG D��

�IN ECISR	POTE

�SEG E��

�IN ECISR	ROTP�	ROTX

�SEG E���E�

�IN ECISR	VIBP

�SEG E���E�

�IN ECISR	DERI�	COPO

�SEG G��

�IN ECISR	FOLD�	HULT�	FINT

�SEG G���G�

�IN ECISR	EXTP�	INTP�	STDP

�SEG D���D�

�IN ECISR	QUAN�	DJ�J�	DCGS�	SCAM�	CORA�	CORB

�SEG F��

�IN ECISR	INTI�	INSI�	INSH�	COUP�	SECM�	PADE

�SEG F���F�

�IN ECISR	INCH�	CPCC�	LINS

�SEG D���D�

�IN ECISR	SCHE�	RESU�	SCAT�	GRAL�	EMRO�	CPSF

�SEG L�����

�IN LARGE

�SEG B���B�

�IN ECISR	INPA

�SEG B���B�

�IN ECISR	INPB

A�� Use on VAX

Around �� FORTRAN cards have to be changed in ECIS
�� to deal with the larger !oating value which
is ����	 The IBM versions of ECIS�� and ECIS�� need no change	 There is no use of OVERLAY on this
computer and the working array can be taken the largest possible	 At the Washington State University�
it has been possible to use as MAIN routine�

�C �������� VAX MAIN�




�C THE ASSEMBLER SUBROUTINE ECIS�I� DEFINES THE DOUBLE PRECISION ARRAY W MAIN�

�

�C AND CALLS CALC�W�W�W�IDMX� WHERE IDMX IS THE LENGTH OF W MAIN�

�

�C W IS ALL THE REGION LEFT FREE BY THE PROGRAM EXCEPT ��I K FOR BUFFERS MAIN�

�

�C THE SUBROUTINE ECIS CAN BE ELIMINATED WITH THE FOLLOWING MAIN� MAIN�

�

� REAL�� W��




� MAIN�

�

� CALL CALC�W�W�W��




� MAIN�

�

� STOP MAIN�




� END MAIN�

�

There is no control of the time allowed for the JOB	 The CPU elapsed time is given by following subroutine
STIM �

�C ����
��� VAX STIM�




� SUBROUTINE STIM�I� STIM�

�

�C RETURNS INTEGER VALUE OF CURRENT CPU TIME IN HUNDREDTH OF SECONDS STIM�

�

�C ACCUMULATED BY PROCESS STIM�

�

�C RJS ���OCT��� �WASHINGTON STATE UNIVERSITY� STIM�

�
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� IMPLICIT INTEGER�� �A�Z� STIM�

�

� PARAMETER JPI��CPUTIM��
�

�X STIM�

�

� INTEGER�� LIST��� STIM�




� DATA LIST���JPI��CPUTIM���
� STIM�

�

� EQUIVALENCE �TIMELOC�LIST���� STIM�

�

� TIMELOC��LOC�TIME� STIM�
�


� STAT�SYS�GETJPI����LIST���� STIM�
��

� I�TIME STIM�
��

� RETURN STIM�
��

� END STIM�
��

The subroutine HORA has been modi
ed to suppress the transformation from IBM units	

A�� Use on PR�ME

The code ECIS
� could not be used with F

� due to compilation errors found in the function SIGM and
the strange behaviour of equivalences	 With FTN� in which there is no DASIN and no DSINH� the two
following subroutines must be added to the coulomb functions�

� FUNCTION DASIN�X�

� IMPLICIT REAL�� �A�H�O�Z�

� DASIN�DATAN��X�DSQRT���X�X��

� RETURN

� END

� FUNCTION DSINH�X�

� IMPLICIT REAL�� �A�H�O�Z�

� DSINH�
	�D
��DEXP�X��DEXP��X��

� RETURN

� END�

Further modi
cations had to be done � DFLOAT has to be replaced by DBLE�FLOAT� �� and a statement
had to be modi
ed in subroutine FITE	 The OVERLAY is not needed	 The MAIN routine is �

�C �
�
���� PRIME MAIN�




�C THE ASSEMBLER SUBROUTINE ECIS�I� DEFINES THE DOUBLE PRECISION ARRAY W MAIN�

�

�C AND CALLS CALC�W�W�W�IDMX� WHERE IDMX IS THE LENGTH OF W MAIN�

�

�C W IS ALL THE REGION LEFT FREE BY THE PROGRAM EXCEPT ��I K FOR BUFFERS MAIN�

�

�C THE SUBROUTINE ECIS CAN BE ELIMINATED WITH THE FOLLOWING MAIN� MAIN�

�

� REAL�� W���



� MAIN�

�

� COMMON W MAIN�

�

� CALL CALC�W�W�W���



� MAIN�




� STOP MAIN�

�

� END MAIN�

�

The STIM subroutine is �

�C �
�
���� PRIME STIM�




� SUBROUTINE STIM�I� STIM�

�

�C RETURNS INTEGER VALUE OF CURRENT CPU TIME IN HUNDREDTH OF SECONDS STIM�

�

� CALL CTIM�A�I� STIM�

�

� RETURN STIM�

�

� END STIM�

�

The compilation is �

� FTN XX �SA �L �X �INTL �BIG ���V
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A�� Use on BURROUGH

The code ECIS
� has been run on the BURROUGH 



 of the Technische Hogeschool in Eindhoven�
Netherlands	

Some errors without e�ect on other computers have been found�

� in subroutine HORA� M
 and M� must be put on data�

� in subroutine CORH the array SPwas not declared as single precision� add REAL�� SP after IMPLICIT
or change SP into OP and use IMPLICIT REAL�� �A�H�P�Z��

� in the subroutine CAL�� in calls to CORB� an argument was of wrong type� use �

� ��DW�NXC���DW�NX���NC�ISM�KAB�NW�NNIV��NW�NT��NW�NIVQ��DW�NFG��LMAXCAL��

�

� ���LMAX��INC�NW�NWR��LO� CAL��

�

� �DW�NXC���DW�NX��NCXN�ISM�LMAX��NW�NNIV��NW�NT��NW�NIVQ��DW�NFG��LMCAL����


� �AX��LMAX��INC�NW�NML��LO� CAL�����

� in subroutine SCAT� the subroutine EMRO was not called with an array as argument� use �

� ���X��X��SQX�MX�B������ SCAT�

�

� ���X��X��SQX�MX�B������ SCAT�

�

� W��B����B��� SCAT�

�

� an error was found in subroutine HULT	

These changes have been done to the programme on the ��#��#��	 Furthermore� the parity of the levels
cannot be read on this computer unless one uses �

� IF �SPI	IS	SIGM� IPI�IV����� LECT��
�

A�� Use on SUN

This version of ECIS�� was run on a SUN computer without di culty	 As the system was UNIX� the
subroutine STIM described for a CONVEX computer was used	

B The CDC version

The object deck of ECIS
� was conveniently handled as a SOURCE 
le for UPDATE	 Using UPDATE�D	�
the identi
cation of the cards appears in the compilation	 The UPDATE identi
cation is the name of the
subroutine and the sequence number is the number of the card plus �	

Due to the relative small size of CDC computers� the code must be used with segmentation �SEGLOAD�	
These segmentation cards for ECIS
� are �

�ECIS GLOBAL AZ�DBLPR�DECOU�TITR�FCL	C	 OVCD�

�

�RESU GLOBAL RESC OVCD�

�

�ECIS INCLUDE CALC OVCD�

�

�LECT INCLUDE LECD�DEPH�OBSE OVCD�

�

�FITE INCLUDE VARI�REST�EVAL OVCD�

�

�QUAN INCLUDE CORB�SCAM OVCD�

�

�ROTP INCLUDE VIBP�EXTP�COPO OVCD�




�RESU INCLUDE SCHE�CPSF OVCD�

�

�A TREE ECIS��CALX��INPA�INPB�LECT��COLF�DJ�J��REDM�B��FITE� OVCD�

�

�B TREE CAL���POTE��ROTP�FOLD��QUAN��INTI�INCH��RESU� OVCD�
�


� END OVCD�
��
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The time control is obtained by the CDC subroutine SECOND and a call to the CERN subroutine TIMING
at the beginning of the JOB	

The CDC version uses the dynamic allocation of memories� using the MACRO instruction MEMORY	 For
that� the working array must be extended without overlapping the programme	 The CERN subroutines
MEMORY and INCLCM� used previously� include the size of the local computer	 The maximum core can
depend on the user� the hour of computation� or on the JOB card	 A COMPASS subroutine INCM calling
the MACRO MEMORY has been written by LE FUR� in order to get the maximum core allowed by the
installation �

� IDENT INCM INCM�




� ENTRY INCM INCM�

�

� VFD ����HINCM����INCM INCM�

�

� SVA
 DATA 
 INCM�

�

� SVX� DATA 
 INCM�

�

� TAIL DATA 
 INCM�

�

� INCM DATA 
 INCM�

�

� SB
 � INCM�




� SX� A
 INCM�

�

� BX
 X� INCM�

�

� SA� SVA
 INCM�
�


� SA
 A��B
 INCM�
��

� SA� X� INCM�
��

� LX� �
 INCM�
��

� BX� X� INCM�
��

� SA� TAIL INCM�
��

� MEMORY SCM�TAIL�RECALL��NABORT INCM�
��

� SB
 � INCM�
�


� SA� SVX� INCM�
��

� SA� TAIL INCM�
��

� AX� �
 INCM�
�


� BX� X� INCM�
��

� SA� X� INCM�
��

� SA� A��B
 INCM�
��

� SA
 X� INCM�
��

� EQ INCM INCM�
��

� END INCM�
��

called by the FORTRAN subroutine�

� SUBROUTINE MEMORY�N�NTOT�IER� INCM�
�


� DATA KX �
� INCM�
��

� IF �KX	EQ	
� CALL INCM�KX� INCM�
��

� N��N INCM�
�


� KZ�KX�N� INCM�
��

� DO � I����


 INCM�
��

� KX�KX�N� INCM�
��

� KY�KX INCM�
��

� CALL INCM�KX� INCM�
��

� IF �KX	GE	KY	AND	N�	EQ	N� GO TO � INCM�
��

� N�����N���� INCM�
�


� IF �N�	EQ	
� GO TO � INCM�
��

� � CONTINUE INCM�
��

� � NTOT�KX INCM�
�


� IER�KX�KZ INCM�
��

� RETURN INCM�
��

� END INCM�
��
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B�� Use on CDC ����

The working array can be in the SCM or in the LCM	

B���a Using SCM

The OVERLAY structure on a CDC 
�

 puts the BLANK COMMON at the top of the root	 In these circum�
stances� if the working array is in it� it cannot be extended without overlapping the programme	

The solution chosen �for ECIS
�� is to add two cards before the END of the OVERLAY cards to create a
second level�

�B TREE CAL���POTE��ROTP�FOLD��QUAN��INTI�INCH��RESU� OVCD�
�


� LEVEL OVCD�
��

� TREE CALS OVCD�
��

� END OVCD�
��

and the subroutine CALS is �

�CDC ���
��
� ECIS
� CALS�




� SUBROUTINE CALS CALS�

�

�C WITHOUT THE SUBROUTINE MEMORY TO GET THE SPACE� THIS SUBROUTINE MUST CALS�

�

�C BE REPLACED BY CALS�

�

�C DIMENSION W��



� CALS�

�

�C IDMX��



 CALS�

�

�C CALL CALC�W�W�IDMX� CALS�

�

�C�����������������������������������������������������������������������CALS�




� DIMENSION W��
� CALS�

�

� CALL CALC�W�W��
� CALS�

�

� RETURN CALS�
�


� END CALS�
��

The MAIN programme is�

� CALL CALS ECIS�

�

� STOP ECIS�

�

� END ECIS�
�


The subroutine CALS and the second level are overwritten by the working array but the computation
never go out of the subroutine CALC	 The UPDATE instruction is �

��COMPILE ECIS	CALS

B���b Using LCM

The code ECIS in its CDC version has been written in such a way that a quantity in the working array
never appears in the call of a subroutine except as an array	 All the working array can be shifted into
the LCM by inserting �

� LEVEL�A��A��A�					�

in each subroutine� where A��A��A�� � �are the parts of the working array which are used	 The MAIN

programme is then �
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� COMMON W����� LEV��

�

� LEVEL ��W LEV��

�

� CALL CALC�W�W����� LEV��

�

� STOP ECIS�

�

� END ECIS�
�


The UPDATE �still for ECIS
�� instruction is �

��ID LEV� �ECIS
��

��D ECIS	�
 LEV��

�

� COMMON W����� LEV��

�

� LEVEL ��W LEV��

�

� CALL CALC�W�W����� LEV��

�

�																																																																			

��D INCM	
�� LEV��
��

� MEMORY LCM�TAIL�RECALL��NABORT LEV��
��

�																																																																			

��I FIT�	�� LEV�����

� LEVEL ��I�W LEV�����

��I FIT�	�� LEV����


� LEVEL ��A�D�IP LEV�����

��C ECIS	FIT� LEV�����

B�� Use on CDC ����

On a CDC ��

� it is convenient to reduce the size of the BUFFER in the 
rst card of the MAIN routine	

In some places� ECIS can be run as on a CDC 
�

 with �SCM	 In some other places� the use of the
MACRO MEMORY is inhibited unless the compilation is STATIC	 The working array can be in the BLANK

COMMON and the use of the subroutine CALS and of the second level of OVERLAY avoided	

The size of the working array can be controlled by the CM parameter of the JOB card with the following
MAIN routine �

�CDC ����
�
� ECIS�




� PROGRAM ECIS�INPUT�OUTPUT�PUNCH�TAPE��INPUT�TAPE��OUTPUT�TAPE
�PUNECIS�

�

� �CH�TAPE�� ECIS�

�

�C ECIS�

�

�C THE MAIN SUBROUTINE DEFINES THE WORKING SPACE W AND CALL THE ECIS�

�

�C SUBROUTINE CALC WITH THE LENGTH OF W AS LAST ARGUMENT	 ECIS�

�

�C ECIS�

�

�C�����������������������������������������������������������������������ECIS�




� COMMON �� W��� ECIS�

�

� CALL CALC�W�W�LENGTHB�W�� ECIS�

�

� STOP ECIS�
�


� END ECIS�
��

and the COMPASS subroutine written in Amsterdam �

� IDENT LENGTHB LENGTHB�

� ENTRY LENGTHB LENGTHB�

� MEMREPLY BSSZ � LENGTHB�

� LENGTHB BSS � LENGTHB�

� SX
 X� LENGTHB�

� SYSTEM MEM�R�MEMREPLY LENGTHB




B� THE CDC VERSION ��

� SA� MEMREPLY LENGTHB�

� AX� �
 LENGTHB�

� IX� X��X
 LENGTH�


� EQ LENGTHB LENGTH��

� END LENGTH��

The indication at the end of a JOB can be used to choose the best CM in a similar computation	

B�� Use on CRAY

The code ECIS
� has been run on a CRAY computer	 Due to the large size� the OVERLAY structure is not
needed	 No information on time and memory management	

The code ECIS�� has been used with memory management	 The MAIN subroutine is then �

�CRAY ���
���� ECIS�� ECIS�




� PROGRAM ECIS�INPUT�OUTPUT�PUNCH�TAPE��INPUT�TAPE��OUTPUT�TAPE
�PUNECIS�

�

� �CH�TAPE�� ECIS�

�

� COMMON W��
� ECIS�

�

� CALL CALC�W�W��
� ECIS�

�

� STOP ECIS�

�

� END ECIS�

�

and the subroutine MEMO is �

�CRAY 

�
���� ECIS�� MEMO�




� SUBROUTINE MEMO�IDMT�NPLACE�NQ�IX�LO� MEMO�

�

�C THIS SUBROUTINE GETS THE WORKING SPACE	 MEMO�

�

�C IDMT PREVIOUS SPACE MEMO�

�

�C NPLACE REQUESTED SPACE MEMO�

�

�C NQ SPACE TO BE UPDATED MEMO�

�

�C IX� CONTROL NUMBER IX�� FIRST CALL STORE MINIMUM SIZE IN ID MEMO�

�

�C IX�� DIMINUTION OF SPACE MEMO�




�C IX�� REQUEST NPLACE�ISTART� AT LEAST NPLACE MEMO�

�

�C IX�� REQUEST NPLACE MEMO�

�

�C IX�� ABSOLUTE REQUEST MEMO�
�


�C LO� LOGICAL CONTROLS IF LO�����	TRUE	 PRINT THE SIZE OF W MEMO�
��

�C OUTPUT VARIABLES� IDMT SIZE OF WORKING SPACE MEMO�
��

�C LO������	TRUE	 IF COMPUTATION CANNOT CONTINUE MEMO�
��

�C�����������������������������������������������������������������������MEMO�
��

� LOGICAL LO���
� MEMO�
��

� DATA ISTART�IMOD ��
����
��� MEMO�
��

� IF �IX��� � � � � � MEMO�
�


� � ID�IDMT MEMO�
��

� NT�MAX
�IDMT�ISTART� MEMO�
��

� NPLACE�
 MEMO�
�


� CALL MEMORY��MAXFL��IDMAX� MEMO�
��

� CALL MEMORY��CURFL��NX� MEMO�
��

� IDMAX�IDMAX�NX�IDMT MEMO�
��

� GO TO � MEMO�
��

� � NT�MAX
�NPLACE�ID��IDMT MEMO�
��

� CALL MEMORY��UC��NT� MEMO�
��

� IR�
 MEMO�
�


� GO TO � MEMO�
��

� � NT�NPLACE�IDMT MEMO�
��
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� IF �IX	NE	�� GO TO � MEMO�
�


� NT�NT�ISTART MEMO�
��

� � NT�IMOD��NT�IMOD��� MEMO�
��

� NV�MIN
�NT�IDMAX�IDMT� MEMO�
��

� IR�NV�NT MEMO�
��

� CALL MEMORY��UC��NV� MEMO�
��

� � CALL MEMORY��CURFL��NX� MEMO�
��

� IDMT�IDMT�NT�IR MEMO�
�


� LO�������IDMT	LT	NPLACE�	AND	��IX�����IX���	EQ	
� MEMO�
��

� NQ�NQ�NT�IR MEMO�
��

� IF �LO����� WRITE ����


� IX�NT�IR�NPLACE�IDMT�NX�NX MEMO�
�


� IF �	NOT	LO������ RETURN MEMO�
��

� WRITE ����

�� IX�IDMT�NPLACE MEMO�
��

� WRITE ����

�� MEMO�
��

� RETURN MEMO�
��

� �


 FORMAT ���H REQUEST�I���H FOR�I���H MEMORIES�I����H ARE MISSING	 MEMO�
��

� � NPLACE ��I��
H SIZE ��I����H TOTAL LENGTH �I���X�O���HB�� MEMO�
��

� �

� FORMAT ���H NOT ENOUGH PLACE 					 REQUEST�I��I�
��H ALLOWED�I�
MEMO�
�


� ���
H REQUESTED�� MEMO�
��

� �

� FORMAT ����H 			STOP			 NEXT TIME� USE LARGER MFL PARAMETER�� MEMO�
��

� END MEMO�
�


The subroutine STIM is �

�CRAY 
��
���� ECIS�� STIM�




� SUBROUTINE STIM�K� STIM�

�

� CALL TREMAIN�T� STIM�

�

� K����

	�T STIM�

�

� RETURN STIM�

�

� END STIM�

�

without changing the IBM subroutine HORA	

C Use on a CONVEX

On a CONVEX computer� the two versions can be used	 As there can be only control of the elapsed time�
a subroutine STIM� identical for the two versions� was written to stop the JOB just before an hour �the
allowed time of the QUEUE for long JOB�	 This subroutine is �

�C �������
 CONVEX IBM AND CDC VERSIONS ECIS�� STIM�




� SUBROUTINE STIM�I� STIM�

�

�C RETURNS INTEGER VALUE OF CPU ELAPSED TIME IN HUNDREDTHS OF SECONDS STIM�

�

� DIMENSION A��� STIM�

�

� B�ETIME�A� STIM�

�

� I����

����

	�B� STIM�

�

� RETURN STIM�

�

� END STIM�




It can be used on any computer with the UNIX system	

The IBM version has to be compile with �fc "��� and the CDC version with �fc "cfc "���	 Even if all
the subroutines has been compiled beforehand and �fc� is used only to create a LOAD MODULE� one must
use �fc "cfc� to get the right answer from the subroutine STIM	



Chapter III

Coupled channels

The inelastic scattering of nucleons exciting low lying collective states of the nuclei is usually described
by coupled channel calculations using a collective model	 A Dirac phenomenology using a scalar and
a vector potential has been introduced in Ref	 ��� to describe elastic scattering at quite large energies	
Strictly speaking� these calculations are only valid for in
nite mass targets because the center�of�mass is
separable in non relativistic Schr
odinger equation and not in Dirac equation	 In the same approximation�
deformation or vibration can be introduced in the scalar and in the vector potential of the Dirac formalism
to study the inelastic scattering in the collective model	

For elastic scattering� there is a fully equivalent Schr
odinger equation for the Dirac equation	 The
presence of some ��r� terms for charged particles do not a�ect strongly the results	 For inelastic scattering�
this transformation has to be done on the tri�dimensional Dirac equation	 Then� the spin orbit potential
appears as the cross product of the gradient of the potential with a gradient acting on the wave function	
Such expression for the spin�orbit is used since a long time in the description of nucleon inelastic scattering
by � ���� SHERIF� H	� BLAIR� J	 S	� 	Inelastic proton scattering and the deformed spin dependent optical
potential
� Physics Letters 
�B ������ ���	 and � ���� SHERIF� H	� 	Spin�dependent e�ects in proton
inelastic scattering
� Thesis University ofWashington ������	 However� to write the Schr
odinger equation�
the wave function has been multiplied by the square root of the potential	 As long as the potential is
a given function of the radius� it is the only di�erence between Dirac and Schr
odinger formalism	 The
potential used has usually Woods�Saxon form�factors in the two formalisms� the Schr
odinger potential
equivalent to the Dirac one gets a wine�bottle�bottom shape as said in the title of Ref	 ���	

Coupled channel calculations are necessary even at large energies as ��� or ��� MeV as shown in Ref	
���� and ����	 At these energies� the elastic scattering of protons to backwards angles is well described
when the strong low�lying collective states are taken into account	 The di�erence between Schr
odinger
and Dirac approaches seems limited to the in!uence of the shape of the potential as shown in � ����
COOPER� E	� D	� 	Are the Dirac imaginary potentials surface peaked�
� Nucl	 Phys	 A��� ������ page
��� and in Ref	 ����	

A Dirac and Schr�odinger formalisms

In order to describe inelastic nucleon scattering� we must start from Dirac equation because spin�orbit
e�ects can not be understood without it	

A�� The Dirac equation

To describe the scattering of a nucleon with �magnetic anomalous moment� in a Coulomb 
eld VC��r ��
the Dirac equation is � �$h

i
�
��r� �m � VC��r �

i�$h

�m
��
�f�rVC��r �g

�
���r � � E���r �� �III	��

��
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More generally� this equation can be generalised to describe the scattering of this nucleon by a nucleus
into the equation ��$h

i
�
��r� �fm � VS ��r �g� VV ��r � �

i$h

�m
��
�f�rVT ��r �g

�
���r � � E���r � �III	��

where VS ��r �� VV ��r �� VT ��r � are three 
nite range complex potentials of which the real and the imaginary
part are approximated by a Woods�Saxon form factor but can be replaced by any other form factor given
by a theory	

The Equ	 �III	�� is valid in the laboratory system and the Equ	 �III	�� can be used only for a target
with an in
nite mass with respect to the nucleon� so that the laboratory system is also the center of mass
system and m is the rest mass of the nucleon	

We consider the mass m as a parameter which can be �

� the rest mass if LO�����	TRUE	�

� the reduced mass if LO�����	FALSE	� which allows a correct limit at low energy	

In this equation� the vector potential VV ��r � and the tensor potential VT ��r � include the Coulomb
potential VC ��r �� in fact� for a nucleon with an �anomalous magnetic moment� �n� the tensor potential
is reduced here to the Coulomb potential multiplied �at the low energy limit� by �n �

�
�z where z is the

charge of the nucleon	

The �
 and � are four�dimensional Dirac matrices	 They can be expressed in terms of two�dimensional
unit matrix and Pauli matrices �� as follows and allow to write the wave function �

�
 �

���� � ��
�� �

���� � � �

���� � �
� ��

���� � ���r � �

�
F ��r �
iG��r �

�
�III	��

in terms of the large component F ��r � and the small component G��r �	 They allow to write a set of
two linear coupled equations with the Pauli matrices �

$h����r G��r � � �E �m� VV ��r �� VS��r ��F ��r � �
$h

�m
�����rVT ��r ��G��r �

�$h����r F ��r � � �E �m� VV ��r � � VS��r ��G��r � �
$h

�m
�����rVT ��r ��F ��r � �III	��

A�� Reduction to Schr	odinger equation

The terms ��rVT ��r �� are almost eliminated by the substitution �

G��r � � exp
�VT ��r �
�m

�
�G��r �� F ��r � � exp

�
� VT ��r �

�m

�
�F ��r �� �III	��

respectively� to get �

$h����r �G��r � � exp
�
� VT ��r �

m

��
E �m � VV ��r � � VS ��r �

�
�F ��r �

�$h����r �F ��r � � exp
�VT ��r �

m

��
E �m� VV ��r � � VS��r �

�
�G��r � �III	��

%From the second equation� using �

D��r � � E �m � VV ��r � � VS ��r �� DT ��r � � exp
�VT ��r �

m

�
D��r � �III	��

we get �

�G��r � � � �

DT ��r �
$h����r �F ��r � �III	��
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which gives in the 
rst equation� using �

���� �A����� �B� � � �A� �B� � i���� �A� �B� �III	��

and after multiplication by DT ��r � �

�$h�
n
&� �

DT ��r �

�
�rDT ��r �

�
��r� i�����rDT ��r �

�� �r
o
�F ��r � � D��r ��E�m�VV ��r ��VS ��r �� �F ��r � �III	���

This equation include 
rst derivatives of �F ��r � which can be eliminated by using �

f��r � � DT ��r �
� �

� �F ��r � � D��r ��
�

�F ��r � �III	���

to obtain �

$h�
n
&� �

�

� �rDT ��r �

DT ��r �

��
�
�

�

&DT ��r �

DT ��r �
� i���

�
�r lnDT ��r �

� � �r
o
f��r �

�
n
� �EVV ��r �� �mVS ��r � � V �

V ��r �� V �
S ��r � � $h

�k�
o
f��r � � � �III	���

with $h�k� � E� �m�	

This equation can be written �

n
� $h�

�m

�
&� k�

�
� V���r � � ��

�r lnV���r ��� �r
i

o
f��r � � � �III	���

with �

V���r � �
$h�

�m

n�
�

� �rDT ��r �

DT ��r �

��
� �
�

&DT ��r �

DT ��r �

o
�
�

�m

n
�EVV ��r � � �mVS��r � � VV ��r �

� � VS��r �
�
o

V���r � � DT ��r � �III	���

A�� The Schr	odinger formalism

As long as there is only elastic scattering� the potentials have no angular dependence	 Using �

�r � �r

r

d

dr
� i
�

r�
�r � �L �III	���

the spin term of the Dirac equation for DT ��r� independent of �r reduces to �

� i���
h�r
r

d

dr
lnDT �r�

i
� �r � �

r

d

dr
lnDT �r������L� �III	���

and Equ	 �III	��� can be written �

n
� $h�

�m

�
&� k�

�
� V��r� �

�

r

� d
dr
V��r�

�
�����L�

o
f��r � � � �III	���

The Schr
odinger formalism is the use of Equ	 �III	���	

An important di�erence is the use of the Coulomb potential VC�r� directly as a part of V��r�� it does
not contribute to the spin�orbit potential	 This allows the use of nonrelativistic coulomb functions	 In the
equivalent Schr
odinger equation� the Coulomb potential is multiplied by the ratio E�m which is larger
than � and its square appears also in V��r� and V��r� at large distances	 This terms in ��r

� are taken into
account with the relativistic Coulomb functions	 However� taking into account an �anomalous magnetic
moment�� terms in ��r� appears into the spin�orbit potential in both formalisms	 The elastic scattering
in the Dirac formalism cannot allow to determine a tensor potential� as shown in � ���� CLARK� B	� C	�
HAMA� S	� KALBERMANN� S	� G	� COOPER� E	� D	 and MERCER� R	� L	� 	Equivalent local Dirac
potentials
� Phys	 Rev	 C�� ������ page ���� because it depends only upon the two potentials V��r� and
V��r� de
ned in Equ	 �III	���	 Nevertheless� it does not means that a known tensor potential has not to
be used	
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A�� Radial dependence of potentials

The potentials VS��r �� VV ��r � and VV ��r � in Dirac equation� V���r� and V���r� in Schr
odinger equation are
usually complex with a real and an imaginary parts parametrised by a depth V multiplying a Woods
Saxon form factor �

f�r� a�R� �
�

� � exp
�
r�R�

a

	 where R� � RA��� �III	���

where A is the mass of the target	 These are called volume potentials�

The imaginary part of V� can include also a surface potential with the form factor �

f ��r� a�R� �
�

�a

d

dR�

n �

� � exp
�
r�R�

a

	o where R� � RA��� �III	���

and we generalise that to its real part	 So� the two formalism deals with the same number of potentials	

Instead of the Woods�Saxon potential de
ned by Equ	 �III	���� one can use a �symmetrised� Woods�
Saxon potential which is �

fs�r� a�R� �
h �

� � exp
�
r�R�

a

	ih �

� � exp
�
r�R�

a

	i �III	���

The potentials VV ��r� and V���r� include the Coulomb potential VC��r� which is �

VC��r � �



�
�Ze

�
�
�� �r�R�

c�
�
	
�R�

c� for r � R�
c

Ze��r� for r � R�
c

�III	���

where R�
c � RcA

��� and Z is the product of charges of the particle and the target	 VC��r � can also
be computed from a di�use charge with a density distribution given by a Woods�Saxon form factor�
eventually multiplied by a factor �� � cr�� where c is a �third Coulomb parameter�	

The potential can also be obtain from a microscopic description or replaced by a Fourier expansion
on Bessel functions	

B The generalised optical model

In the generalised optical model� the potential describes also the di�erent states of the target nucleus	
See for example in � ���� TAMURA� T	� 	Analyse of the Scattering of Nuclear Particles by Collective
Nuclei in Terms of the Coupled�Channel Calculation
� Rev	 Mod	 Phys	 �� ������ ��� and in � ����
TAMURA� T	� 	Coupled�channel approach to nuclear reactions
� Ann	 Rev	 Nucl	 Sci	 �� ������ ��	

B�� The macroscopic models

We give here the physical meaning of the macroscopic models used in ECIS	

B���a The symmetric rotational model

In the symmetric rotational model� the potentials are some functions V ��r � �r��� where �r� is the intrinsic
axis of the nucleus	 These potentials are parametrised by quadrupole and hexadecupole deformations ��
and ���� � �using a radius R��� such that �

R��� � R�

�
� � ��Y

�
� ��� � ��Y

�
� ��� � � �

�
�III	���
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where � is the angle between �r and �r�	 There are only even deformations	 This radius is used instead of
R in the usual expressions of the optical model	 The potential can be expanded into multipoles �

V ��r � �r�� � ��
X
���

V��r�Y
�
� ��r�Y

��
� ��r��� V��r� �

�

�

Z �

�

V ��r � �r��P��cos �� sin �d�� �III	���

where there are only even values of 
	 This is obtained by a symmetric ten�points Legendre integral over
� of the potential multiplied by an adequate Legendre polynomial P��cos ��	

In this model� the target states are �

j'IM ��

r
�I � �

����

h
�K�r

��R
�J�
M�K�(� � ���I�j��K �r��R�J�

M��K�(�
i

�III	���

where �K�r�� is the intrinsic function� ( the rotation between the laboratory system and the intrinsic
frame and j appears in the rotation of � around an axis perpendicular to the axis of symmetry for each
component of the intrinsic state	

B���b The vibrational model

In the vibrational model� the radius is replaced by �

R � R�

�
� �

X
���


��Y
�
� ��� ��

�
�III	���

where �


�� �
���p
�
� �

�
b���� � ����b����

�
�III	���

in which b���� are phonon creation operators and b��� are phonon annihilation operators	 The potential
is usually expanded in powers of the 
�s �

V �r�R�� �
d

dR�
V �r�R��

X
���


��Y
�
� ��� �� �

�

�

d�

dR�
�

V �r�R��
�X
���


��Y
�
� ��� ��

��
�III	���

with only the 
rst derivative for the �rst order vibrational model� the 
rst and the second derivatives
for the second order vibrational model� but also the third derivative with nuclear matrix elements
to be given in the anharmonic vibrational model	

In the harmonic vibrational model� the target states are �

j'IM �� b�IM j� �� j'IM �� j�L�L��IM ��
�p

� � �L�� L�

h
b�L�

b�L�

iI
M
j� �� �III	���

for the ��phonon and the ��phonons states respectively	

B���c The vibration�rotational model

In the vibration�rotationalmodel there is a static deformation like in the rotational model and a dynamical
vibration 
ML of the intrinsic state	 Like in the vibrational model R� of Equ	 �III	��� has to be replaced
by R of the Equ	 �III	��� but the expansion given by Equ	 �III	��� is limited to the 
rst derivative	 Here�
the value of M is important	 The form factors are �

VM
l �r� � �ML

Z
d

dR
V ��r� �r��

�
YM
L ��� � xYM

l ���
�
YM
l

����d� �III	���

where the term xY Ml��� is there only for the form factors with l � � and l � � to correct them for
center of mass motion or translation and is de
ned by the condition that

R
VM
l �r�r

l��dr � �	

In the literature� the derivation of this model is presented with the summation of the two spherical
harmonics� giving a sum with Clebsch�Gordan coe cients	

The nuclear states are those given by Equ	 �III	��� with or without 
ML acting on �K�r
��	
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B���d The asymmetric rotational model

In the asymmetric rotational model� The radius is given by �

R��� � R�

�
� � ��

�
cos �Y �

� ��� �
�p
�
sin �fY �

� ��� � Y ��
� ���g� � �� cos �

�Y �
� ��� � � � �

�
�III	���

and the potential are �

V ��r� �r�� � V���r� �r
�� � V �

� ��r� �r
��Y �

� ��� � V �
� ��r� �r

��
�p
�

�
Y �
� ��� � Y ��

� ���
�
� � � � �III	���

They are obtained by integration on the sphere with �� points� the weights of which were obtained once
for all by the inversion of the matrix of spherical harmonics at these points	 This means that the potential
is supposed to be expanded only with �� terms� the coe cients of which are obtained by solving a set of
�� equations	 The number of multipoles is limited to �� �i	 e	 L � �� whereas �� is L � ���	

The nuclear states� as described in � ���� DAVYDOV� A	� S	 and FILIPPOV� G	 F	� 	Rotational states
in even atomic nuclei
� Nucl	 Phys	 � ������ page ���� can be written �

j'InM � �

r
�I � �

���
��r��

h
cos ��nR

�J�
M���(� � sin �

�
n cos �

�
n

R
�J�
M�� � R

�J�
M���p

�

� sin ��n sin �
�
n cos �

�
n

R
�J�
M�� � R

�J�
M���p

�
� � � �

i
�III	���

for I � �m even with the possibility of � �m di�erent states and �

j'InM ��

r
�I � �

���
��r��

h
cos ��n

R
�J�
M�� � R

�J�
M���p

�
� sin ��n cos �

�
n

R
�J�
M�� � R

�J�
M���p

�
� � � �

i
�III	���

for I � �m � � odd with the possibility of only m di�erent states	

If the asymmetric rotational model is �constrained�� the 
rst state must be the �� and the second
state must be the 
rst ��	 If there is a third state� it must be the second ��	 There is no protection
in the code against using only elastic scattering� but no � will be taken into account	 The value read as
��� for the 
rst �

� is taken as the value of the � in Equ	 �III	���	 The result given in Ref	 ���� can be
written �

tan ��� � �
� sin � cos �� � cos � sin ��

sin � sin �� � � cos � cos �� �
p
�� � sin� ��

� ��� � ��� �
�

�
�III	���

because a sign does not matter	

B�� The coupled equations

We shall take as example the rotational model	 The equation to solve is ��
T � V � E

�
) � � �III	���

where T is the kinetic energy and V the generalised optical potential	

B�
�a Schr�odinger formalism

The total wave function is written �

)��r � �
�

r

X
l�j�I�J

fljIJ �r�YlsjIJM �III	���
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where �

YlsjIJM � il
X

����m�m�

� j� I�m�m�jJ�M �
�
� l� s� �� �jj�m � Y �

l ��r�js� �
�
'm

�

I �III	���

are the target�spin�angular functions involving the target state �I 	

Projecting the total equation on all the functions YlsjIJM � we obtain a system of coupled second order
di�erential equations �

$h�

�mi

� d�
dr�

� ��iki
r

� li�li � ��

r�
� k�i

�
fi�r� �

X
i�

nX
�

G�
ii�V

��r�
o
fi� �r� �III	���

where i and i� stands for any set of quantum numbers �l� j� I� J�� ki and �i are the wave number and
the coulomb parameter for equation i and G�

ii� is a geometrical coe cient for the transition form factor
V ��r�	 For 
 � � and i � i�� the second member of Equ	 �III	��� includes the optical model	 In general�
G�
ii� is the product of a �nuclear� part� which is the �reduced matrix element� and a geometric coe cient
of the partial waves	 For example� in the rotational model� a state of the target� member of a rotational
band starting with �� is described by Equ	 �III	��� with K � � �

j'I�M ��

r
�I � �

���
R
�I��
M� �(���r

�� �III	���

where ��r�� is the intrinsic wave function	 The result of integration on the nuclear state is �

� 'If �Mf
jV ��r � �r��j)Ii�Mi

��
p
��
X
�

V��r�Y
�
� ��r� � ���Mi

q
��Ii � ����If � ����
 � ��

�
Ii
�

If
�




�

��
Ii
Mf

If
�Mi




�

�
�III	���

and the total result is �X
�

V��r����J��� �

�

q
��Ii � ����If � ����ji � ����jf � ��

�
Ii
�

If
�




�

��
jf

��
�




�

ji
�
�

�

Ii
jf

If
ji




J

�
�III	���

where there is a part which depends only upon the target and a part which depends only upon the
nucleon� the two of them related by a �j coe cient	

If there are n channels and if the spin of the particle is si� the spin of the target Ii and the product
of the intrinsic parities �i for the channel i� the total number of coupled equations for a total spin J
su ciently large and a parity � is �

N �
nX
i
�

Ni �
nX

n
�

�

�

�
��Ii � ����si � �� � ��i���J�	

�
�III	���

where ��i � � if Ii or si is half integer and �
�
i � �i���Ii�si if Ii and si are integers	

For the scattering of protons on a �� � �� � �� � �� rotational band� this number is ��	 For the
scattering of 
 particles on the same levels� there are �� equations or �� equations according to the parity	

In the most general problem� the interaction V can be written as the scalar product of a tensor
operator QIt acting on the target� a tensor operator QS acting on the spin of the particle and the tensor
iL YM

L ��r� multiplying a radial form factor VLSIt�r�	 Taking into account a factor ��
p
�� introduced in

the form factor� the geometrical coe cient is �

�p
��

�
�
�lf sf �

jf If
�J j�iL YM

L ��r� Q
S
�It

�QItj��li si�jiIi�J ��� sf jjQSjjsi �� If jjQItjjIi � �III	���



�� CHAPTER III� COUPLED CHANNELS

����J�If�ji� �

�
�lf�li�L�

q
��It � ����L� ����lf � ����li � ����jf � ����ji � ���

lf
�

li
�

L

�

�

jf
Ii

ji
If

It

J

��

�

lf li L
sf si S
jf ji It

��
� �III	���

where the part of the second member written in Equ	 �III	��� is the �reduced nuclear matrix el�
ement� and the one written in Equ	 �III	��� is the geometrical factor computed by the code	 This
expression has the advantage to reduce the geometrical factor to the usual one of macroscopic excitations
when S � � but is not symmetric when particle and target are exchanged � the reduced matrix element
for a given L and S � L� It � � is

p
�S � � the one for the same L and S � �� It � L	 Nevertheless�

Equ	 �III	��� was used up to ECIS��	 To reduce this disadvantage� a factor
p
�S � � has been introduced

in the geometrical coe cient �III	��� in the code ECIS��	 This correspond to use operators coupled to a
scalar instead of the scalar product because �

���It � ��lf sf �jf If�J j�iL Y M
L ��r� � Q

S � QIt
��
�
j��li si�jiIi�J �

�
p
�It � � �

�
�lf sf �

jf If
�J j�iL YM

L ��r� Q
S
�It

�QItj��li si�jiIi�J � �III	���

is symmetric for the exchange of QS and QIt 	 In fact� the separation between reduced matrix element
and geometrical coe cient correspond to the use of the expression given in Equ	 �III	��� divided byp
��S � ����It � �� in order to coincide with the usual notations for the macroscopic models	

Deformed spin�orbit interaction and magnetic multipole Coulomb interaction need a
di�erent approach	 In the macroscopic models� there is no QS and this coe cient can be simpli
ed	

B�
�b Spin�orbit deformation

It has been shown by DWBA calculations in Ref	 ���� and ���� that the spin�orbit interaction should be the
�full Thomas form� which is �

�r V ��r� �
�r
i
��� �III	���

derived from Dirac�s equation by elimination of small components� in order to 
t experimental data in
proton elastic scattering	

B�
�b�i Spin�orbit deformation for spin one�half

For a multipole V��r� Y
�
� ��r� of the interaction V �r�� it can be shown by elementary manipulation of

Pauli matrices as given by Equ	 �III	�� and with the expression of the gradient gien by Equ	 �III	��� that
the expression above is �

�r
h
V��r� Y

�
� ��r�

i
�

�r
i
��� �

�

r

h d
dr
V��r�

i
Y �
� ��r�����

�L�� V��r�

r

h
�����L�Y �

� ��r�
i d
dr

�
V��r�

r�

h
�����L�Y �

� ��r�
i
�����L� � V��r�

r�

h
�LY �

� ��r�
i
��L �III	���

�see in Ref	 ���� and �����	

For any spin� the eigenvalue of ���L��s� is �

���L��s� �
�

�
�j�j � ��� l�l � ��� s�s � ��� �III	���

that is for spin �
� �

� �L��� � l if j � l � �
� �



B� THE GENERALISED OPTICAL MODEL ��

� �L��� � �l � � if j � l � �
�
	

When taken between partial waves jlf jf � and jliji �� the operators �L��� can be replaced by their
eigenvalues �f on jlfjf � or �i on jliji �	 The same holds for

h
�LY �

� ��r�
i
��L 	 Taking carefully into account

on what acts the operator� one gets the same geometrical factor G�
if as for a central term� multiplied by �

�

r

h d
dr
V��r�

i
�i �

V��r�

r
��i � �f �

d

dr
�
V��r�

r�

h

�
� ��� ��f � �i���f � �i � ��

i
�III	���

where �� holds if the wave function is#is not multiplied by r	 For the optical model� 
 � � and �i � �f
and the expression �III	��� reduces to the usual one	 This expression as been shown to be equivalent to
the zero�range limit of a two�body spin�orbit interaction in Ref	���� and ���� using the helicity formalism
as de
ned in � ���� RAYNAL� J	� 	Multipole expansion of a two�body interaction in helicity formalism
and its application to nuclear structure and nuclear reaction calculations
� Nucl	 Phys	 A�� ������ ���	

To compare with some earlier works using �

�

r

h d
dr
V��r�

i �i � �f
�

�III	���

and to be able to study the e�ects of each terms in the above expressions� six parameters z�� z�� z�� z��
z
 and z� have been introduced to get �

�

r

h d
dr
V��r�

i
�z� � z��i � z��f � �

V��r�

r
z���i � �f �

d

dr

�z

V��r�

r�

h
z�
�
 � ��� r��f � �i���f � �i � ��

i
�III	���

These parameters allow also to increase the spin�orbit transition without changing anything else	

The deformed spin�orbit in the �full Thomas form� introduces a 
rst derivative of the wave function
in the Schr
odinger equation	 The quick integration methods cannot deal with 
rst derivatives �one has
to use some Runge�Kutta method�	 However� the derivative terms are non diagonal because they have a
factor �i � �f 	The deformed spin�orbit can be used only with the iteration method	

B�
�b�ii Behaviour of the spin�orbit deformation

The behaviour of the deformed spin orbit interaction is a vector behaviour� the di�erence �i � �f is
also found to be the ratio of the geometries for a transfer of spin and a scalar interaction ��


�
lf li L
�
�

�
� �

jf ji J

��
� � �f � �ip

�J�J � ��

�

�

lf li L
�
�

�
� �

jf ji J

��
� �III	���

To compare deformed spin�orbit and other interactions� let us write consider a �� � �� reaction	
There is one equation for the �� state and � equations for the �� state	 Let us consider their behaviour
when the angular momenta increase	 Among the 
ve geometrical coe cients� there are �

�	 those between li � ji � �
� and lf � jf � �

� �

� for a central interaction� we shall take them as reference�

� for a &S � � interaction� Equ	 �III	��� shows that there are of the same order�

� for a spin�orbit interaction� the factor �i increases linearly with l and the other are constant	

�	 those between li � ji � �
� and lf � jf � �

� which �

� are a factor l smaller than the 
rst ones for a central term�
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� for a &S � � interaction� the Equ	 �III	��� shows that there are multiplied by a factor l and
become of the same order as the central interaction ����

� for a spin�orbit interaction� the factors �i and �i � �f increase linearly with l and the factor
�� ��i � �f ���i � �f � �� increases quadratically	

This behaviour shows that spin�orbit interaction should become predominant at high energy	

B�
�b�iii Spin�orbit deformation for any spin

The �full Thomas form� of the spin�orbit interaction is conserved when the nucleon�nucleus potential
is folded with the intrinsic wave function of the particle if this wave function involves only relative S�
states	 This is well known for the optical model of deuteron �see for example Ref	 ���� Chapter IV�	 If the
nucleon�nucleus spin�orbit form factor is �

r
d
drf�r�� the deuteron spin�orbit form factor is

�
r
d
drF �r� where

F �r� is obtained from f�r� by folding� only if the deuteron D�wave is neglected	

This property of the folding for a structureless incident particle allows to extend the �full Thomas
form� of the spin�orbit to any spin as done in Ref	 ����	 For a spin �s� ��s can be replaced by the sum of �
jsj Pauli matrices �i in Equ	 �III	�� and Equ	 �III	��� derived for each Pauli matrix	 In this result� the
term without Pauli matrices is multiplied by � jsj� the terms with one Pauli matrix are summed up to ��s
and the terms with two Pauli matrices need some recoupling	 The total result is �

�

r

dV�
dr

�i � ��i � �f �
V�
dr

d

dr
�

V�
�r�

n
jsj�
�
� ��� li�li � ��� lf �lf � ��

�
� �f �

�i�f
�jsj � F

o
�III	���

with �

F � ��jsjflisjiflf sjf


li
jf

ji
lf

s � �



�

li
jf

ji
lf

s




���
�III	���

and �

flsj � � l s jj�����L�jl s � � j �

� �
p
�l�l � ��� �j � s��j � s � �����j � s��j � s � ��� l�l � ���

�jsj �III	���

The parametrisation introduced for spin one�half has been extended to �

�

r

dV�
dr
�z� � z��i � z��f � � z���i � �f �

V�
r

d

dr

�z

V�
�r�

n
jsj�z�
�
� ��� li�li � ��� lf �lf � ��

�
� �f �

�i�f
�jsj � F

o
�III	���

B�
�c Dirac formalism

The large and the small component have a di�erent angular dependence	 This point is taken into account
by writing instead of Equ	 �III	��� �

j)��r � �� �
r

X
l�j�I�J

�
Fl�j�I�J �r�

�iGl�j�I�J �r������r �

�
YlsjIJM �III	���

where YlsjIJM is the same as for Schr
odinger equation and is given by Equ	 �III	���	 Here� l stands
instead of the parity quantum number	

The operator ������r� interchanges the spin angular functions of the large and the small
components�
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Projecting the total equation on all the function YlsjIJM � we obtain the set of linear coupled equations �

$h
h d
dr
� Ki

r
� �

�m

dV �
T �r�

dr

i
Gi�r� �

�
Ei �m � V �

S � V �
V

�
Fi�r� � Si�r�

�$h
h d
dr
�
Ki

r
�
�

�m

dV �
T �r�

dr

i
Fi�r� �

�
Ei �m � V �

S � V �
V

�
Gi�r� � Ti�r� �III	���

where the su x i stands for �l� s� j� I� J�� V � indicates the monopole parts of the interactions and �

Ki � ���l�j� �

� �j �
�

�
� �III	���

The second members are �

Si�r� �
X
��j

G�
i�j

h�
V �
S � V �

V

�
Fj�r� �

$h

�m

�� d
dr
�
Ki �Kj

r

	
V �
T

�
Gj�r�

i

Ti�r� �
X
��j

G�
i�j

h�
V �
S � V �

V

�
Gj�r� �

$h
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�� d
dr
�
Kj �Ki
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V �
T

�
Fj�r�

i
�III	���

where V � are the multipoles of the interactions and the geometrical coe cients are the same as for the
Schr
odinger equation �

� between Fi and Fj� expressions are identical�

� between Gi and Gj� the operators �����r� commute with the expression and their product being
unity� the result is the same as between Fi and Fj�

� between Fi and Gj� the operators �����r� and �����r� are treated like the spin�orbit deformation in
the Schr
odinger equation	

There is no reason to limit the coupling to macroscopic ones �&S � ��	 For &S �� �� the rules given
above are no more valid and the coe cient of the central term in the second equation �III	��� is no more
the same as the coe cient of the 
rst one and must be computed separately	

The codes ECIS�� and ECIS�� o�er two possibilities �

� to solve exactly the Dirac equation as described above with LO��

��	TRUE	�

� to write the equivalent Schr�odinger equation and to solve it� neglecting the presence
of D��r�

�

� in the de�nition given by Equ� �III���� of the function if LO�����	TRUE	

The result is exactly the same for the elastic scattering	

B�� Solutions and angular distributions

We assume that there is no long range interactions	 They shall be explained in Chapter �IV�	

B���a Solution of the equation

Beyond a matching point for which all the potentials except the Coulomb one vanish� the solution fi�r� of
the Schr
odinger equation is a superposition of the regular Coulomb function Fli ��i� kir� and the irregular
Coulomb function Gli��i� kir�	 For the equivalent Schr
odinger equation of the Dirac equation� there are
long range terms r�� and r�� which implies the use of relativistic Coulomb functions instead of the usual�
non�relativistic ones	

Coulomb corrections described in Ref� ��	 allow the use of the non�relativistic Coulomb
functions in the Dirac phenomenology for nucleon scattering� They were derived for heavy�ion
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scattering to reduce the matching radius to the point where nuclear interactions vanish and to correct
the non relativistic Coulomb functions at this point for the e�ect of the long range Coulomb interaction
which decrease only as r�l��	 We consider here that the Coulomb functions are corrected for these long
range e�ects	

The solution must vanish at the origin� due to the factor ��r in the de
nition of the radial functions	
They must have a plane wave incoming part for the initial channel i and an outgoing wave for all the
channels� normalised to the same !ux �that is divided by

p
k�	 Their asymptotic form is �

ff �r�r�� 	 �i�fFlf ��f � kfr� � Ci
f

�kimf

kfmi

� �

� �
Glf ��f � kfr� � iFlf ��f � kfr�

�
	 �i�fFlf ��f � kfr� � C

i

f

�
Glf ��f � kfr� � iFlf ��f � kfr�

�
�III	���

and numerical integration gives the coe cients C
i

f by linear combination of the n solutions which vanish

at the origin	 The C
i

f are multiplied by
p
kfmi��kimf � to get the C

i
f with are symmetric for the exchange

of i and f as will be shown by Equ	 �III	���	 The same relation holds in Dirac formalism for the solution
of the equivalent Schr
odinger equation	 An equivalent de
nition of the Ci

f will be given by Equ	 �III	����
and �III	����	

By identi
cation we obtain �

f�f�f�i�i��� �
��

ki

X
exp�i�li � i�lf �C

i
f � li� s� �i� �ijji�mi �� ji� Ii�mi� �ijJ�M �

� � lf � s� �f � �f jjf �mf �� jf � If �mf � �f jJ�M � Y 
i�
li
��ki�Y


f
lf
��kf � �III	���

where � and � are the projections of the spins of the particle and the target� �li and �lf are the Coulomb
phase�shifts	

B���b Helicity formalism and cross�section

These amplitude are simpli
ed by the helicity formalism �de
ned in Ref	 ����� see also Ref	 ���� and �����
in which the spin of the particle is projected on its momentum and the spin of the target is projected on
the inverse direction	

The axis of quantisation is along �ki for the initial state and along �kf for the �nal state
and the helicity of the target is opposite of the projection of its spin�

The helicity amplitude involve only a reduced rotation matrix element r
�J�
m�m� ��� �

fhel��f�f�i�i��� � f �Coul� hel�
�f�f�i�i ����if �

X
J

f �J� hel�
�f �f�i�ir

�J�
�f��f ��i��i ��� �III	���

with �

f �J� hel�
�f�f�i�i

��� �
�

ki

X
exp�i�li � i�lf �C

i
f

q
��li � ����lf � �� � li� si� �� �ijji� �i �

� � ji� Ii� �i���ijJ�Mi �� lf � sf � �� �f jjf � �f �� jf � If � �f ���f jJ�Mf � �III	���

The coulomb helicity amplitude� which appears only in the incident channel� is the usual coulomb ampli�
tude multiplied by the reduced rotation matrix elements for the spin si of the particle and the spin Ii of
the target �

f �Coul� hel�
�f�f�i�i ��� � � �

�k sin� �
�

exp
� � �i� ln sin �

�
� �i��

	
r�si��f ��i���r

�Ii�
��f ���i��� �III	���

Note that in the codes ECIS� �� is used only to compute Coulomb corrections and that the Coulomb
phase�shift �l is replaced everywhere else by �l � ��� independently for each level	
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The direct interaction di�erential cross�section is �

d����

d(
�

�

��si � ����Ii � ��

X
�i�f�i�f

jfhel��f�f�i�i ���j�' �III	���

and the total di�erential cross�section is obtained by adding the di�erential compound cross�section
which is computed from the coe cients Ci

f 	

In the code ECIS� the compound di�erential cross�section is expressed as a sum of terms� each of them
being a sum of squares of reduced rotation matrix elements� usually� these squares are expanded into sums
of Legendre polynomials�

B���c Observables

The formalism used to express the observables as been described in Ref	 ����	 All the observables P can
be expresses as �

P ���
d����

d(
�
X
�i�i

x����������������
A��������
��������

�III	���

where �
A��������
��������

� Trace
n
fhel����

�
� si���� 
 � Ii����

�
fhel�����

�
�
sf
����


 �
If
����

�o
�III	���

and� in peculiar� A����
���� is the cross�section	 Here� the � are tensor operators in spin space de
ned for

� � 
 � �s and �
 � � � 
 by �

� s qj� s��js q� �� ���s�q
�p
�s � � � s� s� q � q�� 
j�� ec�� �III	���

Due to the helicity formalism� the description of the polarisation of the outgoing particles is along the
outgoing direction in the center of mass system	 The description can be shortened� using the relations �

hermiticity
�
A��������
��������

��
� ���

P
�A����������

����������

parity A��������
��������

� ���
P

���A����������
����������

�III	���

As consequences �

�	 if the sum on 
 is even� A is real�

�	 if the sum on 
 is odd� A is pure imaginary�

�	 for the same 
�s and opposite ��s� the A di�ers by ���
P

��
P

�	

For example� the spin�!ip SP is �

SP ���
d����

d(
�
�

�

�
A����
���� �A����

���� � A����
�����

	
�III	���

Experiments are in the laboratory system� if some axis in the reaction plane is requested to describe
the 
nal polarisation� a small rotation of the spin is needed for the scattering matrix	 These rotations
will be explained in sectio �VIIA�	

Some observables as Q are de
ned with only the incident direction �

Q���
d����

d(
�
p
�A����

���� �III	���

and need a rotation of angle � on the scattering matrix	

There are many ways to de
ne an observable for the codes ECIS �with an axis perpendicular to
the scattering plane� using magnetic quantum numbers� usual tensors operators�	 The codes transform
informations into A�s� store information for necessity of rotation of the scattering matrix and compute
do�loops to use Equ	 �III	���	
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C Integration methods

More details on these topics can be found in Ref	 ��� for single equations� in Ref	 ��� for coupled equations	

C�� Single equation

The second order linear di�erential equation without 
rst derivative �

f ���r� � V �r� f�r� �III	���

is easily solved� using the relation between the function and its second derivative at three equidistant
points �

��r � h� � f�r � h�� h�

��
f ���r � h� � �f�r� �

�h�

�
f ���r�� f�r � h� �

h�

��
f ���r � h� �III	���

with the truncation error �

& � �h
�f �V I��r�

���
�III	���

�it is called Cowell method in Ref	 ����	 If there is no need of the function f�r�� the integration can be
performed using �

��r � h� � ���r�� ��r � h� � u�r�� u�r� �
h�V �r�

�� h�

��V �r�
��r� �III	���

which is the Numerov�s method and has the same truncation error	

For coupled equations� V �r� is a matrix and the computation of u�r� involves the resolution of a linear
system of equations	 It is easier to use the Modi�ed Numerov method by expanding the fraction up
to the terms in h� �

u�r� �
n
h�V �r� �

h�

��
V ��r�

o
��r� �III	���

with a truncation error �

& �
h�V ��r�f�r�

���
� h�f �V I��r�

���
�III	���

For a constant potential� this truncation error is ��
� the previous one	 Such an expansion in the Cowell

method has been used in � ���� BEURTEY� R	� GUILLOU and RAYNAL J	� 	Etude de la di�usion
�elastique des particules charg�ees a l�aide du mod�ele optique
� Le Journal de Physique et le Radium 
�
������ page ���	 If needed� the wave function can be obtained by one of the two expressions �

f�r� � ��r� �
�

��
u�r�

f�r� �
�

��
���r � h� � ����r� � ��r � h�� �III	���

with an error of the same order	

Note that �see Ref	 ���� �

� the Schr
odinger equation is easily solved numerically by these methods� starting from � at the
origin and a small value � at the point h�

� to have a precise result� the starting values have to be modi
ed for the angular momentum l � ��

� for high angular momenta� the 
rst few points do not matter for the result�

� as the solution increases quickly� it has to be divided by a large number as soon as it becomes too
large�



C� INTEGRATION METHODS ��

� for coupled equations �see Ref	 ����� the starting values are � for only one component� but a
Schmidt�s orthogonalisation procedure can be needed from time to time to avoid that solutions
align between them�

� the Schr
odinger equivalent of the Dirac equation for the angular momentum l � � with Coulomb
potential down to the origin can need a power expansion as starting values� but it is not used in
ECIS	

Matching with the asymptotic expressions can be done by writing the matching conditions at the
points R� h� using �

Fl���r�h� � Fl���r�h�� h�
�
F

��
l ���r�h�� Gl���r�h� � Gl��� kr�h�� h�

�
G
��
l ���r�h� �III	���

where the values of Fl��� kr� h� are obtained by writing three Numerov integration between r � h and
r � h with steps h�� and �

��f�r�h��f�r �h������f�r�h����f�r �h������h��f ���r�h���� f ���r�h���� � ��hf ��r� �III	���

and eliminating the functions at R� h�� between these four equations	

The linear system of matching conditions �

�ki �R� h� �
X
j


kj

n
Fi��i�R� h��ij � Cji

�Gi��i�R� h� � iFi��i�R� h��o

�ki �R� h� �
X
j


kj

n
Fi��i�R� h��ij � Cji

�Gi��i�R� h� � iFi��i�R� h��o �III	���

is simpli
ed by writing �pseudo�Wronskians� of the numerical solutions with the regular and the irregular
Coulomb functions� that is� expressions giving Wronskians when h tends to �	 Writing the matrices �

Ak
i �

�ki �R� h�Gi��i�R� h�� �
k
i �R� h�Gi��i�R� h�

Fi��i�R� h�Gi��i�R� h�� Fi��i�R� h�Gi��i�R� h�

Bk
i �

�ki �R� h�Fi��i�R� h�� �
k
i �R� h�Fi��i�R� h�

Fi��i�R� h�Gi��i�R� h�� Fi��i�R� h�Gi��i�R� h� �III	���

the matching conditions become �

Ak
i �

X
j


kjf�ij � iC
j

ig� Bk
i � �

X
j


kjC
j

i � �III	���

and the solution is given by the linear system �

Bk
i � �

X
j

�
Ak
j � iBk

j

	
C
j

i � �III	���

It should be noted that the solution of these equation for only one set of second members Bk
i for 
xed

i gives the Cj
i for 
xed i whereas the C

j
i are needed for 
xed j	 Wronskian relations give �

ki
mi

C
i
j �

kj
mj

C
j
i �III	���

which can be used to obtain result from only one system of linear equations	 This relation prove the
symmetry of the matrix C de
ned in Equ	 �III	��� for mi � mj	

The error on the collision matrix is of the order of h�	 They are equivalent to an error to the potential
by a term �

&V �
h�

���

d�

dr�
� &V �

h�

���

d�

dr�
� h�

���
V ��r�� �III	���

for the Numerov method and for the Modi
ed Numerov method respectively	 They have a coherent
contribution� The step size in kr can be as large as �

� but smaller than the di�usenesses	 A good value
is h � ���	
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C�� Green function for Schr	odinger equation

The di�erential equation written �

n
� $h�

�mi

h d�
dr�

� ��iki
r

� li�li � ��

r�
� k�i

i
� V opt

i �r� � Vii�r�
o
fi�r� � �

X
j

Vij�r�fj�r� �III	���

and the boundary conditions for the solution �

fi�r�r�� � �i��Fli ��i� kir� � C
�
i

�
Gli ��i� kir� � iFli ��i� kir�

�
�III	���

where �i�� means only in the incident channel� can be replaced by an integral equation built with two
kinds of solution of the single equations of the right member�

�� the regular or optical solution completely de
ned as vanishing at the origin and by its asymptotic
value �

fregi �r�r�� � Fli ��i� kir� � Copt
i

�
Gli��i� kir� � iFli ��i� kir�

�
�III	���

obtained by numerical integration from the origin	

�� the irregular solution completely de
ned by its asymptotic value �

f irri �r�r�� � Gli ��i� kir� � iFli��i� kir� �III	���

obtained by numerical backward integration from the matching point	

These solutions are such that the Wronskian is �

f irri �r� f �regi �r�� f �irri �r� fregi �r� � ki �III	���

In practice� the irregular solution will be divided by ki so that the Wronskian is unity	 With these
functions� the solution is �

fi�r� � fregi �r��i�� � �mi

$h�ki

n
f irri �r�

Z r

�

fregi �r��
X
j

Vij�r
��fj�r

��dr�

�fregi �r�

Z �

r

f irri �r��
X
j

Vij�r
��fj�r

��dr�
o

�III	���

and the coe cient of the outgoing wave is �

C
�
i � Copt

i �i�� � �mi

$h�ki

Z �

�

fregi �r�
X
j

Vij�r�fj�r�dr �III	���

The DWBA approximation is to replace fj�r� by fregj �r� in Equ� �III�����

The derivative terms generated by the deformed spin orbit are in the second member of Equ	 �III	���	
In fact� it is g�r� � rf ��r� which is needed because the form factor stored for the derivative term of Equ	
�III	��� is V��r��r

�	 It is obtained by numerical derivation related to the formulae giving the derivative
x of the function y �

� for the � 
rst points �

x� � ����y� � ���y� � ���y� � ���y� � ���y
 � ��y� � ��y������h�
x� � ���y� � ��y� � ���y� � ���y� � ��y
 � ��y� � �y������h�
x� � ���y� � ��y� � ��y� � ��y� � ��y
 � �y� � y������h� �III	���

� from the �th point to N � � if there are N points �

xi � ����yi�� � yi���� ��yi�� � yi��� � yi�� � yi�������h� �III	���
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� for the � last points �

xN�� � �yN�� � �yN�
 � ��yN�� � ��yN�� � ��yN�� � ��yN�� � �yN �����h�
xN�� � ���yN�� � ��yN�
 � ��yN�� � ���yN�� � ���yN�� � ��yN�� � ��yN �����h�
xN � ���yN�� � ��yN�
 � ���yN�� � ���yN� � ���yN�� � ���yN�� � ���yN �����h�

�III	���

In fact� in this application� the formulae for the 
rst three points are shifted� taking into account that
the function to derive is zero at the origin	

Integrals with the Green function are not straightforward� due to the discontinuity of the integrand	
With � Z h

�

f�x�dx �
h

�
�f��� � f�h�� �

h�

��
�f ����� f ��h�� �

h


���
f �IV ��r� �III	���

For Schr
odinger equation� the integrand vanishes at the origin and at � and its derivative has the
discontinuity given by Equ	 �III	���	 Using �

F �nh� �
nX
i
�

W �ih�freg �ih�� G�nh� �
�X

i
n��

W �ih�f irr �ih� �III	���

where W �ih� is the second member of Equ	 III	��� the integral is �

f�nh� � f irr�nh�F �nh� � freg�nh�G�nh�� h�k

��
W �nh� �III	����

with an error of the order h�	 In this equation k is the Wronskian given by Equ	 �III	��� and reduces to
unity in actual calculation with a rede
nition of the irregular functions	

C�� Green function for Dirac equation

The Dirac equation can be written as �

$h�
d

dr
� Ai�r��Gi�r� � Ei�r�Fi�r� � Si�r�

�$h� d
dr
� Ai�r��Fi�r� �Di�r�Gi�r� � Ti�r� �III	����

with �

Ai�r� �
Ki

r
�
�

�m

dV �
T �r�

dr
� Di�r� � Ei �m � V �

S � V �
V � Ei�r� � Ei �m� V �

S � V �
V � �III	����

Si�r� and Ti�r� are given by Equ	 �III	���	

Two independent solutions of uncoupled equations are obtained by �

�	 the two linear coupled equations are replaced by the equivalent Schr
odinger equation�

�	 its regular solution freg�r� de
ned by Equ	 �III	��� and its irregular solution f irr �r� de
ned by
Equ	 �III	��� are obtained�

�	 they are multiplied by D�r�
�

� to obtain F reg�r� and F irr�r� �there is no di culty to obtain
continuous square root of the complex function D�r� as long as we assume that the real part is very
large with respect to its imaginary part��

�	 the small components Greg�r� and Girr�r� are obtained from the Dirac equation by numerical
derivation using Equ	 �III	��� to Equ	 �III	���	
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Due to the number of operations and their di culties� all the reorientation terms are shifted in the
second member of Equ	 �III	��� �this is also done in the Schr
odinger formalism if LO�����	TRUE	� and
these functions are kept if there are needed for the system with an higher total J 	

With the relation �III	��� for fregi �r� and f irri �r� and the Dirac equation� one obtains the Wronskian �

F irr
i �r�Greg

i �r�� Girr
i �r�F

reg
i �r� � $hki �III	����

Here also� the irregular solution will be normalised such that the Wronskian is unity	 With these functions�
the system of equations �III	��� and its boundary conditions can be replaced by the integral equation �

Fi�r� � F reg
i �r��i�� � �

$h�ki

n
F irr
i �r�

Z r

�

�F reg
i �r��Si�r

�� �Greg
i �r��Ti�r

���dr�

�F reg
i �r�

Z �

r

�F irr
i �r��Si�r

�� �Girr
i �r

��Ti�r
���dr�

o

Gi�r� � Greg
i �r��i�� � �

$h�ki

n
Girr
i �r�

Z r

�

�F reg
i �r��Si�r

�� � Greg
i �r��Ti�r

���dr�

�Greg
i �r�

Z �

r

�F irr
i �r��Si�r

�� � Girr
i �r

��Ti�r
���dr�

o
�III	����

and the coe cient of the outgoing wave is the coe cient of the regular functions at � �

C
�
i � Copt

i �i�� � �

$h�ki

Z �

�

�F reg
i �r��Si�r

�� �Greg
i �r��Ti�r

���dr� �III	����

It is more di cult to obtain a precise value of this integral than in the Schr
odinger formalism	 The
two terms of Equ	 �III	��� introduce corrections and Equ	 �III	���� does not hold	

To 
nd the error coming from the 
rst term of Equ	 �III	��� let us add two elementary step sizes
around r � r� �

h

�

h
F irr
i �r�Greg

i �r�Ti�r� � F reg
i �r�Girr

i �r�Ti�r�� � h
h
F irr
i �r�Greg

i �r�� $hki
�

i
Ti�r�

h

�

h
Girr
i �r�F

reg
i �r�Si�r� �Greg

i �r�F irr
i �r�Si�r�� � h

h
Girr
i �r�F

reg
i �r� �

$hki
�

i
Si�r� �III	����

which is an error of order h if this correction is neglected	

With the second term of Equ	 �III	���� we obtain a correction �

�h
�ki
��

h
Di�r�Si�r� � $h

�
Ai�r�Ti�r� �

d

dr
Ti�r�

�i
�

�h
�ki
��

h
Ei�r�Ti�r� � $h

�
Ai�r�Si�r� �

d

dr
Si�r�

�i
� �III	����

for Fi�r� andGi�r� respectively	 All these correction give an error of the order h�	 However� the derivatives
of Si�r� and Ti�r� are neglected in the code ECIS for the three 
rst and the three last points	

C�� Calculations

The actual calculations are quite di�erent of what was presented here	 In the Schr
odinger formalism� the
system of coupled equations �III	��� is replaced by �

h d�
dr�

� ��iki
r

� li�li � ��

r�
� k�i �

�mi

$h�
�
V opt
i �r�� Vii�r�

�i
gi�r� �

X
j

Vij�r�gj�r� �III	����

with �

fi�r� � m
�

�

i gi�r�� Vij�r� � ��mimj�
�

�

$h�
Vij�r� �III	����
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The result di�ers from the C matrix de
ned by Equ	 �III	��� � its matrix elements have to be multiplied

by
p
kf�ki to obtain the C

f
i 	

Calculations are also simpli
ed by using f irri such that the Wronskian given by Equ	 �III	��� and
�III	���� is unity	

D Equations coupl�ees en iterations s�equentielles

The usual method of numerical integration of coupled di�erential equations can be applied only in the
Schr
odinger formalism without spin�orbit deformation	 It needs a lot of computing time and involves all
the solutions whereas we need only one or a few of them	

In the ECIS method �Sequential Iteration for Coupled Equations�� we suppose the equations
ordered in decreasing order of coupling	 The equations for the initial channel for which there is an
incoming wave are in front	

The 
rst one is labelled f��r�	

If there are more than one� the other solutions are obtained from a circular permutation of the
equations	

With compound nucleus� all solutions are needed to compute the transmission coe�cients and� if
requested� to diagonalise the scattering matrix�

In its 
rst presentation� there was the �di�erential� ECISmethod which consist to solve single inhomo�
geneous second order di�erential equations and the �integral� ECIS method which has been generalised
to Dirac formalism	 They gave same results and they need same computational time and storage	 The
�di�erential� ECIS method have been suppressed because �

� there is no simple extension to the Dirac formalism�

� result is obtained as a di�erence of two numbers and can be quite wrong with high energy close
channel	

D�� 
th order of iteration

We assume a multiplicative factor 
 in front of the second members of the equations and
do a power expansion with respect to 
 and take the result for 
 � �	

For �

n
� $h�

�mi

h d�
dr�

� ��iki
r

� li�li � ��

r�
� k�i

i
� V opt

i �r� � Vii�r�
o
fi�r� � 
Wi�r� �III	����

the solution is �

fi�r� � fregi �r��i�� � 


Z �

�

Gi�r�r��Wi�r��dr� �III	����

with �

Gi�r�r�� �

mi
$h�ki

fregi �r
�firri �r�� �III	����

the 
th order of iteration is obtained with 
 � �	 Therefore� it is �

f
���
� �r� � freg� �r� C

���
� � Copt

� f
���
i �r� � � C

���
i � � �III	����
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D�� �st order iteration�

For i � �

f
���
� �r� � �

Z �

�

G��r�r��V��f���� �r��dr�

C
���
� � � �mi

$h�ki

Z �

�

freg� �r��V���r
��f ���� �r��dr� �III	����

which gives the DWBA result	

For i � �

f
���
� �r� � �

Z �

�
G��r�r��

h
V��f���� �r�� � V��f���

� �r��
i
dr�

C
���
� � � �mi

$h�ki

Z �

�

freg� �r��
h
V���r

��f
���
� �r�� � V���r

��f
���
� �r��

i
dr� �III	����

which takes into account the result already obtained for f
���
� �r�	

and the same up to the last equation	

After the last equation go back to i � � �

f
���
� �r� � freg� �r��

Z �

�
G��r�r��

h
V���r��f���� �r�� �

X
i

V�i�r��f���
i �r��

i
dr�

C
���
� � Copt

� � �m�

$h�k�

Z �

�

freg� �r��
h
V���r

��f
���
� �r�� �

X
i

V�i�r
��f

���
i �r��

i
dr� �III	����

The result is obtained if C
���
� and all the C

���
i are less than a given �	

D�� nth order iteration

For � � i � N

f
�n�
i �r� � �

Z �

�

Gi�r�r��
h
Vi�f�n���

� �r�� �

i��X
j
�

Vij�r��f�n�j �r�� �
NX
j
i

Vij�r��f�n���
j �r��

i
dr�

C
�n�
i � � �mi

$h�ki

Z �

�
fregi �r��

h
Vi��r

��f
�n���
� �r�� �

i��X
j
�

Vij�r
��f

�n�
j �r��

�
NX
j
i

Vij�r
��f �n���j �r��

i
dr� �III	����

and for i�


f
�n�
� �r� � freg� �r� �

Z �

�

G��r�r��
h
V���r��f�n���

� �r�� �
NX
j
�

V�jf�n�j �r��
i
dr�

C
�n�
� � Copt

� � �m�

$h�k�

Z �

�

freg� �r��
h
V���r

��f
�n���
� �r�� �

NX
j
�

V�jf
�n�
j �r��

i
dr� �III	����

The result is obtained if jC�n�
� �C

�n���
� j and all the jC�n�

i � C
�n���
i j are less than a given �	
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D�� Convergence and pad�e approximation

This method of iteration can give divergent results	 The convergence can be accelerated and the
possibility of divergence avoided by Pad�e approximants	

%From the fourth iteration� if convergence is not obtained for the current equation but was obtained

for all the previous equations in this iteration� the results C
�m�
i for � � m � n are considered as �

C
�m�
i �

mX
j
�

aji

j for 
 � � �III	����

even if each iteration do not correspond to a de
nite power of the 
 introduced in the equation	

The polynomial of coe cients aji is replaced by the ratio of two polynomials P �
��Q�
� with the

same number of coe cients	 This ratio is obtained as a continued fraction in such a way that a new C
�n�
i

adds only a new coe cient	 If the continued fraction evaluated with all the coe cients and the continued
fraction evaluated without the last coe cient di�er by less than �� their value is assumed to be the result	

The smallest or the few smallest zeroes of the denominator polynomial Q�
� are the same for all the
equations	 There are complex values	 If the coupling of the equations is multiplied by one of these zeroes�
the coe cient of the outgoing wave of all the equations blows up	 For this value� the set of coupled
equations has a solution which is purely outgoing in all the channel� in an exact power expansion with
respect to the coupling �that is without the sequential procedure� it is aWeinberg state	 If 
j are the

Weinberg eigenvalues and xji the amplitudes of the outgoing waves with a proper normalisation �

Ci�
� �
X
j

xji
�


j � 

C
�n�
i �

X
j

xji

j

nX
m
�

�


j
m �III	����

If 
j is small� each iteration gives the result of last one multiplied by ��
j	 Iterations are stopped if these
results become too large� or by a maximum number of iterations	

The minimum value of j
jj is the convergence radius of the Taylor expansion	 In practice� Pad�e
approximants give good results up to � times the radius of convergence � that is for ��
iterations� results as large as ���
	 Indications on the actions of the code were given in section �I	A	�	b�	





Chapter IV

Long range interactions

The description of this topic in Ref	 ��� applies only to ECIS
�	 From the code ECIS��� this method allows
to use non relativistic Coulomb functions as already stated in Ref	 ��� which needs no generalisation for
that	 The Coulomb excitation in the Dirac formalism needed a drastic change of formulae	 The use of
such methods for the Coulomb spin�orbit interaction of chargeless particles needs a completely di�erent
calculation� even in Schr
odinger formalism	 Note that� in the Schr
odinger formalism� the integral related
to Coulomb spin�orbit interaction cannot be computed by this method when the sum of the two angular
momenta is equal to the angular momentum transfer� the code neglect this correction	

A Long range contributions

For large values of r with deformed Coulomb interaction� the coupling between equations is �

�m

$h�
Vif �r� �

X
�


�ifr
���� �IV	��

where 
�if is the geometrical coe cient G
�
if multiplied by some constant	

A�� Iterations in the Schr	odinger formalism

In Equ	 �III	���� and �III	���� describing the nth iteration of ECIS� for su ciently large values of r� we
can assume that �

fregi �r� � Fli��i� kir� �Copt
i

�
Gli ��i� kir� � iFli ��i� kir�

�
f irri �r� � Gli��i� kir� � iFli ��i� kir�

f
�n�
i �r� � Fli��i� kir��i� �C

�n�
i

�
Gli��i� kir� � iFli ��i� kir�

�
�IV	��

The long range contribution can be expressed with the integrals �

M �H�K� kR�����lilf
�

Z �

kR

�

	���
Hli��i� �	�Klf ��f � �

��	�d	 �IV	��

with k �
p
kikf � � �

p
ki�kf and H and K are the regular or the irregular Coulomb function or any

combination of them	 We shall also use �

V �H�K�i�j �
X
�


�i�j
k
�

ki
M �H�K� kR�����lilf

�IV	��
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The equations �III	���� and �III	���� can be replaced by �
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where m � n if j � i and m � n� � if j � i� the equation � being the last one	 The corrections A are �

A � ki
X
j

V �H���� F �i�j�j� � C
�m�
j V �H����H����i�j �IV	��

and the corrections B are �

B � ki
X
j

�
V �F� F �i�j � Copt

i V �H���� F �i�j
�
�j�

�C
�m�
j

�
V �F�H����i�j �Copt

i V �H����H����
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�IV	��

where H���
li
��i� kir� � Gli ��i� kir� � iFli ��i� kir� is the Coulomb outgoing function	

All the integrals involved are for natural parity� that is with li � lf � 
 even	

A�� Usual coupled equations

For n equations and with F and G replaced by corrected values� the system of Equ	 �III	��� cannot be
solved as a system of n linear equations similar to Equ	 �III	���	 The linear system of equation would
be of dimension �n	 However� one can obtain the results solving successively two systems of n linear
equations	

The 
rst step is to obtain a C�matrix by matching with the �uncorrected� Coulomb functions	 In
this step the values of Fli ��i�R� h� and Gli��i�R� h� are obtained taking into account the long range
term �IV	�� in the three Numerov integration steps and in Equ	 �III	���	 The method to use is described
by Equ	 �III	��� to �III	���	 This is equivalent to the matching with Coulomb function and its derivative
at the point R	

In the second step� the Equ	 �III	��� at � is rewritten at the matching point R	 The Coulomb
functions at� are replaced by the values which they get at the point R� taking into account the coupling
given by Equ	 �IV	��� that is for equation j �

Fli ��i��� 	 Flj ��j� kjR�
n
�ij �M �H���� F �lj�liFlj ��j � kjR�

o
� V �F� F �lj�liH

���
lj
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H
���
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���
lj
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n
�ij �M �F�H����lj �liH

���
lj
��j� kjR�

o
� V �H����H����lj �liFlj ��j� kjR�
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In the result� replacing �

Fli��i� kiR�	�
X
j

C
i

j H
�����j� kjR� �IV	��

one obtains the system of linear equations �X
l

�
�j�l � V �F�H����jl �

X
k

C
j
kV �H

����H����kl
�
Cl
i � �V �F� F �ji�

X
k

C
j
k

�
�ki � V �H���� F �ki

�
�IV	���

which is also of dimension n	

The integrals involved are the same as with iterations	
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A�� Coulomb spin
orbit interaction

For this interaction� instead of Equ	 �IV	��� the coupling between two equations is �

�m

$h�
Vif �r� �

X
�


�if
�
x�r

���� � x�
�

r

d

dr
�r����� � x�r

���� d

dr

�

�
X
�


�if
�fx� � �
 � ��x�gr���� � x�r

���� d

dr

�
�IV	���

where x�� x� and x� are the three coe cients which appear in Equ	 �III	��� and �III	��� in front of the
three form factors	 The coe cient x� implies a derivation of the wave function which is a pure Coulomb
function	 One can use one of the two formulae ��
��

��

l�
	 �
� Fl����� 	� �

� d

d	
�
l

	
�
�

l

�
Fl��� 	��

�
��

��

l�
	 �
� Fl��� 	� �

�
� d

d	
�
l

	
�
�

l

�
Fl����� 	�� �IV	���

to express the derivative with the Coulomb function itself and another Coulomb function with the angular
momentum increased by one unit �it could be decreased�	 The result involves three terms �

�	 with the same angular momentum and a factor r�� which can be summed with the contributions
of x� and x��

�	 with the same angular momentum and without power of r�

�	 with angular momentum increased by one unit	

So� three integrals are needed for spin�orbit interaction� one with r���� and two with r���	

The integrals involved are of natural parity and also of non natural parity� with li � lf � 
 odd	

A�� Dirac formalism

In this formalism� the multipoles of the scalar and the vector potentials act only between larges com�
ponents or small components whereas the multipoles of a tensor potential acts between large and small
components	

For the Coulomb potential� which is a vector potential� the geometrical coe cient for large components
is the same as the geometrical coe cient between small components	 However� there are quite di�erent
for a magnetic multipole excitation �in particular� one or the other can vanish�	 The coe cients between
large and small components of equations i and j are multiplied by the normalisation factors �

NF �
�

�

h
�� �

Ei

m
��� �

Ej

m
�
i �
�

� NG �
�

�

h
��� Ei

m
���� Ej

m
�
i
�

� �IV	���

respectively	 The two integrals are computed independently because they involve di�erent quantum
numbers	

The tensor potential involve no derivative of the wave function	 The two integrals are computed
independently� with normalisations similar to those of Equ	 �IV	���	

All the integral involved are of natural parity except for relativistic corrections of uncoupled equations	

In the Dirac formalism and in the iteration method for the Schr
odinger formalism� the integrals M
of Equ	 �IV	�� must be corrected for 
nite step errors	 For a step h� taking into account the numerical
integration described by Equ	 �III	��� and �III	����� the result is too large � in a next step between R
and R � h� described by Equ	 �III	���� the contribution at R has been already taken into account	 The
value needed is �

M�H�K� kR�����lilf
�

Z �

kR

�

	���
Hli��i� �	�Klf ��f � �

��	�d	� h
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�

R���
Hli ��i� �R�Klf ��f � �

��R�

�h
�

��

d

dr

n �

R���
Hli��i� �R�Klf ��f � �

��R�
o

�IV	���

On the contrary� with usual coupled equations� no 
nite step correction is needed	
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A�� Asymptotic J
region

Using the integrals de
ned by Equ	 �IV	��� we divided the r�space into �

� r � R� the coupled channels region in which a numerical integration of the coupled equations is
needed�

� r � R� a region in which only DWBA results are used	

When the total angular momentum J of the system increases� the result of the numerical integrals
become smaller and smaller	 For some critical value Jm� it does no more contribute� but the integrals of
Equ	 �IV	�� are still important because their mean contribution comes from r �� R� the computation
must be continued up to some J � JM 	 So� in the J�space� there are also two regions �

� J � Jm� the coupled channels region in which a numerical integration of the coupled equations is
needed�

� Jm � J � JM � an asymptotic region in which the optical solutions of the diagonal equations are
pure regular Coulomb functions	

In the asymptotic region� the integrals can be extended to the origin� keeping the expression given in
Equ	 �IV	�� because the wave functions are very small in the interior region	 The result is �

C
���
i �

X
�


�i�M �F� F� ��
����
i�� �IV	���

These integrals are real	 This 
rst order does not respect unitarity	 However� the coupled channel problem
can be formulated di�erently� in terms of the reactance matrixK� which is the coe cient of the irregular
function �instead of the outgoing function� in the solution� with the normalised regular function in one
channel only	 The matrix C is obtained� solving a linear system of equation �

Kif �
X
�


�if M �F� F� ��
����
i�f � C �

K

�� iK
�IV	���

The value of JM can be very large	 Valuable results can be obtained with a smaller value of JM � using
factorisation of ��� cos �� in the amplitudes	 Details will be given in section �VII	C	��	

B Recurrence relations

In the Schr
odinger formalism� the product of the wave number ki and the Coulomb parameter �i of a
channel i is a constant Ci � ki�i independent of the channel i	 All the considerations of Ref	 ��� are based
on this properties� the same restrictions are present also in the previous studies of the integrals from � to
in
nity in � ���� BIEDENHARN� L	 C	� McHALE� J	� L	 and THALER� R	� M	� 	Quantum calculation of
Coulomb excitation� I
� Phys	 Rev	 �

 ������ page ��� as well in � ���� ALDER� K	� BOHR� A	� HUUS�
T	� MOTTELSON� B	 and WINTHER� A	� 	Study of Nuclear Structure by Electromagnetic Excitation
with Accelerated Ions
� Rev	 Mod	 Phys	 
� ������ page ���	 In the Dirac formalism� the products �iki
are proportional to the total energy and all the considerations of these references have to be extended	
However� the approach is quite similar	

B�� General recurrence

In the Dirac phenomenology� the product �iki is proportional to the total energy of the incident particle�
which varies from level to level	 Therefore� the formula ���� of Ref	 ���� which was a generalisation to
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integrals from R to� with regular or irregular Coulomb functions of formula ��	B	��� of Ref	 ���� �which
was written for integrals from � to � involving only regular Coulomb functions� has to be replaced by �

x��
jlf � � � i�f j
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� x��
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Hli��i� � kR� Klf ��f � �

��kR�

��x� � x� � x� � x��

Z �

kR

�

	���

h d
d	
Hli��i� � 	�

i
Klf ��f � �

��	�d	 �IV	���

where � has been given below Equ	 �IV	�� and x�� x�� x� and x� are independent parameters	 Independent
recurrence relations can be obtained by using various values of the x�s such that �

x� � x� � x� � x� � � �IV	���

This formula can be obtained from the Equ	 �IV	���	

Other recurrence relations can be obtained by combining those obtained from Equ	 �IV	��� with
peculiar choices of the x�s	

Of particular interest are the recurrence relations between integrals with the same values
for 
 and the di�erence q � lf � li	 There are �

� three terms relations for 
 � q � �

� four terms relations for 
 � jqj � �
� 
ve terms relations for 
 �� q	

In the non relativistic case� for which �iki � �fkf � with 
 � � and lf � li � �� x� � x� � �� the
coe cient of the 
fth term M �H�K� kR�����Li�lf

vanishes� allowing to express the dipole integral in terms
of two monopole integrals	 As the monopole integrals ful
ll a three terms recurrence relation in all
cases� the dipole integrals with lf � li � � ful
ll also a three terms recurrence relation� but only in the
non�relativistic case	

B�� Stored recurrence

In practice� we are interested in integrals with 
 � �	 The structure of recurrence relation is such that
any of them can be expressed in terms of four other ones	 The simplest approach is to express all of them
through local recurrences in terms of integrals with some 
xed value of 
 and q	 Integrals with the
chosen values for 
 and q will be evaluated beforehand� also by recurrence� with the best
precision possible�

One cannot choose the monopole integrals 
 � q � �� nor the integrals for which 
 � jqj� because
their recurrence involves less than 
ve terms	 Therefore� all the four integrals needed cannot be of one of
these kinds	

For the stored integrals� we choose those with q � � to obtain symmetric expressions for
the local recurrences with respect to the exchange of li and lf and 
 � � for simplicity of
the expressions� Furthermore� the stored integrals used for diagonal terms are the corrections from
non relativistic to relativistic Coulomb functions �for that� they can been obtained with equations much
simpler than those needed in the general case and described below�	
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The 
ve term recurrence relation for 
 � �� q � � is not easy to handle directly	 It can be replaced by
an inhomogeneous three terms recurrence relation involving the monopole integrals with 
 � �� q � � as
inhomogeneous terms	 This is similar to what was obtained for non relativistic corrections in Equ	 ���a�
and ���b� in Ref	 ���� but the inhomogeneous terms 
 � �� q � � used in the non relativistic case have to
be replaced by the monopole integrals because they do not have a three terms recurrence relation in the
relativistic case	

The monopole integrals are given by �

�l � �

�l � �
jl � i�ijjl � i�f jM �H�K� kR���l���l�� �

n
��i�f � l�l � ��

�
�� � ���

	o
M �H�K� kR���l�l

�
�l

�l � �
jl � � � i�ijjl� � � i�f jM �H�K� kR���l���l��

� � l � �
kR

n �
ki
jl � i�f jHl��i� kiR�Kl����f � kfR� �

�

kf
jl � i�ijHl����i� kiR�Kl��f � kfR�

� �

�kR��

h
l��l � �� � �ikf � �fki

i
Hl��i� kiR�Kl��f � kfR�

o
�IV	���

The recurrence which replace formula ���a� of Ref	 ��� is �
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In practice� we introduced �

CX � k�i �
�
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�
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�
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kikf
DT � k�i � k�f �IV	���

The Equ	 �IV	��� is homogeneous in DT � DX and DY � which can be multiplied by a common factor �

� if DX � �� DT � � and DY � �i�f �

� if DX �� � and if DT �� �� DX and DY are divided by DT and DT is replaced by �	
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With these notations� Equ	 �IV	��� is �
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The four integrals M �H�K� kR������ � M �H�K� kR�
��
��� � M �H�K� kR�

��
��� and M �H�K� kR������ are

needed to start the recurrence	 As in � ���� RAWITSCHER� G	 H	 and RASMUSSEN� C	 H	� 	Error
analysis of code AROSA for quantal Coulomb excitation calculations
� Comput	 Phys	 Commun	 ��
������ page ���� they can be obtained by integration of the product of the asymptotic expansions from
the matching point to �	 For the asymptotic expansion� see for example in � ���� ABRAMOVITH� M	
and STEGUN� I	� A	� 	Handbook of Mathematical Functions
 Dover� New�York� ������ page ���	 For
l � � and � � ��� this asymptotic expansion can be used only �see Ref	 ����� for kR � ���� � ���� for
larger values of �� a look on the asymptotic formula shows a quadratic behaviour of the lower radius�
kR � ������ seems to be a safe limit	 To use a smaller matching point than the larger value Rm of
kiRm � ��i�� � ���� kfRm � ��f�� � ��� and kRm � ����i�f � the integral between R and Rm is
computed by �� points Gauss integrations� each Gauss integration being for &kR � ��	 This allows
results for any R whereas the method of Ref	 ���� gives results for a R which increases with angular
momentum	

This procedure is convenient forM �G�G� kR���l�l � which increases quickly with l	 ForM �G�F� kR�
��
l�l

and M �F�G� kR���l�l � which remain of the same order of magnitude when �i and �f are not very di�erent	

On the contrary� M �F� F� kR���l�l � which decreases when l increases� is not given accurately	 The down�
ward recurrence� starting from zero values for the integrals and using the usual procedure of downward
recurrence for the regular Coulomb function of the inhomogeneous terms� give a very accurate value of the
integral from the origin to the matching point� then M �F� F� kR���l�l is obtained by taking the di�erence

with M �F� F� ����l�l � which is needed anyway in the asymptotic region	

B�� Local recurrence

Due to the complexity of the expressions in the general case� when �ikj �� �jki� the expression of the
integrals had to be changed with respect to what was described in Ref	 ���	 Any integral is expressed as �
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� ��Hn��i� kiR�Kn��f � kfR� � ��Hn��i� kiR�Kn����f � kfR�
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with �

n � Integer part of
�

�
�li � lf � 
� �� �IV	���

If li and lj are decreased by the same amount down to the 
rst values for which the integral from � to
� converges� the value of n is �	 The four coe cients 
 depend upon 
� q � lf � li� n� the Coulomb
parameters and the wave numbers� the coe cients � depend upon the same parameters and also upon
the radius R	

Using � �
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�f��i �� � �� in the non relativistic case� Equ	 �IV	��� can be written �
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��� ������r�dr �

�X
i
�

�i�R�Pi�R� �IV	���

with �

P��R� � Hn��
����� �r�Kn��

���� ��r�

P��R� � Hn��
����� �r�Kn����

���� ��r�

P��R� � Hn����
����� �r�Kn��

���� ��r�

P��R� � Hn����
����� �r�Kn����

���� ��r� �IV	���

Using the recurrence relation of the Coulomb functions �

��l � ��
h
� �

l�l � ��

	

i
Fl��� 	� � ljl � � � i�jFl����� 	� � �l � ��jl � i�jFl����� 	� �IV	���

to express all the H with Hn and Hn�� and all the K with Kn and Kn�� �the power of 	
�� always

increases�� we obtain � Z �

R

�X
i
�

Ci�r�Pi�r�dr �
�X
i
�

�i�R�Pi�R� �IV	���

where the Ci�r� are known polynomials of r
�� and the �i�R� unknown polynomials in R

��� that is �

Ci�r� �
NX
n
�

C
�n�
i r�n� �i�R� �

N��X
n
�

�
�n�
i R�n �IV	���

Di�erentiating with respect to R� we get �

NX
n
�

C
�n�
i R�n �

N��X
n
�

h
Pi�n��

�n�
i R�n�� �

�X
j
�

Qi�j�
�n�
j R�n

i
�IV	���

with the diagonal matrix �

P �n� �

��������
n � �l � � � � �

� n � �
� � n �
� � � n� �l � �

��������
� �IV	���
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and with the diagonal matrix �

Q �
�

�l � �

��������������

��i�� �f�
�� �jl � � � i�f j��� �jl � � � i�ij� �

jl � � � �f j��� �f�
�� � �i� � �jl � � � i�ij�

jl � � � i�ij� � �i�� �f�
�� �jl � � � �f j���

� jl � � � i�ij� jl � � � �f j��� �i�� �f�
��

��������������
� �IV	���

If the highest power of r�� in the Ci�r� is m� Equ	 �IV	��� allows to obtain 
rst the coe cients of R�m��

in the �i and� then� those of all the lower degree	 As �

C� includes ��� � � �r� � � � � �r � � � ��
� � 
� � � � �
���r
�

C� includes ��� � � �r � � � ��
� � �� � � �r � � � ��
���r
�

C� includes ��� � � �r � � � ��
� � �� � � �r � � � ��
���r�

C� includes �� � �
� � 
� � �� � � �r
� � � � � �r � � � ��
���r

�

the coe cients ��n�i for n � � do not depends on the 
�s	 The Equ	 �IV	��� written for n � � and zero

values for the �
���
i is a linear system of equations giving the 
�s	 The coe cients �

���
i � which are in this

equation� involve a speci
c dependence of li� lj and 
 and a very simple dependence upon 
� and 
�	

The dipoles integral are slightly di�erent � in particular� when �i � �j and ki � kj� a di�erent formula
has to be used to avoid a division by zero	

All the expressions are simpler in the non�relativistic case� when X � �iki��jkj vanishes	 They have
been separated into a �non�relativistic� part� which is their value for X � �� and a �relativistic� part� in
which X can be factorised	

The linear system of equations expressing the 
 as functions of the �
���
i can be inverted	 The co�

e cients of the inverse system are quite complex when X do not vanish	 The coe cients 
� and 
�
depends only on �

���
� and �

���
� respectively� the coe cients 
� and 
� depends on all the ����	 A close

expression of the coe cients 
 can be obtained only when some � vanish� that is for lj � li � �� 
 � �
and li � lj � 
 � �	 The subroutine CORA stores the values of the ���� for the cases of interest and compute
the coe cients 
	 It do not seem that this increase of intermediate computations decrease too much the
precision of the results	

All these coe cients have been obtained up to 
 � � for even parity integrals �li� lj �
 even� as well
as odd parity integrals �li � lj � 
 odd�	 For 
 � �� only the even parity integrals with X � � have been
obtained except for jli � lj j � �	 These last results allows the computation of 
 � � for the Coulomb
spin�orbit in the Schr
odinger formalism	 However� these results involve around ���� cards and their use
in ECIS is not absolutely needed	 In ECIS�� there are only the complete expressions for natural and
unnatural parity up to 
 � � and the expressions of natural parity integrals for 
 � � with X � �� this
insure the use of Coulomb corrections up to 
 � � for the central potential in any case� up to 
 � � for
the Coulomb spin�orbit in Schr
odinger phenomenology and 
 � � in Dirac phenomenology	 In ECIS���
all the results obtained have been introduced� but the di�erence with ECIS�� is on COMMENT cards which
can easily been activated	 In this domain� it is not possible to derive the expressions �by hand�	 They
were obtained using symbolic calculations on computer with AMP ��Algebraic Manipulation Program�� as
described in � ���� DROUFFE� J	�M	� 
AMP Language Reference Manual� Version �
� Note CEA�n������
������	

If ki � kf and �i � �f � �� the matrix Q given by Equ	 �IV	��� is singular of rank �	 If Equ	 �IV	���
is used to compute some ����� only two of them are independent because the coe cients of r�� are �

���
���
� � jl � � � i�j������ � �

���
�

�
� �

�
���
� � �

���
� � �

�
���
� � �

���
� � �

���
���
� � jl � � � i�j������ � �

���
�

�
� � �IV	���
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that is � ����� � �
���
� and � � �

���
� � �

���
� simple function of ����� 	 Consequently� Equ	 �IV	��� holds with


� � 
� � � and the 
rst term of the polynomial expansion of the �i�r� is r
��	 In fact� the 
ve terms

recurrences reduce to three terms recurrence	 This behaviour was used in ECIS
� but has been dropped
since ECIS��	

B�� Integrals from � to �

The integrals from � to � are quite similar to those published in Ref	 ����� in general� the variables
of the generalised hypergeometric functions of two variables depend upon the wave numbers and their
parameters depend upon the Coulomb parameters	 The formula �IIB	���� of Ref	 ����� valid if jli � lf j is
not equal to 
� becomes when ki � kf �

M �F� F� ������li�lf
� �

kf
ki

lf

��ki�
��� exp�

�
�

sinh��
�iX���li�lf��

j*�lf � � � i�f �j
j*�li � � � i�i�j

*��li � ��

*��lf � ��*�li � lf � ��

�F��lf � li � 
� �� lf � � � i�f ��li � i�i� �lf � ����li� ki
kf
X��X�

�� ki
kf

li

��kf �
��� exp�� �

�

sinh��
�i
ki
kf
X���lf�li��

j*�li � � � i�i�j
j*�lf � � � i�f �j

*��lf � ��

*��li � ��*�lf � li � ��

�F��li � lf � 
� �� li � � � i�i��lf � i�f � �li � ����lf ��X� ki
kf
X�

��
�ki � kf ��

�kikf

exp�� �
�

sinh��

j*�li � � � i�i�j
j*�lf � � � i�f �j

��
n *�lf � � � i�f �

*�
� � � i��*�li � � � i�i�
ilf�li���� ��X�i	i �� ki

kf
X��i	f

�F���li � i�i��lf � i�f � li � � � i�i� lf � �� i�f � 
� � � i��X�
ki
kf
X�
o

�IV	���

where �

� � �i � �f X �
ki � kf
�kf

�IV	���

Similarly� the formula �IIB	��� of Ref	 ���� valid for lf � li � 
� becomes �

M �F� F� ������li�li��
� exp�

�

�

j*�li � � � i�i�j
j*�lf � � � i�f �j

� ki
kf

�li
��kf �

���
n j*�
� i��j�

*��
�

�F����
 � �� li � �� i�i� li � � � i�i��
� � � i���
 � �� i��X�X�

��
h
� S X��i� *�lf � �� i�f �*��
 � i��

*�li � � � i�i�

�F���
 � � � i�� lf � �� i�f � li � �� i�i� 
� � � i���
 � � � i��X�X�
io

�IV	���

where �

S � ��� if ��i � �f ��kf � ki� � � and 
 is odd�

S � �� otherwise �IV	���

These formulae holds even if ki � kf � that is X � �� in the 
rst formula� Equ	 �IV	���� only the
highest degree terms of the two generalised hypergeometric functions of two variables F� remain� all the
others vanish� the generalised hypergeometric function F� of the 
rst formula and one of the two F� of
the Equ	 �IV	��� reduce to unity� the second F� of the Equ	 �IV	��� disappears	 If �i � �f � careful
limits of the expressions have to be taken� with derivative of gamma function inserted in each term of
the generalised hypergeometric series	 The special case �i � �f � � will be discussed in next section	
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The monopole integrals are given by a di�erent formula� corresponding to formula �IIB	��� of Ref	
���� �

M �F� F� ����l�l �
h �kikf
ki � kf

il�� �

sinh��j*�l � � � i�i�jj*�l� � � i�f �j
�
n�kf � ki

ki � kf

	i� *�l � � � i�i�*�l � �� i�f �

*�� � i��
�F��l � �� i�f � l � � � i�i� � � i��

hkf � ki
ki � kf

i�o
�IV	���

This formula do not hold if ki � kf and has to be modi
ed if �i � �f but not zero� for �i � �f � �� see
below	 All these formulae and their limits have been used to check the Coulomb integrals	

Equ	 �IV	��� and �IV	��� are used to obtain the integrals for l � �� l � � and 
 � �� 
 � �	 All
the other are obtained with the recurrence equations Equ	 �IV	��� and �IV	��� �without the products of
Coulomb functions�	 In fact� as downward recurrence is used to obtain stored integrals� only the integrals
for l � � are necessary	 Any integral is obtain by Equ	 �IV	���� without the ��s	

If �i � �f and ki � kf � the stored integrals are �

M �F� F� ����l�l �
�

�l � �

n
� � �

cosh��

sinh��
� �
�
�

lX
n
�

��

n� � ��

o
�IV	���

which is used instead of the recurrence relation	

B�� Coulomb corrections for chargeless particles

If there is no charge� the recurrence relations do not relate natural parity and unnatural parity integral�
that is those for which li � lj � 
 is even with those for which li � lj � 
 is odd	 The Equ	 �IV	���
becomes �

x��M �H�K� kR�
����
li�lf��

� x��
��M �H�K� kR�����li���lf

� x��
��M �H�K� kR�����li���lf

�x��M �H�K� kR�����li�lf��
� �x��lf � �� � x�li � x��li � �� � x��lf � 
 � ��

�
M �H�K� kR�����li�lf

� �x� � x��
�

�kR����
Hli ��� �kR� Klf ��� �

��kR�

��x� � x� � x� � x��

Z �

kR

�

	���
� d
d	
Hli��� �	�

�
Klf ��� �

��	�d	 �IV	���

The integrals needed are all of natural parity	 Therefore� it is no more possible to compute them from
stored integrals with li � lf and 
 � �	 They have to be computed from stored integrals with li � lf and

 � �	 The recurrence relation is then �

��l � ��M �H�K� kR���l���l�� � ��l � ����� � ����M �H�K� kR���l�l � ��l � ��M �H�K� kR�
��
l���l��

�
�

�kR��

h
Hl���kiR�Kl���kfR��Hl���kiR�Kl���kfR�

i
�IV	���

The integral from � to �� when ki � kf � is given by �

M �H�K� kR�����li�lf
�

�

����
k
lf
f

k
lf����
i

*��� �li � lf � 
 � ���*�
�

*��� �li � lf � 
� ���*��� �li � lf � 
� ���*��� �li � lf � 
� ���

��F�
��
�
�li � lf � 
� ���

�

�
�li � lf � 
 � ��� �� 
� �� �kf

ki

	��
�IV	���

This expression has to be used with 
 � � and li � lf � � to start the recurrence� a second value is not
needed because the recurrence can be started by assuming the product of the angular momentum with
the integral to be �

� for li � lf � �	 When ki � kf � the integrals are simply �

M �H�K� kR� �
�

�li�li � ��
� �IV	���
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To express any integral with the stored integrals� the coe cients described above in the general case
are such that 
� � 
� � �	 The dipole integral cannot be expressed if ki � kf � but these integrals
are used only for the Coulomb spin�orbit and it is the quadrupole integral which is needed for a dipole
excitation	 All the coe cients up to 
 � � have been obtained� but only those up to 
 � � are in ECIS��
and all are on COMMENT cards in ECIS��	

C Coulomb excitations

The Coulomb potential as given by Equ	 �III	��� is proportional to the product of charges of the particle
and the target	 In fact� it is the monopole folding of a charge distribution with the interaction ��jr��r�j	
This charge distribution can be �

� a sphere with constant density�

� a plain Woods�Saxon distribution�

� a Woods�Saxon distribution multiplies by � � cr��

of which the volume integral is the product of charges	

C�� Coulomb deformation and heavy
ion option

This excitation is de
ned by the reduced electric transition probability B�E
� which is related to the
Coulomb deformation �c by �

B�E
� �
� �
��

Ze�cR
����
c

��
�IV	���

where Z is the charge of the excited nucleus �see for example in � ���� HODGSON� P	� E	� 	Nucleon
Heavy�Ion Reactions
� Clarendon Press Oxford ������ page ��� or in � ���� SATCHLER� G	� R	� 	Direct
Nuclear Reactions
� 	International series of monographs on physics ��
� Clarendon Press Oxford� Oxford
University Press New�York ������ page ���	 This relation do not give the sign of the deformation	 A
transition distribution is obtained with the deformation length �cR�

c and the transition form factor is the
result of multipolarity 
 obtained in the folding with ��jr�� r�j	
In the usual notations� R�

c � RcA
��� where Rc is the �reduced Coulomb radius� and A is the mass

of the target	 In the �heavy�ion option�� for a target of mass A and a particle of mass a� the radius R�

is given in terms of the reduced radius R by �

R� � R
�
A��� � a���

	
�IV	���

and� as it is the deformation length which matters� the deformations are replaced by �

�� �
A���

A��� � a���
�� �IV	���

except for the Coulomb deformations �central and spin�orbit� which are replaced by �

��c �
� A���

A��� � a���

��
�c� �IV	���

for a multipole 
	 However� if LO����	TRUE	� which means that deformations lengths are read instead of
deformations� only Coulomb deformations are changed with a power 
 � � instead of 
 in Equ	 �IV	���	
The introduction of magnetic multipole Coulomb excitation followed a question of Mme I	 LINK from

Strasbourg and was subject of discussions with Dr M	 MERMAZ at Saclay and J	 KIENER at Orsay	
For relations between electric and magnetic excitation� we follow Ref	 ����	



C� COULOMB EXCITATIONS ��

C�� Electric multipole excitation

An electric multipole transition B�E
� is de
ned as an angular momentum transfer &L � 
� a spin
transfer �&S � � and J transfer �&J � �
 but can as well being de
ned with the same angular transfer�
a spin transfer �&S � �
 and a J transfer �&J � �	 In Ref	 ����� formulae �II B	��� and �II B	��� gives
for an electric excitation �

d�E� �
�Z�e
$hvi

�� �kikf
��
� ���

B�E
�
X
�

j � �kf j r����p Y����p� �p�� j�ki � j�d(� �IV	���

in the exterior region	 This interaction needs geometrical factors given by Equ	 �III	��� and �III	���	

C�� Magnetic multipole excitation

A magnetic multipole transition B�M
� is de
ned as an angular momentum transfer &L � 
� �� a spin
transfer �&S � � and J transfer �&J � �
	 It is de
ned in the code by �&S � �� but �&S � �� in
the input	 The use of &L � 
� � is necessary to go through the parity veri
cations	

In Ref	 ����� formulae �II B	��� and �II B	��� gives for a magnetic excitation �

d�M� �
�Z�e
$hc

�� vf
vi

�


���
 � ���
B�M
�

X
�

j � �kf j�lp��rp�r
����
p Y����p� �p�� j�ki � j�d(� �IV	���

in the exterior region	 The ratio of a magnetic excitation 
� � to an electric excitation 
 given by Equ	
�IV	��� is �

d�M���

d�E�
�

vivf
kikfc�

��
� ���

�
� �����
 � ���
B�M
 � ��
B�E
�

P
� j � �kf j�lp��rp�r��p Y������p� �p�� j�ki � j�d(P

� j � �kf j r����p Y����p� �p�� j�ki � j�d( �

�IV	���
that is the product of a coe cient of the potentials R�

p such that �

Rp �
$h

mc

� ��
 � ���

�
 � �����
� ���
� �

�

�B�M
 � ��
B�E
�

� �

�

�IV	���

obtained using �
vi
ki
�

vf
kf
�
$h

m
�IV	���

and a ratio R�
g such that �

R�
g �

P
� j � �kf j�lp��rp�r

��
p Y������p� �p�� j�kp � j�d(P

� j � �kf j r����p Y����p� �p�� j�kp � j�d( �IV	���

The coe cient Rp is the product of three terms �

Rp � Rp�Rp�Rp� � Rp� �
�B�M
 � ��

B�E
�

� �

�

� Rp� �
$h

mc
� Rp� �

� ��
 � ���

�
 � �����
� ���
� �

�

�IV	���
In practice �

� the factor Rp� will be taken into account in the reduced nuclear matrix element multiplying by it
the reduced nuclear matrix element of the electric transition to obtain the reduced nuclear matrix
element of the magnetic transition�

� the factor Rp� will be taken into account by multiplying by it a normalised Coulomb transition
form factor of an electric excitation to obtain the magnetic transition form factor�
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� the factor Rp� will be factorised with Rg for convenience	

For the coe cient Rg� the gradient acting on r��Y����r� generates only terms in r����Y�������r�	 So�
in the exterior region� the form factors of a magnetic excitation B�M
��� is the same as the form factor
of an electric excitation B�E
�	 As the interior region has no importance in this case� we can use for
the magnetic transition form factor a Coulomb electric transition form factor multiplied by the ratio Rp�

given in Equ	 �IV	���	 Between partial waves jli � and jlf �� the ratio of a magnetic multipole excitation
B�M
 � �� to an electric multipole excitation B�E
� is �

� ilf Ylfmf
��� �� j i��l��r�r��Y������� ��� j iliYlimi

��� �� �

� ilf Ylfmf
��� �� j i�r����Y����� �� j iliYlimi
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using �

lf
�

li




� �
li

�
� ���li�lf�� �

�

h�lf � li � 
 � ���lf � li � 
� ���lf � li � 
��li � lf � 
�
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� ��
��
� ��
i�
�

�IV	���

and taking into account that li � lf � 
 is even	 This formula agrees with �II B	��� of Ref	 ���� if �li is
replaced by ��li � �� in it	

The ratio of the couplings between a state j�lis�jiIiJ � and a state j�lfs�jf IfJ � is �
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that is Equ	 �III	��� written with S � �� It � L � 
 but with L � 
 � � instead of L � 
 in the �j and
the �j coe cients� multiplied by the factor written in the 
rst line of Equ	 �IV	���	

For an excitation �� � ��� the relative values of the coe cient el of the electric transition and ma
of the magnetic one are �

J � li � lf el � ��J ma � J
J � li � lf � � el � � ma � �
J � li � �� lf � li el � � ma � J
J � li � �� lf � li � � el � � ma � �

�IV	���

C�� Magnetic reduced matrix elements

The reduced matrix element of the magnetic excitation B�M
 � �� is the one of the electric excitation
B�E
� multiplied by the ratio Rp� reduced transition probabilities given in Equ	 �IV	���	 To do so� they
should be expressed in compatible units �see ���� SKORKA� S	� J%� HERTEL� J	 and RETZ�SCHMIDT�
T	� W	� 	Compilation of electromagnetic transition rates in light nuclei �A � ���
� Nuclear Data Sheet
A
 ������ page ����	 Usually� the reduced electric probabilities B�El� are given in units e�fm�l and the
reduced magnetic probabilities B�Ml� in units ���fm

�l�� � the value of B�Ml� must be multiplied by
	����� to obtain it in units e�fm�	



Chapter V

Excitation of particle and target

We consider the scattering of �Be on ��Ni to have integer values of the masses at the power one third	
We use the rotational model with a positive deformation for ��Ni and a negative deformation for �Be	
The following test case �
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describes the excitation of a �� state in ��Ni at � MeV	 The computation is limited to � J�values because
the output is very detailed� the coe cients of each form�factor for all sets of equations are printed
�LO����	TRUE	� to compare one test with the others	 The coulomb potential has been suppressed to
get signi
cant results	 The usual coupled equations �LO�����	TRUE	� with Schmidt�s orthogonalisation
�LO�����	TRUE	� are used for more precision	

This Chapter is the transcription of the similar study in �Notes on ECIS��� which was starting with �

�BE� � NI�� EXCITATION OF NI�� � � � �ECIS
��
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The second cards �� � and � are changed� the input of deformations is� di�erent and there are two more
potentials	 The new input is the same for ECIS��� but there will be di�erences between ECIS�� and
ECIS�� from the �th example	

A Excitation of the particle

A�� Interchange particle
target

The excitation of a �� state at Mev in �Be can be described by interchanging particle and target and
choosing a Laboratory energy such that the Center of Mass energy is the same as in the previous case �

�BE� � NI�� EXCITATION OF BE� � � �
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In this case� the result would be the same as in the test case �" � "�� if �� � �� had been used instead of
�� � ���	

A�� Use of external potentials

However� the test case �" � "� can be done with external potentials� using LO�
��	TRUE	 �

�BE� � NI�� EXCITATION OF NI�� 	 EXTERNAL POTENTIALS � � �

�TFFFFFTFFFFTFFFTFFFFTFFFFFFFFFFFFFFFFFFFFFFFFFFTFF

�TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

� � �

�	�� �
	



A� EXCITATION OF THE PARTICLE ��

� �
	 �	 ��	 
	

��	 �	

��	 �	 �
�	

� � � 


� � � �

� � � 
 
 ��	













� � � �

� � � 
 
 �	������������

� � � 
 
 �	������������

� � � � � ��

��
	 �	 	�

� 	�

� � � � � ��

��
	 �	 	�

� 	�

� � � � ��

�

� � � � ��

�

� � � 
 ��

�
	 �	

� � � � � � ��

��
	 �	 	�

� 	�

� � � � � � ��

��
	 �	 	�

� 	�

� � � � � ��

�

� � � � � ��

�

� � � � � � ��

��
	 �	 	�

� 	�

� � � � � � ��

��
	 �	 	�

� 	�

� � � � � ��

�

� � � � � ��

�

�FIN

and the test case �" � "� can be done by changing only the energy in the laboratory system and the sign
of the deformation and exchanging the masses �

�BE� � NI�� EXCITATION OF BE�	 EXTERNAL POTENTIALS � � �

�TFFFFFTFFFFTFFFTFFFFTFFFFFFFFFFFFFFFFFFFFFFFFFFTFF

�TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

� � �

�	�� �
	

� �
	 �	 ��	 
	

��	 �	

��	 �	 �
�	

� � � 


� � � �



�� CHAPTER V� EXCITATION OF PARTICLE AND TARGET

� � � 
 
 ��	













� � � �

� � � 
 
 �	������������

� � � 
 
 �	������������

� � � � � ��

��
	 �	 	�

� �	�

� � � � � ��

��
	 �	 	�

� �	�

� � � � ��

�

� � � � ��

�

� � � 
 ��

�
	 �	

� � � � � � ��

��
	 �	 	�

� �	�

� � � � � � ��

��
	 �	 	�

� �	�

� � � � � ��

�

� � � � � ��

�

� � � � � � ��

��
	 �	 	�

� �	�

� � � � � � ��

��
	 �	 	�

� �	�

� � � � � ��

�

� � � � � ��

�

�FIN

A�� Change of spin for the particle

The excited state of the particle can be described as the scattering of a spin � particle on a target of spin
� �

�BE� � NI�� EXCITATION OF PARTICLE	EXTERNAL POTENTIALS � � �
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The interaction which was L � �� S � �� J � � in the previous test cases is now L � �� S � �� J � �
and the one which was L � �� S � �� J � � is now L � �� S � �� J � �	 The nuclear reduced matrix
elements ��� are the same as the previous one� but were multiplied by the reduced �spin� matrix element
which is

p
�S � � in ECIS
� and ECIS��	

As the particle of one of the levels does not have a spin zero� a complex spin�orbit
potential and a coulomb spin orbit potential must be read� As this last one is 
� use
LO�����	TRUE	 to avoid long range �Coulomb corrections� for this calculation�

B Excitation of the target and of the particle

We assume that there is no interaction between the level for which the target is excited and the one for
which the particle is excited	 In the rotational model� such an interaction could be only of second order
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and it is smaller than the reorientation terms	 In the second order vibrational model� such an interaction
exists and is identical to the reorientation terms	

This is obtained by adding the test case �" � "� to the test case �" � "�or the test case �" � "�	
However� the deformation of the optical potential of test case �" � "� is positive and the one of the other
test cases is negative	 We shall use an optical potential without deformation	

B�� Excitation of the two nuclei

The three levels involved are the scattering of a spin zero particle on a spin zero target� of the spin zero
particle on a �� state as in test case �" � "�� and of a spin two particle on a spin zero target as in test
case �" � "� �
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The reduced nuclear matrix elements are the ones of test cases �" � "� and �" � "�	 The form factors
��� and ��� are the ones of test case �" � "� �positive deformation� and the form factors ��� and ���are
the ones of the test case �" � "� �negative deformation�	 The nuclear matrix elements ��� have no more
to be multiplied by

p
�S � � in ECIS��	

B�� Two excitations of the target

In this test case� the three levels are the scattering of a spin zero particle on a spin zero target and two
�� states of the target �

�BE� � NI�� TWO EXCITATIONS OF TARGET � 
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�									 SAME CARDS AS IN � � � 												

The reduced nuclear matrix elements are the ones of the pure rotational model and there is no complex
spin�orbit to be read with the optical potential because the particle has spin zero for all the levels	

C Double excitation

The double excitation can be described as the scattering of a particle with spin � on a target with spin
�� or as the sum of levels with spin � to � which are the channel spins	

C�� One level description

The four channels are the scattering of a particle of spin zero and of spin two on a target with a spin
zero and two	 The coupling between the levels where the particle has a 
xed spin and the target the
spins zero and two is the same as in the rotational model for the excitation of a �� state by a particle of
spin zero or two	 The coupling between the channels where the target has a given spin is the same as in
test case �" � "� 	 The reorientation terms of the double excitation level are the sum of the reorientation
terms of the �� of �Be and the �� state state of ��Ni �

�BE� � NI�� DOUBLE EXCITATION DESCRIPTION ONE LEVEL � � �
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�									 SAME CARDS AS IN � � � 												

The reduced nuclear matrix ��� are the usual nuclear matrix elements multiplied by the reduced matrix
element in the spin space of the target

p
�I � �	 This remains in ECIS��� whereas the reduced matrix

elements ��� and ��� had to be multiplied by
p
�S � � in ECIS
� and ECIS��	

C�� Many levels description

The level where the particle and the target are in a �� state can be replaced by 
ve levels with spin ���
��� ��� �� and ��� resulting from the coupling of the spins of the particle and of the target �channel
spin�	 The cross�section will be the sum of the 
ve cross�sections	 The data set is �
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�									 SAME CARDS AS IN � � � 												

The reduced nuclear matrix element in the spins spaces between a target of spin I� and a particle of spin
s�� coupled to J� and a target of spin I� and a particle of spin s�� coupled to J� is �

p
��I � ����S � ����L� ����J� � ����J� � ��

�

�

I� I� I
s� s� S
J� J� L

��
� �V	��

where S � � for the form factors � and �� I � � for the form factors � and �	

� For the reduced nuclear matrix elements ��� above� s� � I � � and the �j coe cient reduces to
�������J� 	

� For the reduced nuclear matrix elements ��� above� I� � S � � and the �j coe cient reduces
to ����	 They are multiplied by a reduced matrix element in the spin space which is

p
�	 However�

they must be multiplied by ���J� �+� 	
� For the reduced nuclear matrix elements ��� above� I� � I� � s� � s� � � and I � � or S � �	
In this reduced nuclear matrix element� the �j coe cient becomes a ��j coe cient and the result
is � p

��L� ����J� � ����J� � ����



J�
�

J�
�

L

�

�
�V	��

with a phase ���J� if S � � and ���J� if I � �	

In fact� the explanation given above is what was given in the �Notes on ECIS
�� and do
not seem accurate� Perhaps� the result is due to the occurence of � for S or I	 Nevertheless� using the
vibrational model with two di�erent phonons �� and with ��� ��� ��� ��� �� ��phonons states �
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� the reduced nuclear matrix elements ��� and ��� are the same if the second phonon is coupled to
the 
rst one �with the other order� the sign of the matrix elements between the ��phonon �� states
and the �� and �� ��phonons states is changed��

� the second order vibrational nuclear matrix elements �

L � � does not exist here�

L � � are multiplied here by
p
����

L � � are multiplied here by �#�	

The excitation of the particle can be replaced by the excitation of a second �� in the target	 The
data set is�

�BE� � NI�� DOUBLE EXCITATION DESCRIPTION FIVE LEVELS � �
 �
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�				 SAME CARDS AS IN � � � WITHOUT SPIN�ORBIT 			

There is a change of sign for the reduced nuclear matrix elements of the second and the third level with
the double excitation states with spins �� and ���due to the reversal of the coupling of the two ��	

D Identical projectile and target

In the description of Input for ECIS��� there is �

� ��� LO���� PROJECTILE�TARGET ANTISYMMETRISATION� VALID ONLY FOR ECIS�
��

� SAME SPIN OF THE PARTICLE AND THE TARGET	 FOR SPIN 
� ECIS�
��

� THE S�MATRIX IS COMPUTED ONLY FOR EVEN TOTAL SPINS	 ECIS�




� FOR SPIN NON 
	� THE AMPLITUDES ARE SYMMETRISED BUT ECIS�

�

� THIS DO NOT CORRECT THE LACK OF SYMMETRY OF THE ECIS�

�

� INTERACTION BETWEEN PARTICLE AND TARGET	 ECIS�

�

which means that the cross�sections are computed correctly� but the reaction cross�sections printed at
the beginning of each angular distribution must be multiplied by two	 The elastic cross�section includes
a symmetrised Coulomb amplitude� but is divided by the Rutherford�s cross�section which is not sym�
metrised	 With usual parameters� the calculation is not correct because it takes into account only the
excitation of the target	 To discuss and explain how to do such a calculation� we consider the dummy
test case of �Be on �Be in the rotational model	 The test cases are limited to J � � and use a reduced
radius of �	� with the heavy ions convention	 The data set for the usual rotational model is �

�BE� � BE� EXCITATION OF BE� TARGET � �� �
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We shall repeat the indications given above for non identical particle and target and we shall give the
simpli
cations which appear when particle and target are identical	
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D�� Excitation of the particle

The same test case can be run with matrix elements and potentials read from cards with LO�
��	TRUE	 �

�BE� � BE� EXCITATION OF BE� 	 EXTERNAL POTENTIALS � �� �
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The same result is obtained if the particle has a spin � in the 
nal state and the target a spin � as in the
test case �" � "� above	 The interaction L � �� S � �� J � � between the ground state and the excited
state is changed into an interaction L � �� S � �� J � �	 It is the same for the reorientation interaction
L � �	 The reorientation interaction L � �� S � �� J � � becomes an interaction L � �� S � �� J � �	
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The nuclear nuclear matrix were multiplied by
p
�S � � for ECIS
� and ECIS�� but not for ECIS��	 As

the excited state has a non�zero spin� a complex spin�orbit potential and a coulomb spin�orbit potential
must be given anf LO���� set 	TRUE		

�BE� � BE� EXCITATION OF BE�	EXCHANGE PARTICLE�TARGET � �� �
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D�� Excitation of the particle and the target

The two channels of excitation of the particle and of the target can be taken into account with the
following data �

�BE� � BE� EXCITATION OF PARTICLE AND TARGET � �� �
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This data set is similar to the test case �" � "� when particle and target are not identical� but there is
only one kind of deformation and the central potential is kept deformed	 The interaction between the
excited state of the target and the excited state of the particle have been neglected	 The result of this
test case is not the same as the one of test cases �" �� "� to �" �� "�	

As above� in test case �" � "�� the two excited states can be attributed to the target	 As they are
degenerated� the waves functions for the two excited states are identical and can be replaced by only one
wave function in the equations after some modi
cations of the nuclear matrix elements	 Data are the
following �

�BE� � BE� SIMPLIFIED EXCIT	 OF PARTICLE AND TARGET � �� �
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The interaction between the ground state and the excited state has been multiplied by
p
� and the

reorientation terms are the sum of the reorientation terms and of the coupling terms between the two
excited states� but we did not consider the interaction between the two excited states in this example	

As there is only one kind of deformations involved� this calculation can be done in the frame�
work of standard rotational model by giving the nuclear matrix elements on card �LO�����	TRUE	�
LO�
��	FALSE	�	 The data set is �

�BE� � BE� SIMPLIFIED EXCIT	 OF PARTICLE AND TARGET � �� �
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which almost as simple as the data set �" �� "�	

D�� Double excitation

The data set for the excitation of the target� the excitation of the particle and the simultaneous excitation
of the target and the particle is obtained from the cases �" �� "� and �" �� "� when there is no interaction
between the excited states	 The nuclear matrix elements for the excitation of the target are independent
of the excitation of particle and the one of the particle are independent of the the excitation of the target �

�BE� � BE� DOUBLE EXCITATION DESCRIPTION ONE LEVEL � �
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where the interaction of the two single excitation channels with the double excitation were not the same
with ECIS
� and ECIS�� but are the same for ECIS��	

One can use the channel spin description of the double excitation as for the test case �" � "� or �"
�� "�	 One can see on the test case �" �� "� that the �� and the �� states are not coupled to the other
states� so they must not be taken into account	 The equivalent to the test case �" � "� is �

�BE� � BE� DOUBLE EXCIT	 DESCRIPTION THREE LEVELS � �� �
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and the equivalent of test case �" �� "� is �
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The absence of the double excitation channels �� and �� reduces the number of equations from �� to
��	 Furthermore� as the two single excitation levels are degenerated and have the same coupling to the
other states� they can be replaced by a single level with reduced matrix elements multiplied by

p
� as for

the test case �" �� "�	 The number of coupled equations decreases to ��	 The data are �

�BE� � BE� DOUBLE EXCIT	 DESCRIPTION THREE LEVELS � �
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�															 SAME CARDS AS IN � �� � 										

This calculation can be done with the usual rotational model by giving the nuclear reduced matrix
elements on cards �LO�����	TRUE	� as in the test case �" �� � � with respect to the �" �� � �	 This was
already possible for the test case test case �" �� "�� but not for the test case �" �� "� which involves
transfers of spin	 The data set is �

�BE� � BE� DOUBLE EXCIT	 DESCRIPTION THREE LEVELS � �� �

�TFFFFFFFFFFTFFTTFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFFTFF

�TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

� � �

�	�� �
	

� �
	 �	 �	 
	

��	 �	

� �	

��	 �	

��	 �	

� � �

��	�

��
	 �	� 	�

��
	 �	� 	�

� �	� 	�

� �	� 	�

� �	� 	�

� �	� 	�

��	�

� �	� 	�

��	 �	 �
	

� � � 


� � � �

� �


 � 
 
 ��	��������� ���

� � � 


� � � 


� � � 


� � � �

� �


 � 
 
 �	������������

� �


 � 
 
 �	������������

� � � �



E� MISCELLANEOUS ��

� �


 � 
 
 �	���������
�� ���

� � � �

� �


 � 
 
 ��	��������� ���

� � � �

� �


 � 
 
 ��	��
������� ���

� � � 


� � � �

� �


 � 
 
 �	
��
����
�� ���

� � � �

� �


 � 
 
 �	
��
����
�� ���

� � � �

� �


 � 
 
 �	�����
����
� ���

� �


 � 
 
 	�����


�
�� ���

� � � �

� �


 � 
 
 	��������
��� ���

� �


 � 
 
 �	
�
�
�
���� ���

� � � �

� �


 � 
 
 �	�
�����
��� ���

� �


 � 
 
 	�����

����� ���
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This is the simplest data set involving the minimumnumber of coupled equations in the rotational model	

The drawback of the use of channel spin is that the programme does not give the cross�section for
double excitation but the 
ve or three cross�sections must be summed to get the result	

E Miscellaneous

Until here� we have considered only the rotational model	 In this case� there are no description of the
interaction between the excited states available in the programme	 We shall give some indications for the
vibrational model and derive the modi
cations of the couplings due to the elimination of identical levels	

E�� Vibrational model

Between heavy ions� the vibrational model can be derived� assuming two distinct phonons� one for each
nuclei	 Assuming two di�erent nuclei of mass � with a �� state at � Mev for one and � Mev for the other�
the test case is �

�BE� � BE� VIBRATIONAL TWO DIFFERENT LEVELS � �� �
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Here� the channel spin is used naturally because the double excitation state appears as 
ve degenerated
two�phonons states with spins ��� ��� ��� �� and ��	

If the two �� are degenerated� the �� and the �� two�phonons states are no more coupled to the
ground�state	 We can skip them and the data set is �

�BE� � BE� VIBRATIONAL TWO IDENTICAL LEVELS � �� �
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One of the �� levels can be eliminated if the nuclear matrix elements with the ground state and with
the double excitation states are multiplied by

p
� and the interaction between these two levels added
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to the reorientation terms	 By adding the nuclear matrix elements related to the same form factor as
printed in the output of test case �" �� "�� one get the test case �

�BE� � BE� VIBRATIONAL SYMMETRISED LEVELS � �� �
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As all the nuclear matrix elements of 
rst order have been multiplied by
p
� � there are noted by ���	

The nuclear matrix elements noted by ��� are sums on the two phonons and those noted by ��� are sums
of couplings and reorientation terms	

In the 
rst order vibrational model it is not needed to give the nuclear matrix elements on cards �
the deformation can be multiplied by

p
� and the double excitation states de
ned with two di�erent

phonons to avoid some symmetrisation factor	 A dummy second phonon can be introduced by de
ning
the double excitation �� state as a two�phonon state with di�erent phonons	 The test case �" �� "� with
LO����	FALSE	 instead of 	TRUE	 can be replaced by �

�BE� � BE� FIRST ORDER VIBRATIONAL ONE LEVEL � �� �
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If double excitation is not taken into account� it is enought to multiply the deformation by
p
� to

generate the couplings in the 
rst order as well as the second order vibrational model	

E�� Justi�cation of the elimination of one level

Let us note by y�� y� �y� and y� the four functions of the ground state� the excited state of the target�
the excited state of the particle and double excitation level� for a given J�value and parity	 In fact there
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are more than one function y�� y� or y�� but the result is the same	 The system of equations is �

� �
d�

dr�
y� � V�y� � V��y� � V��y� � V��y� � V��y�

� �
d�

dr�
y� � V�y� � V��y� � V��y� �W��y� � V��y�

� �
d�

dr�
y� � V�y� � V��y� �W��y� � V��y� � V��y�

� �
d�

dr�
y� � V�y� � V��y� � V��y� � V��y� � V��y� �V	��

where V�� V�� V� are the potentials� V��� V��� V�� the reorientation terms� V��� V���W��� V�� the couplings
between di�erent channels	 Using �

y� �
�p
�
�u� � u��� y� �

�p
�
�u� � u��� �V	��

this system of equations can be written �

� �
d�

dr�
y� � V�y� � V��y� �

p
�V��u� � V��y�

� �
d�

dr�
u� � V�u� �

p
�V��y� � �V�� �W���u� �

p
�V��y�

� �
d�

dr�
y� � V�y� � V��y� �

p
�V��u� � V��y�

� �
d�

dr�
u� � V�u� � �V�� �W���u� �V	��

The last equation is not coupled to the others	 As it is not the ground state� its solution is zero and
y� � y� � u��

p
�	 The C�matrix elements of y� or y� are those of u� divided by

p
�� so the cross�sections

related to y� and y� are the half of the one computed with u�	 The cross�section obtained with u� is the
sum of the excitation of the target and of the particle	 The symmetrisation� skipping odd J�values and
doubling even J�values is independent of the problem of excitation of the target and of the particle	

In the three 
rst equations above� the coupling between u� and y� or y� is the coupling of y� or y�
with y� or y� multiplied by

p
�	 The reorientation terms for u� is V�� � W��� that is the sum of the

reorientation terms of y� or y� and the coupling terms between y� and y�	

In the rotational model� the coupling between the two excited states must be smaller and of the order
of the reorientation terms in second order vibrational model	 They should be obtained by an angular
integration on a multipole	 We have neglected them here	 The use of the multipole of order zero for
the central potential can also be discussed to know if the deformation should be increased �multiplied
by

p
��	 With such an increase� it is not necessary to give the nuclear reduced matrix elements on cards

as far as double excitation is not included	 In the rotational model� it is not equivalent to increase the
deformation or the nuclear matrix element	

In the vibrational model� after the correction introduced in January ���� to the second order coupling
between two one boson states� which makes it equal to the reorientation terms� the particle and target
excitation can be taken into account by multiplying the deformation by

p
� as well in the second order

as in the 
rst order if double excitation is not taken into account	

E�� Summary of test cases

The output of these test cases varies from one to another	 The total output is very large because the
main value is ���� lines by test	

The following test cases must give identical results�

�	 �" � "� and �" � "� excitation of ��Ni	
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�	 �" � "� � �" � "� and �" � "� excitation of �Be	

�	 �" � "� and �" � "� excitation of ��Ni and �Be	

�	 �" � "� � �" � "� and �" �� "� in summing the last 
ve levels of the two last tests to obtain the
last cross�section of the 
rst one	

�	 �" �� "� � �" �� "� and �" �� "� excitation of one �Be	

�	 �" �� "� � �" �� "� and �" �� "� excitation of the two �Be	

�	 �" �� "� � �" �� "� � �" �� "� � �" �� "� and �" �� "� double excitation� but� in some cases� some
cross�sections are the sum of cross�sections obtained in another tests	

�	 �" �� "� second order vibrational model for two �� in �Be	

�	 �" �� "� and �" �� "� double excitation of �Be in second order vibrational model �only these two
examples deal with mutual excitation�	

��	 �" �� "� 
rst order vibrational model for double excitation in �� of �Be	

The nuclear reduced matrix elements are ��	 between the ground state and the excited state and the
two reorientation ones are

p
���� in the rotational model	 The others couplings in the vibrational model

are too various to be listed here	 The signi
cation of the indications between parenthesis is �

��� were multiplied by
p
�S � � with �S in column �� in ECIS
� and ECIS��� without change for

ECIS��	

��� multiplied by
p
��S � ����I � �� where I is the spin of the target in ECIS
� and ECIS��� byp

�I � � in ECIS��	

��� multiplied by a �j coe cient as discussed after test case �" � "�	

��� multiplied by a �j coe cient as discussed after test case �" � "�	

��� multiplied by a �j coe cient as discussed after test case �" � "�	

��� multiplied by
p
� to eliminate one level	

��� summed on equivalent form factors	

��� summation of coupling and reorientation terms	



Chapter VI

Transfer reactions

We consider the most general case of transfer reaction	 We de
ne the approximations which allows to use
the codes ECIS and indicate the input of these codes	 We shall follow � ���� OHMURA� T	� IMANISHI�
B	� ICHIMURA� M	� KAWAI� M	� 	Study of Deuteron Stripping Reaction by Coupled Channel Theory�
I � Variational Formulation and Discussion on Basic Equation �
� Progress of Theor	 Phys	� �� ������
���� � � � II � Properties of Interaction Kernel and Method of Numerical Solution �
� Progress of Theor	
Phys	� �� ������ ���� 	 � � � III � Numerical Results without Non Orthogonality �
� Progress of Theor	
Phys	��� ������ ���� with slightly generalised notations	

Results of ECIS
� have been compared with results of CHUCK and results of ECIS�� with DWUCK	

A Notations

Let us consider a target of mass Ma at the point �Ra and a particle of mass Md which is a bound state
of a �neutron� of mass Mn at the point �Rn and of a �proton� of mass Mp at the point �Rp	 In an other
channel� the �neutron� can be bound to the nucleus of mass Ma� the target is then a nucleus of mass
Mb �Ma �Mn at the point �Rb and the particle is the proton	

A�� Systems of coordinates

There are two systems of Jacobi coordinates after elimination of the centre of mass	 The 
rst� suitable
for the 
rst level is �

�Rad �
Mn

�Rn �Mp
�Rp

Mn �Mp
� �Ra � �R�

�Rnp � �Rp � �Rn� �VI	��

The second one is more suitable for the second level �

�Rbp � �Rp � Mn
�Rn �Ma

�Ra

Ma �Mn
� �r�

�Ran � �Rn � �Ra� �VI	��

Any of these vectors can be expressed in terms of two others	 These relations will be useful	 They
are �

�Rad � �Mn�Ma �Mn �Mp�

Ma�Mn �Mp�
�Rnp �

Ma �Mn

Ma

�Rbp

��
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�
Mp

Mn �Mp

�Rbp �
Mn�Ma �Mn �Mp�

�Ma �Mn��Mn �Mp�
�Ran

� �Ran �
Mp

Mn �Mp

�Rnp�

�Rnp � � Ma�Mn �Mp�

Mn�Ma �Mn �Mp�
�Rad �

�Ma �Mn��Mn �Mp�

Mn�Ma �Mn �Mp�
�Rbp

� �Rbp �M aoverMa �Mn
�Ran

�
Mn �Mp

Mp
��Rad � �Ran�� �VI	��

and �

�Rbp �
Ma

Ma �Mn

�Rad �
Mn�Ma �Mn �Mp

�Ma �Mn��Mn �Mp�
�Rnp

� �Rnp �
Ma

Ma �Mn

�Ran

�
Mn �Mp

Mp

�Rad � Mn�Ma �Mn �Mp�

Mp�Ma �Mn�
�Rap�

�Ran � �Rad � Mp

Mn �Mp

�Rnp

�
Ma �Mn

Ma
��Rbp � �Rnp�

�
�Ma �Mn��Mn �Mp�

Mn�Ma �Mn �Mp�
�Rad � Mp�Ma �Mn�

Mn�Ma �Mn �Mp�
�Rbp� �VI	��

A�� Hamiltonian and wave function

The total Hamiltonian can be written in two alternative forms	 For the deuteron channel �

H � Ha � anp&Rnp jR � Vnp��Rnp� � ad&RjRnp � Van��Ran� � Vap��Rap� �VI	��

For the proton channel �
H � Hb � ap&rjRnp � Vap��Rap� � Vnp��Rnp� �VI	��

with �
Hb � Ha � an&Rnp jr � Van��Ran� �VI	��

Here the a�s are related to the reduced masses �or the reduced energies in the relativistic option�	 They
are�

ad �
Ma �Mn �Mp

�Ma�Mn �Mp�
$h�� anp �

Mn �Mp

�MnMp
$h��

ap �
Ma �Mn �Mp

�Mp�Ma �Mn�
$h�� an �

Ma �Mn

�MaMn
$h�� �VI	��

The intrinsic wave functions of the target A� the target B and the particle in the initial channel are
respectively Fa��x�� Fb��x� �Ran�� Fd��Rnp� where �x are internal coordinates	 They satisfy the equations �

HaFa��x� � EaFa��x��

HbFb��x� �Ran � EbFb��x� �Ran��h
� anp&Rnp � Vnp��Rnp�

i
Fd�Rnp� � EdFd�Rnp�� �VI	��

Furthermore� we assume that �

Fa��x� �Ran� � Fa��x�Fn��Ran��h
� an&Ran � Van��Ran�

i
Fn��Ran�� � EnFn��Ran�� �VI	���



B� SYSTEM OF COUPLED EQUATIONS ��

The total wave function is �

F ��x� �Ran� �Rbp� � Fa��x�Fd��Rnp�F���R� � Fb��x� �Ran�F���r� �VI	���

B System of coupled equations

The system of coupled equations is obtained from �

�H �E� F ��x� �Ran� �Rbp� � � �VI	���

by projection on Fa��x�Fd��Rnp� and on Fb��x� �Ran�	 In the 
rst case� the total expression is integrated on

the variables �x and �Rnp and the result is a function of �Rad � �R	 In the second case� the total expression

is integrated on �x and �Ran and the result is a function of �Rbp � �r	

B�� Tri
dimensional equations

The 
rst equation obtained is �

�ad
�
&R � k�d

	
F���R� � Uad��R�F���R�

�

Z
Fd��Rnp�

h
� ap

�
&rjRan � k�p

	
� Vap��Rap� � Vnp��Rnp�

i
Fn��Ran�F���r�d�Rnp � � �VI	���

with �

Uad��R� �

Z
Fd��Rnp�

h
Van��Ran� � Vap��Rap�

i
Fd��Rnp�d�Rnp �VI	���

The second equation is �

�ap
�
&r � k�p

	
F���r� � Ubp��r�F���r�

�

Z
Fn��Ran�

h
� ap

�
&rjRan � k�p

	
� Vap��Rap� � Vnp��Rnp�

i
Fd��Rnp�F���R�d�Ran � � �VI	���

with �

Ubp��R� �

Z
Fn��Ran�

h
Vnp��Rnp� � Vap��Rap�

i
Fn��Ran�d�Ran �VI	���

In these integro�di�erential equations� all the variables can be expressed in terms of �R and �r� this
introduces the Jacobian of the transformation from �Rad� �Rnp or �Rbp� �Ran to �Rad� �Rbp in front of these
integrals	 These two Jacobians are �

J �
h �Mn �Mp��Ma �Mn�

Mn�Ma �Mn �Mp�

i�
�VI	���

We obtain�

�ad
�
&R � k�d

	
F���R� � Uad��R�F���R� �

Z
K��R��r�F���r�d�r � ��

�ap
�
&r � k�p

	
F���r� � Ubp��r�F���r� �

Z
K��R��r�F���R�d�R � � �VI	���

with �
K��R��r� � J Fd��Rnp�

h
� ap

�
&rjRan � k�p

	
� Vap��Rap� � Vnp��Rnp�

i
Fn��Ran� �VI	���

The derivative term can be replaced by derivation of the bound functions Fd��Rnp� and Fn��Ran� �see Ref	
�����	 The result is �

K��R��r� � J
h
� ap

�
&rjR � k�p

	
� Vap��Rap� � Vnp��Rnp�

i
Fn��Ran�Fd��Rnp� �VI	���
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and can be divided into a non�orthogonality term �

KN ��R��r� � J
h
� ap

�
&rjR � k�p

	
� Ubp��Rbp�

i
Fn��Ran�Fd��Rnp� �VI	���

which do not exist in inelastic scattering and �

KV ��R��r� � J
h
Vap��Rap� � Vnp��Rnp�� Ubp��Rbp�

i
Fn��Ran�Fd��Rnp� �VI	���

which is the only term which remains in DWBA because KN ��R��r� is identical to the homogeneous part of
the equation for F���r�� multiplied by some function	

B�� Radial equations

If the waves functions F���R� and F���r� are expanded into partial waves� a set of radial equations are

obtained	 The transition potential K��R��r� is characterised by �

� the transfer of an angular momentum �L which is the angular momentum �Ln of the �neutron� in
Fn��Ran��

� the transfer of a spin to the particle� which is the one of the �neutron��

� the transfer of a total spin J to the nucleus� which is the total momentum of the �neutron� wave
function Fn��Ran�	

The geometrical coe cients are the one implied by these three transfers	 Note� in ECIS� the phase
iLn and the extra phase i for odd values of Ln	

Without taking into account the spins� the wave functions F� and F� can be written �

F���R� �
X
L

iLYM
L � �R�

�

R
F��L�R��

F���r� �
X
l

ilY m
l ��r�

�

r
F��l� r�� �VI	���

The system of coupled equations is �

�ad
h d�

dR�
� k�d �

Li�Li � ��

R�

i
F��Li� R� �

X
Lj

Uad�Li� Lj� R�F��Lj � R�

�
X
lj

Z
GLi�ljRrK�R� r�F��lj � r�dr � �

�ap
h d�
dr�

� k�p �
li�li � ��

r�

i
F��li� r� �

X
lj

Ubp�li� lj� r�F��lj � r�

�
X
Lj

Z
Gli�LjRrK�R� r�F��Lj � R�dR � � �VI	���

where GL�l is some geometrical coe cient	

C Zero�range approximation

We neglect the non�orthogonality term KN ��R��r� and we assume Vap��Rap� � Ubp��Rbp� in KV ��R��r�	 The

zero�range approximation is obtained if we replace the product Vnp��Rnp�Fd��Rnp� by a ��function of �Rnp	



C� ZERO�RANGE APPROXIMATION ��

C�� Coupled di�erential equations

In the interaction �

K��R��r� � J Vnp��Rnp�Fd��Rnp�Fn��Ran� �VI	���

the product Vnp��Rnp�Fd��Rnp� is replaced by a ��function of �

�Rnp � � Ma�Mn �Mp�

Mn�Ma �Mn �Mp�
�Rad �

�Ma �Mn��Mn �Mp�

Mn�Ma �Mn �Mp�
�Rbp �VI	���

multiplied by some strength C� which is usually ����	� mev � ���	� MeV in Ref	 �����	 The ��function
can be replaced by a ��function on the lengths divided by �

Ma�Mn �Ma��Mn �Mp��Rr

�Mn�Ma �Mn �Mp���
�VI	���

with a ��function on directions of R and r	 So �

K��R��r� � C�
�Mn �Mp��Ma �Mn��

MaMn�Ma �Mn �Mp�
Fn��Ran�

��Rnp�

Rr
�VI	���

and after integration the system of coupled equations becomes �

�ad
h d�

dR�
� k�d �

Li�Li � ��

R�

i
F��Li� R� �

X
Lj

Uad�Li� Lj� R�F��Lj � R�

�
X
lj

C�GLi�lj

Ma �Mn

Ma
Fn�R�F��lj �

Ma

Ma �Mn
R� � ��

�ap
h d�
dr�

� k�p �
li�li � ��

r�

i
F��li� r� �

X
lj

Ubp�li� lj� r�F��lj � r�

�
X
Lj

C�Gli�Lj �
Ma �Mn

Ma
��Fn�

Ma �Mn

Ma
r�F��Lj �

Ma �Mn

Ma
r� � �� �VI	���

These equations are not symmetric	 Note that Ma and Ma�Mp are the masses of the target for the two
levels	 From now on� we shall use�

M� �Ma M� �Ma �Mn �VI	���

C�� Symmetric equations

To obtain more symmetric equations� we shall use di�erent units of lengths in each channel� in channel
i� we use s � MiRi�M�� that is the step size hi � hM��Mi� where M� is the mass of the target in some

rst channel labelled by �	 The equations are �

�ad
�M�

M�

��h d�
ds�

�
�M�

M�

��
k�d �

Li�Li � ��

s�

i
F��Li� s� �

X
Lj

Uad�Li� Lj� s�F��Lj � s�

�
X
lj

C�GLi�lj

M�

M�
Fn�s�F��lj � s� � ��

�ap
�M�

M�

��h d�
ds�

�
�M�

M�

��
k�p �

li�li � ��

s�

i
F��li� s� �

X
lj

Ubp�li� lj� s�F��lj � s�

�
X
Lj

C�Gli�Lj �
M�

M�
��Fn�s�F��Lj � s� � �� �VI	���
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With the following notations �

V�� � Uad�s�� V�� � GC�

hM�

M�

i �
�

Fn�s�� V�� � Ubp�s�� �VI	���

and using the coe cients �

A� �
h M�

M�ad

i �
�

A� �
h M�

M�ap

i�
�

B� �
M�

M�a
�

�

d

B� �
M�

M�a
�

�

p

�VI	���

wave functions and potentials can be rede
ned with �

Fi�s� � AiGi�s� Uij�s� � BiBjVij�s� �VI	���

to get the symmetric set of equations �

�
h d�
ds�

�
�M�

M�

	�
k�d �

L�L � ��

s�

i
G��s� �U���s�G��s� � U���s�G��s� � �

�
h d�
ds�

�
�M�

M�

	�
k�p �

l�l � ��

s�

i
G��s� �U���s�G��s� � U���s�G��s� � � �VI	���

in which �M��M��kd and �M��M��kp appear instead of the wave numbers	 In ECIS� the mass of the target
in the 
rst channel is chosen as M�	 In the subroutine COLF the wave number is multiplied by M��MI �
because this product plays the same role in all parts of the code	

D Use of ECIS��

D�� Possibilities of the code

The code ECIS�� as well as ECIS
� allows zero�range calculations without the non�orthogonality term
using external nuclear matrix elements and form factors �LO�
��	TRUE	�	 The step sizes for each levels are
related with respect to the di�erence of masses� unless tt LO�����	TRUE	 �LO�����	TRUE	 in ECIS
���
this control can be used to interchange particle and target in some level� in which case there is no recoil
correction	 For the transfer of a neutron with angular momentum Ln and total spin Jn� the data needed
for the reduced matrix elements are �

� columns �� � Sequence number or blank	

� columns ���
 angular momentum Ln	

� columns ����� � �twice the spin of the neutron�	

� columns ����
 �Jn twice the total spin	

� columns ����
 the nuclear matrix element which depends upon the form factor� but in�
cludes �

� a reduced nuclear matrix element in the spin space which is not the same in ECIS
� and
ECIS���

� a reduced nuclear matrix element in the target space�

� a recoil factor ��a� ���a���� if LO�����	FALSE		

The form factor can be given by points	 However� they are two �standard� possibilities�

�� Laguerre polynomial�

�� solution in a real Woods�Saxon potential of which the depth is searched for a given binding energy	

In these two cases� there is a discrepancy in the code between these form factors and the macroscopic
ones such that the reduced nuclear matrix element has to be divided by

p
��	
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D�� Example

The following example has been chosen to compare ECIS
� with the code CHUCK	 The original test case
was intended for Zr but the mass of the target has been decreased to enforce the recoil e�ects	

For ECIS��� this test case is �

�COMPARAISON AVEC CHUCK POUR BE�

�FFFFFFTFFFFFFFFFFFFFFFFFFFFFTFFFFFFFFFFFFFFFFTFFFF

�TTTTTFFFFFFFFFFFFFFFTFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
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�FIN

There is no spin�orbit for the bound wave�functions because CHUCK takes is proportional to the central
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potential and ECIS keeps it constant	 As the 
rst channel is the deuteron channel� there is no need to
indicate to the code to use the deuteron step size � for the inverse reaction� a ��� should be in column ��
of the third card before FIN	 The �deformation� in the test with the code CHUCK was ���	� 	 The value
��� used here is the same

� divided by
p
��� due to the normalisation of bound�states in ECIS�

� multiplied by the reduced matrix element in the spin space which is
p
��� in ECIS�� but was

p
�

for ECIS
��

� multiplied by the reduced matrix element in the target space� which is
p
��

� multiplied by the recoil factor which is ����������	



Chapter VII

Miscellaneous

A Relativistic cinematics

This section is to explain some expressions which are used in the programme when relativistic cinematics
are used �LO����	TRUE	� and compare then to the non�relativistic ones �LO����	FALSE	�	 The code
includes in subroutine CALC the following values �

� CM����	�
�
���D
 CALC�
��

� CHB���
	����
�D
 CALC�
��

� CZ���
	
��
���D
 CALC�
�


in the IBM version �single precision in the CDC version�	 They are the values of the Atomic Mass Unit
Mu in MeV fm#c� and of $hc in MeV fm respectively where c is the speed of light in vacuum	 In these
explanations� we supposes the masses multiplied by CM and the wave numbers by CHB	

A�� Notations

Let us consider a particle of mass mi and energy Elab in the Laboratory system and a target of massMi�
in the 
nal state with an excitation energy Q� an outgoing particle of mass mf and a residual nucleus of
mass Mf �

� in non�relativistic cinematics� the mass Mf is unaltered�

� in relativistic cinematics �
Mf � mi �Mi �mf � Q�Mu �VII	��

in such a way that the total energy in the center of mass system is a constant	 However� this
correction is dropped in the Schr
odinger formalism if they are Coulomb corrections	

A�� Energy in the center of mass system

The relativistic energy of the incoming particle in the Laboratory System is given by ei � mi � Elab� as
a pure extension of the non�relativistic case	 Its momentum pi is such that e

�
i � m�

i � p�i 	 A change of
frame along the quanti
cation axis is obtained by �

P � p coshx� e sinh x� E � p sinhx� e cosh x �VII	��

The change to the Center of mass system is obtained with �

Pcm � pi coshx� ei sinhx�Mi sinhx � �� Ecm � pi sinhx� ei coshx�Mi cosh x �VII	��

��
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from which sinhx and cosh x can be eliminated to obtain �

Ecmi
� Ecm �mi �Mi � ��mi �Mi�

� � �ElabMi�
�

� � Ecmf
� Ecmi

�Q�Mu �VII	��

for each channel	

A�� Wave numbers 
 Momenta

From �
Ecm � �m

�
f � p�f �

�

� � �M�
f � p�f �

�

� �VII	��

we get �

p�f �
��Ecm �mf �Mf ��Ecm �mf �Mf ��Ecm �mf �Mf ��Ecm �mf �Mf �

�E�
cm

�
�Ecmf

�Ecmf
� �mf � �Mf ��Ecmf

� �mf ��Ecmf
� �Mf �

��Ecmi
�mi �Mi��

�VII	��

With relativistic cinematics without Dirac formalism� the reduced mass �nr is replaced by the reduced
energy �r �

�nr �
mfMf

mf �Mf
� �r �

�m�
f � p�f �

�

� �M�
f � p�f �

�

�

Ecm
�

E�
cm � �m�

f �M�
f �

�

�E�
cm

� �VII	��

but� with Coulomb corrections� Mi is used instead of Mf in order to have the same reduced mass for all
the levels � until their generalisation� the Coulomb corrections are valid only with a product of the wave
number by the Coulomb parameter constant in all the channels	

Without relativistic cinematics� the residual target massMf is not corrected by the excitation energy	
The center of mass energy of each levels are given by �

Ecmi
�

ElabMi

mi �Mi
� Ecmf

� Ecmi
�Q� p�f �

�Mu

$h�
Ecmf

mfMf

mf �Mf
� �VII	��

A�� Observables in the laboratory system

We shall note the incoming particle� the initial target� the outgoing particle and the residual target as
particles �� �� � and � respectively	 In order to compute the rotation to be applied to the S matrix
to obtain a description of polarisation phenomena in the Laboratory system� we have to consider the
following frames �

�	 the center of mass with Oz in incoming direction�

�	 the center of mass with Oz in outgoing direction of particle ��

�	 the system in which particle � is at rest and Oz opposite to outgoing direction of particle �� the
description of polarisations is invariant in this change of frame�

�	 the system in which particle � is at rest and Oz opposite to incoming particle �� the description
of polarisations has to be rotated for this change of frame�

�	 the system where particle � is at rest and Oz along the outgoing particle �� the polarisations are
invariant�

�	 the system where particle � is at rest and Oz along the incoming particle mi� the description in
this frame can be obtained easily from the description in frame ���	

We note by pn the momentum of the particle n in the center of mass frame� by en their relativistic
energy and by mn their mass	 In fact� p� � p� and p� � p�	 We shall give z� x and time components of
the quadri�vector ��p� e� for each particle in each frame	
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A���a Center of mass system � Oz incoming direction

For an outgoing particle � at the angle 
 in the center of mass system� the � quadri�vectors are�

���

������
p�
�
e�

���

������
�p�
�
e�

���

������
p� cos

p� sin

e�

���

������
�p� cos

�p� sin

e�

�VII	��

A���b Center of mass system � Oz outgoing direction

This new frame is obtained by a rotation in the ordinary space �

���

������
p� cos

�p� sin

e�

���

������
�p� cos

p� cos

e�

���

������
p�
�
e�

���

������
�p�
�
e�

�VII	���

A���c Particle � rest system � Oz outgoing direction

This new frame is obtained by a special Lorentz transformation with cosh x � e��m� and sinhx �
�p��m� �

���

������
�p�e� cos
� e�p���m�

�p� sin

�e�e� � p�p� cos
��m�

���

������
��p�e� cos
� e�p���m�

p� sin

�e�e� � p�p� cos
��m�

���

������
�
�
m�

���

������
�p��e� � e���m�

�
�e�e� � p����m�

�VII	���

A���d Particle � rest system � Oz opposite to particle 


The axis Oz must be opposite to the momentum of particle �	 This rotation � is such that �

sin � � � sin

y

cos � �
e�p� cos
� e�p�

p�m�y

y� �
m�

�p
�
� � p��p

�
� cos

� 
� �p�p�e�e� cos
� p��e
�
�

p��m
�
�

�VII	���

The expressions obtained are �

���

������
z��
��e� � e��p� sin
��m�y�
�e�e� � p�p� cos
��m�

���

������
�p�y
�
�e�e� � p�p� cos
��m�

���

������
�
�
m�

���

������
z��
��e� � e��p� sin
��m�y�
�e�e� � p����m�

�VII	���
where �

z�� � yp� � �e� � e��p��e�p� cos
� e�p��

m�
�p�y

� z�� � � �e� � e��p��e�p� cos
� e�p��

m�
�p�y

� �VII	���

The angle � is the angle of transformation of the scattering matrix in the helicity formalism	 In the
non�relativistic case� e� � m� and e� � m� � the angle � is then the angle in the Laboratory system
minus the angle in the Center of mass system	 For the target� the quanti
cation axis is opposite to the
momentum is the Center of mass system� in the formulae above� p� must be changed into �p�� e� and
m� in e� and m� respectively	

A�� Angles in the laboratory system

The transformations can be continued �
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A���a Laboratory system � Oz outgoing direction

This frame is obtained by a special Lorentz transformation with �

cosh x �
e�e� � p�p� cos


m�m�
� sinhx �

yp�
m�

�VII	���

The expressions obtained are �

���

������
z�

��e� � e��p� sin
��m�y�
�e�e� � p����m�

���

������
�
�
m�

���

������
m�p�y�m�

�
�e�e� � p�p� cos
��m�

���

������
z�

��e� � e��p� sin
��m�y�
�e�e� � p�p� cos
��m�

�VII	���
where �

z�
 �
�e� � e���e�p� cos
� e�p��

m�m�y
� z�
 �

p�p�e��e� � e�� cos
� p��e�e� � p��e
�
� � p��p

�
� sin

� 


m�m�p�y
�

�VII	���

The scattering angle in the Laboratory system � corresponding to the scattering angle 
 in the center
of mass system is such that �

sin � �
sin


z
� cos � �

e�p� cos
� e�p�
p�m�z

z� �
p��p

�
� cos

�
� �p�p�e�e� cos
� p��m
�
� � e��p

�
�

p��m
�
�

�VII	���

A���b Laboratory system � Oz incoming direction

This frame is obtained by a rotation of angle � in the tri�dimensional space or from the 
rst frame by a
special Lorentz transformation with cosh x � e��m� and sinhx � p��m� �

���

������
p��e� � e���m�

�
�e�e� � p����m�

���

������
�
�
m�

���

������
�p�e� cos
� p�e���m�

p� sin

�e�e� � p�p� cos
��m�

���

������
�p�e� � p�e� cos
��m�

�p� sin

�e�e� � p�p� cos
��m�

�VII	���
The angle � in the laboratory system is given in function of the angle 
 in the center of mass system by �

sin � � x sin
� cos � � x
e�p� cos
� e�p�

m�p�
�VII	���

Using �

A �
e�
m�

� B �
e�p�
m�p�

� �VII	���

we have �

tan� �
sin


A cos
� B
�VII	���

This relation can be inverted by �

tan
 � sin �
B cos � �AC

C cos � � AB sin� �
� C� � �A� �B�� sin� � � cos� � �VII	���

The factor multiplying the cross�section in the center of mass system to obtain the cross�section in
the Laboratory system is�

d�cos
�

d�cos ��
�

�
�A cos
� B�� � sin� 


��
�

A �B cos

�VII	���

In the non relativistic case� these formulae are simpli
ed only by the fact that A � � because e� �
m � �	 	



B� COEFFICIENTS �J � �J AND 	J ���

A�� Conclusions

If the observables are not de
ned in the center of mass system� the scattering matrix has to be rotated	
For a scattering angle 
 in the center of mass system� the rotation needed to describe the polarisation of
the outgoing particle is given by Equ	 �VII	���� that is �

tan � � � p�m� sin


e�p� cos
� e�p�
�VII	���

and the rotation needed to describe the polarisation of the target nucleus is �

tan � � � p�m� sin


e�p� cos
� e�p�
�VII	���

with relativistic kinematics	 In the non relativistic approximation� the energies e are replaced by the
masses m in Equ	 �VII	��� and �VII	���	

If the observables are de
ned with only one axis of quanti
cation along the incoming direction� the
collision matrix must be rotated with the angle �
	
If an angular distribution is requested in the Laboratory system� the angle 
 in the center of mass

system is given by Equ	 �VII	��� for the angle � in the Laboratory system	 Cross�sections only must be
multiplyed by the factor given by Equ	 �VII	���	 Here also� the non relativistic approximation is obtained
by replacing the energies e by the masses m	

B Coe�cients �j� 	j and 
j

Clebsch�Gordan coe cients are used only in the computation of reduced nuclear matrix elements� with the
function DJCG	 These reduced matrix elements need also some �j computed by the function DJ�J	 Clebsch�
Gordan coe cients with magnetic quantum numbers zero or ����� ������� are given by the function DCGS	
The subroutine QUAN� which computes the couplings of Equ	 �III	��� needs the �j coe cients given by
the function DJ�J only for transitions with &S �� � and functions DCGS and DJ�J for all transitions	

On the contrary� the Clebsch�Gordan needed in subroutine SCHE to transform the results into the
helicity formalism by Equ	 �III	��� are obtained by recurrence	

An array of logarithms of factorials is used by the functions DJCG� DJ�J and DCGS	

B�� The functions for geometric coe�cients

All the arguments of these four functions are integer double values of the quantum numbers	

B���a Clebsch�Gordan coe�cients

If one of the angular momenta is zero� the simple result is returned	 If one of the magnetic quantum
numbers is zero and the others � and ��

�
� the simpler formula of function DCGS is used	

In the general case� the subroutine use the formula ���� of Appendix C in � ���� MESSIAH� A	�
	M�ecanique quantique
� Dunod� Paris ������ page ���	 The last term of the sum is computed	 The sum
is then obtained by the DO LOOP �

�C K��K��K��N��N��N� ARE THE ARGUMENTS OF THE FACTORIALS IN THE LAST TERMDJCG�
��

� DO � I���K DJCG�
��

� A���K��I���K��I���K��I� DJCG�
��

� A���N��I���N��I���N��I� DJCG�
��

� � DJCG�A��DJCG�A��A� DJCG�
��

Exponential is used only for the 
rst term	
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B���b �j coe�cients

If one of the angular momenta is zero� a simple result is returned	

In the general case� the subroutine use the formula ���� of Appendix C in Ref	 ���� page ���	 As
for Clebsch�Gordan coe cients� the last term of the sum is computed	 The sum is then obtained by a
similar DO LOOP	

B���c Simple �j coe�cients

Due to the relation ��
j�

��
�

J

�

j
�
�

�
� �

p
��l � ����j � ��

�
l

�

l�

�

J

�

�

l

j�
l�
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such a �j coe cient can be used to compute Equ	 �III	��� when S � � and the spins are �
� 	 This relation

shows up in the helicity formalism for multipole expansion of an interaction �see Ref	 �����	

The function DCGS computes �

CGS � ���j�� �

�

p
��j � ����j� � ��

�
j

��
�
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�

j�

�
�

�
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if j and j� are half integers and �

CGS � ���j���
�
j

�

L

�

j�

�

�
�VII	���

if j and j� are integers	

Using �

g�n� �
m,p
�n,�

�
�

�m

�

�
q

��������n
��
������n��� if n is evenq
���������n���
��
�����n if n is odd
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where m is the integer part of n��� these coe cients are �

CGS � ���Intf�L�j�j������g g�L � j � j� � ��

g�L � j � j��g�L � j � j��g�j � j� � L�
�VII	���

If j and j� are integer� this result must be �

� multiplyed by � if L� j � j� is even�

� � if L� j � j� is odd	

These two conditions are Intf�L�j�j������g�Intf�L�j�j����g�Intf�L�j�j����g�Intf�j�j��L���g
positive or zero respectively	 If this quantity is negative� j and j� are half integers	

B���d �j coe�cients

The subroutine use the formula ���� of Appendix C in Ref	 ���� page ���� which is ��
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B� COEFFICIENTS �J � �J AND 	J ���

A cyclic permutation of the lines is done to get the shortest sum on x in Equ	 �VII	���	 Then� the three
series of �j coe cients are computed by recurrence	 For the 
rst of them �

�x� ��A�x�



j�
j�

j�
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�
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with �

A�x� �
n
�j� � j	 � x��j� � j	 � x��j� � j	 � x� ���j� � j	 � x� ���j� � j� � x��j� � j� � x�

�j� � j� � x� ���j� � j� � x� ��
o �

�

B�x� � ��x� ��
n
�j� � j	��j� � j	 � ���j� � j���j� � j� � �� �

�
j��j� � �� � j��j� � ��

�j��j� � �� � j	�j	 � ��� �j��j� � �� � x�x� ��
�
x�x� ��

o
�VII	���

This is not a relation between �contiguous� �j coe cients as de
ned in � ���� RAYNAL� J	�On the
de�nition and properties of generalized ��j symbols
� J	 Math	 Phys	 

 ������ page ����� but can
be obtained by writing three such relations and eliminating two �j coe cients between them	 This
relation is used to compute the �j coe cients for xm � x � xM with xm � maxfjj� � j�j� jj�� j	jg and
xM � minfj� � j�� j� � j	g starting from x � xM with the value �	 The 
rst recurrence reduces to a two
terms relations because the coe cient of the �j coe cient for x � xM��� which does not exist� vanishes	
The sum N� of the values obtained multiplied by ��x� �� is computed� if it is larger than ���
� all the
values obtained before are divided by ���
 and N� is divided by ��

��	 This method needs a working array
to store all these unnormalised �j coe cients and no table of logarithm	 As used in ECIS� the series of
�j coe cients are short because two of the three quantum numbers L� S or It are in each of them	

The result of Equ	 �VII	��� must be normalised by dividing by the square root of the product N�N�N�	
As the sign of the �j coe cient with x � xM is ����xM as can be seen in formula ���� in Ref	 ���� when
the sum reduces to only one term and as all the three xM and x are integer or half integer at the same
time� the product of all these signs is plus	 The result has the correct sign	

B�� Recurrence for �j coe�cients

Two di�erent recurrence relations are used in the code ECIS�� for two very di�erent purposes	

B�
�a Transformation to helicity formalism

To use conveniently Equ	 �III	���� for a given total angular momentum J and parity �� one needs a
tri�dimensional array of which the dimensions correspond to �

�	 all sets of quantum numbers �li� si� ji� Ii� or �lf � sf � ff � If � involved for this value of J and ��

�	 all the ��s� �� Clebsch�Gordan � l� s� �� �jj� � � for these values of �l� s� j��
�	 all the ��I � �� Clebsch�Gordan jI���JM for these values of �j� �� I�	

In practice� this array is built with the dimensions in the order �����������	

The Clebsch�Gordan coe cients are ordered by increasing helicity	 They can be obtained by ele�
mentary recurrence relations between �contiguous� coe cients as de
ned in � ���� RAYNAL� J	� 	On the
de�nition and properties of generalized ��j symbols
� J	 Math	 Phys	 �� ������ page ���	 More explicitly�
a part of the Equ	 �A�� in Ref	 ���� is �
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which can be simpli
ed in this simple case into �
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and give for the � j� I� ����jJ� �� � � the following recurrence relation �

� �
n
�I � ���I � �� ���J � �� ���J � �� � � ��
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� j� I� ����� �jJ� � � � � � �

�
n�
I�I � �� � J�J � ��� j�j � ��
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o �

�

� j� I� ����� �jJ� �� �� � �

�VII	���

and a simpler recurrence relation for � l� s� �� �jj� � �	 The sign of � l� s� ���sjj��s � is positive
and if this coe cient does not exist� the sign of � l� s� ���jjj��j � is ���s�j 	 Similarly� the sign of
� j� I� ���IjJ��I � is also positive and if this coe cient does not exist the sign of� j� I� ���J��jJ��J �
is ���I�J�� 	 Consequently� starting the recurrences from the most negative values� the sign is given by
the number of coe cients which do not verify the usual relations on quantum numbers	 Normalised
values are easily obtained� summing the squares of the unnormalised coe cients for each recurrence	

B�
�b Cross�section expansion in Legendre polynomials

Two similar recurrence computations of Clebsch�Gordan coe cients are needed to obtain the coe cients
of Legendre polynomials describing cross�sections	

The 
rst of them is to obtain the product of the two reduced rotation matrix elements in the helicity
Coulomb amplitude as given by Equ	 �III	���	 As given by Equ	 ���� of Appendix C in Ref	 ���� page
���� their product is �

r�s��f ��i���r
�I�
��f ���i ��� �

I�sX
j
jI�sj

� s� I� �i���ijj� �i � �i �� s� I� �f ���f jj� �f � �f � r
�j�
�f��f ��i��i���

�VII	���
The recurrence relation needed here is not between �contiguous� coe cients� but similar to the one used
for �j coe cients when computing �j coe cients as shown in section �B	�	d� by Equ	 �VII	��� and
�VII	���	 The recurrence relation can be found of Appendix C in Ref	 ����� formula ���� page ���� which
is �

A�J� � j�� j��m��m�jJ � ��M � �B�J� � j�� j��m��m�jJ�M �

�A�J � �� � j�� j��m��m�jJ � ��M �� �

A�J� �
�

J

s
�J� �M����j� � j� � ��� � J���J� � �j� � j����

��J � ����J � �� �

B�J� � m� �m� �M
j��j� � ��� j��j� � ��

J�J � ��
�VII	���
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This recurrence relation is used for increasing values of j	 The normalisation is obtained by dividing by
the square root of the sum of unnormalised values	 The sign is such that the product of Clebsch�Gordan
coe cients is positive for the highest value of j in Equ	 �VII	���	

The second occurence is for the angular distribution of compound nucleus� which is given by �

�d����
d(

�
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X
�i�f�i�f

X
J

f �J� hel c�n�
�f�f�i�i jr�J��f��f ��i��i ���j�� �VII	���

which can be expressed in terms of Legendre polynonials with the relation �

jr�J�m�m� ���j� � ���m�m�
�JX
�
�

� J� J�m��mj
� � �� J� J�m���m�j
� � � P��cos �� �VII	���

The recurrence relation needed here is the same	 After simpli
cation for this application� Equ	 �VII	���
is �

A�J� � j� j�m��mjJ � �� � � �B�J� � j� j�m��mjJ� � �
�A�J � �� � j� j�m��mjJ � �� � �� �

A�J� � J

s
��j � ��� � J�

��J � ����J � �� � B�J� � �m �VII	���

Recurrences start from values � for 
 � � because �

���m�m�

� J� J�m��mj�� � �� J� J�m���m�j�� � �� �

�J � �
�VII	���

Contributions of odd values of J disappear in the sum on helicities	

C Reduced rotation matrix elements

The subroutine EMRO computes an array of reduced rotation matrix elements r
�J�
m�m� ��� for Jm � J � JM

where Jm � maxfm�m�g and JM is the maximum value involved	 But reduced matrix elements are
also computed by recurrence to rotate the scattering matrix� to factorise ��� x cos �� in the amplitudes
and to express the cross�sections with Legendre polynomials	 For reduced rotation matrix elements� see
Ref	 ���� and in � ���� VARSHALOVICH� D	� A	� MOSKALIEV� A	� N	 and KHERSONSKII� V	� K	�
	Kvantovaya Teoriya Uglovogo Momenta
� �	Quantum Theory of Angular Momenta
�� Nauka� Leningrad
������ Chapter �	

C�� Recurrence with respect to J

This recurrence is a simpli
cation of Equ	 ��� of section ��	�� of Ref	 ����� page ��	 It can be rewritten
as �

�J � ��
p
�J �m��J �m��J �m���J �m�� r

�J���
m�m� ��� � ��J � ��

�
mm� � J�J � �� cos �
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r
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m�m� ���

�J
p
�J � � �m��J � ��m��J � � �m���J � ��m�� r

�J���
m�m� ��� � � �VII	���

which allows the computation of r
�Jm���
m�m� ��� for Jm � maxfm�m�g if r�Jm�

m�m� ��� is known because the

coe cient of r
�Jm���
m�m� ��� vanishes	 This starting value is given by Equ	 ���� of Appendix C in Ref	 ����

page ��� �

r
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m�j��� � ���j�mr�j�j�m��� �
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which is obtained easily because the arguments of the subroutine EMRO� which computes the reduced
rotation matrix elements include �� �� cos � and an array of square roots of integers	 The recurrence given
by Equ	 �VII	��� used upwards seems to be stable without limitation	

If m� � �� the recurrence of Equ	 �VII	��� can be simpli
ed to give �

p
�J �m��J �m� r�J���m�� ���� ��J ��� cos � r�J�m������

p
�J � � �m��J � ��m� r�J���m�� ��� � � �VII	���

If m � �� we obtain the same equation with m� instead of m	 The starting value are �

r
�j�
��j��� � ���jr�j�j����� �

s
��j�,

j,j,
����j �VII	���

If m � m� � �� the subroutine uses �

J r
�J���
��� ��� � ��J � �� cos � r�J���� ��� � �J � �� r

�J���
��� ��� � � �VII	���

starting with r
���
������ � �	

For the angular distribution of a level� this calculation is done only once for all the amplitudes involving
the same values of m and m�� but also for �m and �m�� using the relation �

r
�J�
m�m� ��� � ���m�m�

r
�J�
�m��m� ��� �VII	���

C�� Recurrence with respect to m

It can be necessary to multiply the scattering matrix by the reduced rotation matrix r�j��
� where j is the
spin of the outgoing particle or of the recoil nucleus and 
 the angle given by Equ	 �VII	��� or �VII	���
respectively or 
 � �� for observables described with only one axis of quanti
cation	 The recurrence
relation is Equ	 ���� or ���� of section ��	�� in ����� page ��	 It is �
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which can start with r
�j�
m�j�
� given by �
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This relation is used to compute r
�j�
m�j�
� for m varying from �j to j� starting with �

r
�j�
�j�j � �� sin

�

�

��j �VII	���

and Equ	 �VII	��� is used to compute r
�j�
m�m� for m� varying from j to m	 The other reduced rotation

matrix elements are obtained from Equ	 �VII	���	

C�� Factorisation of ��� x cos ��

To accelerate convergence with respect to the total spin J � it is convenient to replace the amplitude f by
an amplitude f � such that �
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with m � �f��f andm� � �i��i	 Multiplying the two sides by ���x cos �� and using the Equ	 �VII	���
to express the product of a reduced rotation matrix element by cos �� we can identify the coe cients of

the same r
�j�
m�m� ��� to get �

f ��j��f�f ��i�i
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p
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which allows to obtain f ��j� up to j � JM � � if the values of f �j� are known up to j � Jm	 Writting this
new amplitude f ��j� � f �j� � xf ���j�� the value of x is obtained by �
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j
JM��X
j
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�VII	���
but with the restriction jxj � �	 The value of x is stored instead of the real part of f �JM �	 This process
can be done again several times	

C�� Expression of cross
sections in Legendre polynomials

If the inelastic scattering amplitudes or the elastic scattering amplitude of a chargeless particle is known
up to JM � the cross�section can be expressed as a sum of Legendre polynomials Pl�cos �� with l from
l � � to l � �JM 	 For the elastic cross�section of a charged particle� the Coulomb cross�section must
be subtracted� the remaining cross�section cannot be expanded into Legendre polynomials because it
involves an interference term with the Coulomb amplitude and the Legendre expansion of the Coulomb
amplitude does not converge	 So� the di�erence between elastic and pure Coulomb cross�section must be
multiplied by some power of ��� cos �� before being expanded in Legendre polynomials	

C���a Legendre expansion without Coulomb amplitude

The contribution to the cross�section of an helicity amplitude being �
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its expression as an expansion on Legendre polynomials and the coe cients are �
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The coe cient of P��cos �� is quite trivial �
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and can be generalised to any PL�cos �� if one de
nes �
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The FL can be obtained with the same recurrence relations as the PL�cos ��	 This give for their
coe cients� using again m � �f � �f and m

� � �i � �i �

F
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easy to use because the dependence on L is very simple and the dependence in J is the same for every L
and can be stored	 In this process� the number of J values increases with L	

C���b Legendre expansion of Coulomb amplitude

To generalise this calculation to the elastic scattering of charged particle� the helicity amplitude in Equ	
�VII	��� does not include the coulomb amplitude	 To obtain F� �

�	 the helicity amplitude without Coulomb amplitude is multiplied by ��� cos ���� using recurrence
relations on the reduced rotation matrix elements and also by �� � cos �� for identical particles�
giving h����

�	 the two reduced matrix elements in the spin space are multiplied as shown by Equ	 �VII	����
giving some function g����

�	 the Legendre expansion of the Coulomb amplitude multiplied by �� � cos ��n or �� � cos� ��n is
generated as �

c��� �
X
L

��L� ��C�n�
L PL�cos �� �VII	���

�	 g��� is multiplied by c��� and added to h��� to get the function F� used in Equ	 �VII	��� to
compute A� �

F� � h��� � g��� c��� � h��� �
X
L

��L� ��C�n�
L GL �VII	���

where the GL are de
ned with respect to g��� as FL was de
ned with the helicity amplitude in
Equ	 �VII	���	

Then� the computation of the coe cients AL can be done as in the absence of Coulomb amplitude	 This
expansion must be done up to JM � LM where LM is the maximum L value for the AL requested and
JM the maximum J value of the amplitudes	

The Legendre expansion of the coulomb amplitude multiplied by any power of ��� cos �� is �
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X
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For a symmetrised amplitude� we can use the relation �
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The coe cients C
�n�
l have quite simple recurrence relations	 For a given value of n� all the coe cients

needed are given by �

C
�n�
l�� �

l � �� n� i�

l � � � n� i�
C
�n�
l �VII	���

starting with �

C
�n�
� � ��n i�

n� i�
C
���
� �VII	���

With the convention �� � � used in ECIS� C���
� � ����ik�	



Chapter VIII

Description of the subroutines

We shall describe the subroutines in the order of their appearance in the code ECIS��	 The Table of
Contents of these paragraph will reproduce a !ow chart of the programme	Italic characters shifted to the
right side indicates comments related to a calling subroutine�

All the steps of the calculation are managed by ��� logicals from LO��� to LO���
�	 They are �

�a� from LO��� to LO��

�� the values read in the second and the third cards of the input� the meaning
of those which are used can be found in the �DESCRIPTION OF INPUT�	

�b� from LO��
�� to LO��

�� the opposite values of the preceding one	

�c� from LO��
�� to LO���
�� internal controls of the code� the meaning of those which are used is given
as comment cards in subroutine CALC reproduced below	

�C LO��
�� IS TRUE IF THERE IS NO REAL SPIN�ORBIT POTENTIAL CALC�
��

�C LO��
�� IS TRUE IF THERE IS NO IMAGINARY SPIN�ORBIT POTENTIAL CALC�
��

�C LO��
�� IS TRUE IF THERE IS NO COULOMB SPIN�ORBIT POTENTIAL CALC�
�


�C LO��
�� IS TRUE IF CONVERGENCE IS OBTAINED IN THE ITERATION CALC�
��

�C LO��
�� IS TRUE IF CONVERGENCE IS OBTAINED FOR THIS EQUATION CALC�
��

�C LO��
�� IS TRUE WHEN THE ITERATION IS NOT THE LAST ONE PERMITTED CALC�
��

�C LO��

� IS TRUE IF ALL THE COUPLINGS HAVE TO BE CALCULATED BEFOREHAND CALC�
��

�C LO��
�� IS TRUE IF THE DIAGONAL COULOMB CORRECTIONS ARE NEEDED CALC�
��

�C LO��
�� IS TRUE FOR DIRAC POTENTIALS CALC�
��

�C LO���
� IS TRUE IF DERIVATIVES ARE NEEDED CALC�
�


�C LO����� IS TRUE IF DEFORMATIONS ARE CHANGED IN SEARCH CALC�
��

�C LO����� IS TRUE IF NUCLEAR PARAMETERS ARE CHANGED IN SEARCH CALC�
��

�C LO����� IS TRUE IF NUCLEAR MATRIX ELEMENTS ARE CHANGED IN SEARCH CALC�
�


�C LO����� IS TRUE IF SPIN�ORBIT PARAMETRISATION IS CHANGED IN SEARCH CALC�
��

�C LO����� IS TRUE FOR NO OUTPUT CALC�
��

�C LO����� IS TRUE FOR A STOP� FOR EXAMPLE THE WORKING FIELD IS TOO SMALLCALC�
��

�C LO���
� IS TRUE FOR ALL THE CALCULATIONS EXCEPT THE FIRST CALC�
��

�C LO����� IS TRUE FOR LAST RESULTS CALC�
��

�C LO����� IS TRUE FOR RESULTS WITHOUT DOING THE CALCULATION AGAIN CALC�
��

�C LO���
� IS TRUE FOR OUTPUT AND LAST CALCULATION IS THE BEST ONE CALC�
�


�C LO����� IS TRUE FOR OPTICAL MODEL WITHOUT COUPLING CALC�
��

�C LO����� IS TRUE IF IT IS THE FIRST COMPUTATION FOR THIS ENERGY CALC�
��

�C LO����� IS TRUE IF LO���� IS 	TRUE	 AND NO SPIN IN THE INITIAL STATE CALC�
�


�C LO����� IS TRUE FOR COMPOUND NUCLEUS OR PUNCH OF TRANSMISSION COEFF	 CALC�
��

�C LO����� IS TRUE IN CAL� FOR A CALL TO USUAL COUPLED EQUATIONS SUBR	 CALC�
��

�C LO����� IS TRUE IF THERE ARE OBSERVABLES IN THE LABORATORY SYSTEM CALC�
��

�C LO���
� IS TRUE FOR COULOMB CORRECTIONS WITH PURE REGULAR FUNCTIONS CALC�
��

�C LO����� IS TRUE FOR NO COPY OF UNCOUPLED FUNCTIONS AND PHASE�SHIFT CALC�
��

���



��� CHAPTER VIII� DESCRIPTION OF THE SUBROUTINES

A Subroutines ECIS�CALS� HORA� STIM and MEMO

For the MAIN� the subroutines ECIS�CALS� HORA� STIM and MEMO� see Chapter II� 	Use on various Com�
puters
�

�	 The MAIN de
nes only the working array and calls CALC� directly or via the Assembler subroutine
ECIS on IBM� or via CALS on CDC 
�

	

�	 The subroutine HORA is called from di�erent places to give the elapsed CPU time for the JOB	 It
uses the subroutine STIM to get the allowed remaining CPU time	

�	 The subroutine STIM should give the time remaining for the JOB	 This subroutine is very machine
dependent	 It is called directly by CALC to obtain the time needed by a single calculation to stop
an automatic search when LO�����	TRUE	 and to save results or a search before being stopped by
time limitation	 STIM allows to the subroutine HORA to print the elapsed time	

�	 The subroutine MEMO is called from anywhere to increase the size of the working array	 On
computers other than CDC or UNIVAC this subroutine stops the calculation if the request is absolute	
This subroutine is also very machine dependent	

We shall not quote the calls to HORA or MEMO in the description of the subroutines	

B Subroutine CALC

The main subroutine is CALC� from which the calculation never returns	 Its arguments are the working
array and its length	 The same working array is !oating values and integers in the CDC version� also
double precision in the IBM version	 This subroutine calls the subroutines CALX� COLF� REDM� EXTP� CAL��
VARI� FITE� REST� EVAL which we describe below	 Meaning of addresses stored in the common �DECOU�
and de
ned in CALC after the return from CALX are given on COMMENT cards	

The computation is normally stopped by a control word read in subroutine CALX� so there is usually
a warning at the compilation �subprogram exit cannot be reached from entry�	

The calculation never returns to the 
rst instructions which are values of the Atomic Mass Unit Mu�
$hc and 
ne structure constant� as shown in section �VII	A� and the calculation ofM��$hc�� �M��$hc�� and
$hc
	 Then CALC calls CALX	

C Subroutine CALX

At the beginning of this subroutine is given on comment cards the meaning of the arrays SP� IPI� WV

which store all the informations relative to the levels	 They are followed by the meaning of data and
addresses stored in the common �DECOU� and some informations on other commons	 The subroutine calls
INPA� INPB� INPC� LECL� LECT� DEPH� LECD and OBSE	

This subroutine reads all the input except for nuclear matrix elements and external form factors and
new parameters if LO��
��	TRUE		 This input starts by a title card �

� if this title is �FIN �� the calculation is stopped�

� if this title is �DESCRIPTION �� the description of the input is printed	



C� SUBROUTINE CALX ���

C�� Subroutines INPA	 INPB	 INPC

These three subroutine are called one after the other if the title is �DESCRIPTION �	 They include only
WRITE statements and they have been generated from the text written on cards with a special programme	
Output can be listed as FORTRAN or by �enscript ��Bhr �L��� after suppression of the 
rst column	 It is
�� pages long	

After the printing� a new title card is read in CALX� If the title card is neither 	FIN 

or 	DESCRIPTION 
� the subroutine CALX reads the �rst card of logical control �card �� � if
LO�����	TRUE	 �restart of a computation from �le ��� the subroutine returns to CALC which
calls to the subroutine REST� If LO�����	FALSE	� the second card of logical control �card ��
and card � �integers� are read� Some logical controls can be changed �for example� the real
spin�orbit must be deformed if the imaginary spin�orbit is deformed� before being printed�
Then the card � ��oating values� is read and default values for card � and � are set and the
values printed� The logicals from LO����� to LO���
� are set �FALSE� and LO����� is set
�TRUE��

Then� informations needed when some logicals are �TRUE� are read �

� limitation on angular momenta for coulomb corrections if LO�����	TRUE	�

� compound nucleus data or indication to calculate the Legendre Polynomial expression
of cross�sections if LO����� LO����� LO���� or LO���� is �TRUE��

� interpolation on total spin if LO�����	TRUE	�

Some default options are set� The subroutine computes storage requirements as soon as it can
be done and calls LECL� LECT and DEPH with only some storage calculations between them�

C�� Subroutine LECL

This subroutine reads energies� masses� spins and product of charges for all the levels	 Informations
relevant of the nuclear model are read for coupled states but not for uncoupled states introduced in a
compound nucleus calculation	 For the level I� the informations are stored in SP���I�� IPI���I� and
WV����I� in the following order �

SP���I� sI spin of incident particle�

SP���I� II spin of the target�

SP���I� ZI product of the charges of the particle and the target�

IPI���I� �I parity �� for ��� and � for �"���

IPI���I� nI � �sI � � multiplicity of the incident particle�

IPI���I� NI � �II � � multiplicity of the target�

IPI���I� position of the potential used�

IPI�����I� beginning and end in the description of amplitudes �de
ned in DEPH��

IPI�
���I� beginning and end in the description of observables �de
ned in DEPH��

IPI���I� cross�reference to potentials �if there are more potentials than levels� this table is extended
to the number of potentials��

WV���I� mI mass of the incident particle�

WV���I� MI mass of the target �for relativistic kinematics� LO����	TRUE	� the target mass is corrected
by addition of Q�Mu but this correction is dropped if LO�����	TRUE	 to compute the wave number
in the Schr
odinger formalism��
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WV���I� EI energy in the center of mass system� for the incident channel� this energy is given by
Equ	 �VII	�� if LO����	FALSE	 �non relativistic kinematics� or by Equ	 �VII	�� if LO����	TRUE	
�relativistic kinematics�� for the other channels EI � E� � Q	

For the other entries of WV� see description of COLF	

The wave number of the ground state is computed only to obtain the default options of matching
radius and step size in LECT	 The same computation will be done in COLF for all the levels	

C�� Subroutine LECT

This subroutine reads the description of the phonons if there are some in the nuclear model� the deforma�
tions for the rotational model and the optical potentials if LO�
��	FALSE	 �no external potential�	 The
default value of the matching radius is so that the largest potential is less than the data ACONV of card
� and the default value of the step size to the smaller of half di�useness and ����k� where k is the wave
number of the ground state	 The step size is modi
ed to be the matching radius divided by an integer	
The logical asking for deformation of the real spin�orbit� the imaginary spin�orbit� the coulomb or the
spin�orbit coulomb potentials is set 	FALSE	 if these interactions vanish	

If LO�
��	TRUE	� the default value of the matching radius is ��fm and the default value of the step size
is given only by the wave number	 The logicals for deformation of spin�orbit potentials can be changed if
there is no spins in the levels	 However� without spin�orbit coulomb potential and no coulomb corrections�
one must use LO�����	TRUE		 This subroutine returns also in the COMMON TITLE the factor XZ equal to
�� divided by the multiplicity of the initial channel �IPI����� and IPI����� de
ned in LECL�� used by
the subroutine SCAT to express the cross�sections in millibarns	

Then the subroutine reads �

� angles for equidistant angular distributions if LO�����	FALSE	�

� spin�orbit parametrisation if LO����	TRUE	�

� Hauser�Feshbach parameters if LO�����	TRUE	�

� Fission penetrabilities if LO�����	TRUE	�

� Gamma penetrabilities if LO�����	TRUE		

C�� Subroutine DEPH

There are two parts with comment cards before each to explain how are stored informations on each
amplitude	 The levels taken into account are those which are coupled plus those which are not coupled
but of which an angular distribution is wanted	

In the 
rst one� the amplitudes are counted and arrays of quantum number stored	 Indications to
compute only once the reduced rotation matrix elements when they can be used for more than one
amplitude to a sign are also stored	 The number of solutions and of equation for each parity is obtained
in NCT	 For each level� beginning and end addresses are stored in IPI���I� and IPI���I� respectively	

In the second part� the default output is generated unless LO�����	TRUE	� in which case the in�
structions are read	 For each level� beginning and end addresses of instructions are stored in IPI�
�I�

and IPI���I� respectively	 This subroutine reads also instructions for restricted coulomb corrections if
LO���� and LO�����	TRUE		 Addresses of coulomb corrections are stored after the array of beginning
and end of coupling NIV �see REDM� in NIV�I�J���	

If LO�����	TRUE	� the subroutine CALX reads number of angular distributions and of pa�
rameters in search�
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C�� Subroutine LECD

This subroutine reads the angular distributions	

The subroutine CALX reads identi�cations and step sizes of the parameters in search if
LO�����	TRUE	 and if their number and the number of angular distributions are non zero�

C�� Subroutine OBSE

This subroutine computes for all the observables the indications �described on COMMENT cards� for the do�
loops and the geometrical coe cients which will be needed in SCAT to obtain the observables requested	
A 
rst part reads indications for non standard observables and transform them into tensor notations	 A
second part computes geometrical coe cients and do�loop limits	 This part is run twice� the 
rst time
to obtain storage requirements� the second one for e�ective computation	

After return from OBSE� the subroutine CALX computes some storage requirement and a
table of logarithms of factorial as long as needed�

After return to CALC from CALX� the subroutine REST is called with KF�� if LO�����	TRUE	
�restart of a search�� If LO�����	FALSE	 the subroutine COLF is called�

D Subroutine COLF

This subroutine and the other subroutines called in it compute the matching values and the stored inte�
grals for coulomb corrections	 The array WV����I� is completed for all the levels� coupled or uncoupled	
Using the recoil ratio Rec to take into account recoil corrections for a zero�range interaction when the
masses are not the same in all the channels �Rec � � for the incident channel� but for the excited channels
Rec � M��Mi if the mass of the particle is not the same and if LO�����	FALSE	�� the content of this
array is �

WV� ��I� kI wave number� if LO����	FALSE	 � it is given by Equ	 �VII	�� and if LO����	TRUE	 by
Equ	 �VII	���

WV� ��I� �I coulomb parameter�

WV� ��I�
p
ReckI�k�� square root of ratio of wave numbers�

WV� 
�I� EIrel relativistic energy in the center of mass system in Dirac formalism in Mev�

WV� ��I� square root of �m�$h��

WV� ��I� kiRec� wave number multiplied by ratio of step sizes�

WV��
�I� h�i k
�
i where hi is the last item�

WV����I� hi � h�Rec step size of this channel	

The subroutine COCL is called for closed channels and the subroutine FCOU for open channels	

D�� Subroutine COCL

This subroutine computes matching values for closed channels	 For L � �� it uses asymptotic expan�
sion with#without backwards integration	 For the other values of L� it uses upwards recurrence	 This
subroutine comes from the Buck and Hill�s code INCH	
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D�� Subroutine FCOU

This subroutine and the subroutines called by it are described in Ref	 ���� and Ref	 ����	 The calculation
of phase�shifts has been suppressed except for L � �� the factorisation of some power of �� has been
changed from modulo �� to modulo �� for VAX computers to handle squares of Coulomb functions	

The subroutine FCOU calls FCZ
 to obtain coulomb functions and their derivatives for L � � and
computes the other ones by recurrence	 It uses upwards recurrence for irregular to the end and for
regular functions as long as 	 � � � ��� � L�L � ���

�

� � downwards recurrence for the regular function
starting from the maximum L requested plus �� � �j�j normalised with the last value obtained from
upwards recurrence	

D�
�a Subroutines FCZ


The subroutine FCZ
 computes the coulomb functions for L � �	 It calls the function SIGM to obtain
the phase�shift	 For some values of the coulomb parameter and the radius� it calls the subroutines
YFRI or YFAS	 For some other values near the origin� it computes the regular function by expansion into
Chebyschev polynomial �Clenshaw expansion� or series expansion and calls YFIR for the irregular one	

D�
�b Subroutine YFRI

For some values of the matching radius and of the coulomb parameter� it calls YFCL	 For other values� it
uses Riccati methods� �Riccati at the origin� or �asymptotic Riccati�	

D�
�c Subroutine YFAS

Computes coulomb functions with the asymptotic expansions	

D�
�d Subroutine YFIR

Computes irregular coulomb functions by Taylor expansion around the origin or around the point R �
��� � ���� at which the functions and their derivatives are obtained with the subroutine YFAS	 For the
expansion around the origin� this subroutine calls the function PSI	

D�
�e Subroutine YFCL

This subroutine is called by YFRI	 It uses an expansion on Chebyschev polynomials in the asymptotic
region or a MacLaurin series expansion near the origin for which it needs the function PSI	

D�
�f Functions SIGM� PSI

These functions compute respectively the coulomb phase�shift for L � � and the real part of the loga�
rithmic derivative of the gamma function for a complex argument	

The subroutine COLF checks if some coulomb functions are too large� If the power of ����


returned by FCOU is not zero� it limits the number of Coulomb functions to avoid them �with a
ratio ���� between regular and irregular functions� the phase�shift obtained by the code cannot
be signi�cative�� If coulomb corrections have to be used� it calls subroutine CORI to compute
the stored integrals with all the previous channel up this one� if the pair of channels are both
open and the corrections requested�
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D�� Subroutine CORI

If �i � ����f � the code is unable to do the calculation and stops	 If �i � �� �f must be also zero � the
subroutine CORZ is called and CORI returns	

In any other case� the subroutine CORI calls the subroutine COR
 to obtain the integrals from Rm to
� of product of regular and irregular Coulomb functions with L � � and L � �� divided by r and r�	
Then� if �i � �f and ki � kf � the integrals from � to in
nity of the product of two regular Coulomb
functions divided by r� are obtained by Equ IV	��	 Details are given in section �IV	B�	

D���a Subroutine COR


This subroutine computes the integrals from Rm to � of the product of two di�erent regular or irregular
coulomb functions with the same angular momentum L � � and L � � divided by r and r� ��� values�	
With �Rs � max���j�ij������

p
kf�ki� ��j�f j������

p
ki�kf � ���

p
� � i�f �� these integrals are computed

from max�Rm� Rs� to � by a generalisation of the method described in Ref	 ����	 If Rs � Rm� the
integral between Rm and Rs is computed by �� points Gauss integrations� each Gauss integration being
for &r � ��	

D���b Subroutine CORZ

This subroutine computes integrals from Rm to � of products of regular and irregular functions of the
same L divided by r� and integrals from � to � of regular functions od the same L divided by r�	

Then the coulomb phase�shift minus the one for L � � are computed in COLF�
After return from COLF� the subroutine CALC calls REDM�

E Subroutine REDM

This subroutine generates or reads the reduced nuclear matrix elements between the coupled levels	
If LO�
��	FALSE	 �standard nuclear model� and LO�����	FALSE	 �reduced nuclear matrix elements not
read�� REDM calls the subroutines VIBM� ROTM or ROAM	 If LO�
��	TRUE	 or LO�����	TRUE	� this subroutine
reads the reduced matrix elements	 Then� the informations are stored in IQ���I� and T���I� which are
in equivalence� for I�� to IT	

IQ���I� Form factor identi
cation �see DESCRIPTION OF INPUT��

IQ���I� L transferred angular momentum�

IQ���I� �������&S� � ����&J� � ��a � b� where a � b � � usually� but a � � for existence of
spin�orbit deformation and b � � for a magnetic Coulomb excitation with 
 � L � ��

T���I� Reduced nuclear matrix element multiplied by ����Int�L���	

The address of the 
rst and the last reduced nuclear matrix element between level I and level J are in
NIV���I�J� and NIV���I�J� respectively	 The table NIV is completed if there are uncoupled states for
which an angular distribution is requested and the reduced nuclear matrix elements written on 
le � as
they should be read if LO�����	TRUE	 	

Then� the table of IM multipoles� IVQ���I� is generated �

IVQ���I� L transferred angular momentum�

IVQ���I� �&S twice the transferred spin to the particle�
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IVQ���I� �&J twice the transferred spin to the target or � if &S � �	

followed by a table of form factors IVZ�
�I� including correction terms �with external potentials and
monopole or dipole corrections to vibrations in the rotational model� �

IVZ���I� Form factor control number�

IVZ���I� Address in the table of multipoles�

IVZ���I� � or address of the 
rst spin�orbit form factor�

IVZ���I� � or address of the temporary Coulomb form factor�

IVZ���I� � or address of the temporary Coulomb spin�orbit form factor�

IVZ���I� � or address of correction term �positive for corrected term� negative for correction term��

IVZ�
�I� L transferred angular momentum	

The array IQ has been changed to be �

IQ���I� Address in the table of form factors IVZ

IQ���I� Address in the table of multipoles IVQ

IQ���I� � or address of the spin�orbit form factor

but T���I� is unchanged	 A table ITX of the � starting addresses of potentials and � starting addresses
of transition form�factors is built with �

NV Number of real form factors �INVT�� INLS��

MV Number of imaginary form factors�

INVT Number of transitions� without correction terms�

INLS Number of spin�orbit form factors not taking into account multiplication by ��

INVC Number of coulomb transition form factors�

INVD Idem for coulomb spin�orbit�

INTC Same as INVT but including correction terms	

These numbers include dummy central form factors for magnetic coulomb excitations	

The reduced nuclear matrix elements are written and#or punch on 
le � on request	

In a search� this subroutine is called again if some nuclear parameter is changed �there is no nuclear
parameter if LO�
��	TRUE	�	 At the end of a search is called again if reduced nuclear matrix elements
have to be printed or punched	

E�� Subroutine VIBM

Computes the reduced nuclear matrix elements of the vibrational model� taking into account that the
phonons amplitudes and a factor �n,

p
����� is shifted to the radial form factors	 This subroutine is

limited to two�phonons states and second order vibrations and uses the functions DJCG and DJ�J	 There
is a transposition relation �
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E�� Subroutine ROTM

Computes the reduced nuclear matrix elements of the symmetric rotational model	 This subroutine calls
the function DJCG	

E�� Subroutine ROAM

Computes the reduced nuclear matrix elements of the asymmetric rotational model	 This subroutine calls
the function DJCG	 If LO����	TRUE	 the mixing parameter of the second level is used as the asymmetry
gamma angle and the mixing parameter of the 
rst levels are computed from it	

E�� Function DJCG

Computes Clebsh�Gordan coe cients	 The subroutine veri
es triangular relations	 For more details see
section �VII	B	�	a�	

E�� Function DJ�J

Computes �j coe cients	 The function tests if some angular momentum is zero to use simpler expression	
For more details see section �VII	B	�	b�	

After the call to REDM� at the �rst calculation �LO������	TRUE	�� if LO�
��	TRUE	 �exter�
nal potentials�� the subroutine EXTP is called� After return from it� informations from REDM

are copied after those of EXTP and the whole is shifted down �to prevent against variation of
the size of informations from REDM in a search��

F Subroutine EXTP

The subroutine EXTP calls only the function DCGS to obtain the geometrical coe cient of a particle�hole
excitation	 The form factors are read in any order	 In case of error� the subroutine prints the list of form
factors not yet read under the form �I�J� where �I varies from � to � and �J is the potential if less or equal
to the number np of potentials and J�np is the form factor in the order printed by REDM if j � np� the
subroutine stops after this output	

The subroutine CALC computes storage requirements for potentials� calls the subroutine
STIM to obtain remaining time before calculation� Then� CALC calls CAL��

G Subroutine CAL�

This subroutine computes from form factors to 
nal results	 It calls the subroutines POTE� CONU� QUAN�
MTCH� INTI� INTR� INCH� SCAM� SCHE and RESU	 If the computation is the last one of a search �

� if no printing is requested� LO������	TRUE	�

� if the printing related to LO���� or LO���� to LO���� and the punching related to LO����� LO����
or LO���� �this last one if LO�����	TRUE	� are not requested� and if the last �� is the best one�
LO���
��	TRUE	�

� if LO���
��	FALSE	� all the calculation has to be done again	

If LO���
��	TRUE	 and the printing of potentials is requested� CAL� calls the subroutine POTE and the
subroutine SCHE after return	 If LO������	TRUE	� CAL� calls the subroutine SCHE	

First� CAL� set to � all the memories needed for the computation of potentials and calls POTE	
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G�� Subroutine POTE

This subroutine computes the form factors	

It calls the subroutines ROTP� FOLD and STDP	

If LO���
��	TRUE	 and LO�����	TRUE	� this subroutine prints only the form factors	

For standard models� there is a do�loop on the potentials� of which only the 
rst is deformed	 For each
potential� POTE calls the subroutine ROTP and� if LO��
��	TRUE	 �folding�� the subroutine FOLD	 Instead
of that� if LO�
��	TRUE	 �external potentials�� POTE calls the subroutine STDP	 If LO�����	TRUE	� the
potentials are punched on 
le � with the format needed by subroutine EXTP	 In the Schr
odinger formalism�
volume and surface potentials are added together	

If there are some� corrections are done	 Separately for central � spin�orbit� coulomb and spin�orbit
coulomb transition form factor in the Schr
odinger formalism� the scalar� vector� tensor� coulomb tran�
sition form factors in the Dirac formalism� the correction form factor is added to the form factor to be
corrected in such a way that the integral with rL�� vanishes	 For spin�orbit transition form factors in
the Schr
odinger formalism� it is the form factor V��r

� which is used with a factor rL��	

%From there� the subroutine proceeds quite di�erently for the two formalism �

� Schr�odinger formalism including equivalent for a Dirac formalism	

The coulomb potentials are added to the central ones� keeping their strengths in VCO for the po�
tentials �correction to r�� behaviour� and in VDO for the transitions	 The coulomb magnetic form
factors are multiplied by $hc�mrMu	 The potentials are printed on request	

� Dirac formalism

The Schr
odinger potential for each level j is computed separately and stored in the array V���I�J�
with I�� to I���� real part for odd I and imaginary part for even I �

V��� ��J� Central potential�

V��� ��J� Spin�orbit potential�

V��� ��J� D � E �m � Vv � Vs divided by $hc�

V��� 
�J� D� � E �m � Vv � Vs divided by $hc�

V��� ��J� �E �m� Vv � Vs�
�

� more precisely square root of V��� ��J��

V������J� �E �m� Vv � Vs�
�� multiplied by $hc�

V������J� Tensor potential multiplied by $hc	

The transitions are stored after that beginning by the scalar and vector ones �

V��� ��J� V �
v � V �

s to use between large components�

V��� ��J� V �
v � V �

s to use between small components	

followed by the tensor ones �

V��� ��J� derivative of the tensor potential d
drV

�
T �

V��� ��J� tensor potential V �
T divided by r	

The strengths of the coulomb potentials are kept in VCO and those of coulomb transitions in VDO	 The
coulomb magnetic form factors are multiplied by $hc�mrMu	 The potentials are printed on request	
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G���a Subroutine ROTP

This subroutine computes the potentials and the transition form factors for all the standard models	 It
calls the subroutines ROTD� ROTZ� COPO and DERI	

If a di�useness� except for the coulomb potentials� is less than 	�� times the step size� it is changed
into the maximum of its opposite and 	��-step size� if a radius is less than the step size and symmetrised
Woods�Saxon potentials are not used� it is changed into the maximum of its opposite and the step size
�this can be useful in a search�	

For the asymmetric rotational model� this subroutine uses a large array of weights and rotation matrix
elements which are DATA in ROTD	 The symmetric rotational model uses one half of a �� points Gauss�
Legendre integration of which abscissae and weights are DATA in POTE	 A table of deformation is built
for all the transition for factors and the subroutine ROTD is called to get the number of points of angular
integration� starting values� increments and so on	

For each value of r and for each angle �see ROTD�� up to the fourth derivative can be needed �spin�orbit
transition for the third order of the anharmonic vibrational model�	 They are stored in VR����
� ���
for the � components of the potential plus � Schr
odinger spin�orbit� � for up to the second derivative
and third order vibration in the Dirac formalism�	 In the Dirac formalism using Schr
odinger equivalent
�LO�����	TRUE	�� the subroutine ROTZ is called	 In other formalisms� the coulomb potentials and tran�
sitions for a non di�use charge are computed� the charge distributions of di�use charges are obtained as
the other components of the potential	 The angular integrated values are stored di�erently in the two
formalism	

If there is a charge di�useness� ROTP calls COPO to obtain the coulomb potential or transition form
factor from the charge distribution or transition	 For spin�orbit coulomb potentials� ROTP has also to call
the subroutine DERI	

G���a�i Subroutine ROTD

This subroutine returns the number of angular integration points� the weight� the radii and its two

rst derivatives at each point of each form factor	

� In the symmetric rotational model� �� points Gauss�Legendre integration method is used� reduced
to �� points by symmetry	 For a vibration� the angular dependence of the boson is included in the
weight	

� In the asymmetric rotational model� �� values of ��� �� have been chosen � the values od � are
N���� and for each value of N � there are N � � values of � equidistant from � to ���	 The matrix
of which the elements are the rotation matrix elements for these angles and L � �� with L and K
even has been inverted	 The coe cients of the �� lowest �L�K� are stored as integration weights	

� In the vibrational model� the angular integration reduces to one point	

G���a�ii Subroutine ROTZ

The Schr
odinger equivalent equation to the Dirac equation is supposed to describe also the inelastic
scattering	 For the vibrational model� the result of elastic scattering should be the same than the fure
Dirac formalism� inelastic scattering is described by derivatives of these potential	 In the rotational
model� result should be di�erent because gradient and Laplacian are computed on potentials depending
on � instead of its monopole part	

G���a�iii Subroutine COPO

Computes the coulomb potential and the coulomb interactions from the density distribution of charge
and the form factors of charge transition	
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G���a�iv Subroutine DERI

Tis subroutine returns the derivative x�r� � � d
dr
y�r� of a function y�r� known by n equidistant points

by steps h or this result divided by r	 The formulae used are given by Equ	 �III	��� to Equ	 �III	���	
The subroutine stops if there are less than � points	

G���b Subroutine FOLD

When called directly from POTE� this subroutine folds separately the real potential� the imaginarypotential
and the coulomb potential with a particle density which can be a Woods�Saxon distribution or a Gaussian
one	 This subroutine can be called from the subroutine STDP to perform the same operations on each
components of the potentials and of the transition form factors independently	 To obtain spin�orbit form
factors� and derivatives in Dirac formalism� the subroutine DERI is used	

G���c Subroutine STDP

This subroutine computes the external form factors of which the parameters are read in EXTP and calls
the subroutines INTP� STBF� COPO� DERI and FOLD	 The form factors can be �

� Copy of another form factor�

� Interpolated from values read on cards by subroutine INTP� eventually derived with subroutine
DERI for spin�orbit form factors or Dirac formalism�

� Woods�Saxon volume and surface form factors at some power and their derivatives which can
be deformed with even or odd deformation�

� Single or product of two Laguerre polynomials or solutions in a Woods�Saxon potential computed
ib subroutine STBF�

� Sums of Bessel functions or their derivatives	 For L � �� the zeros are zn � n�� for L � � to
L � ��� the L � � 
rst zeros are stored as data� all the others are given by Mc Mahon formula
which can be written here �

zn � �n�
�

�
L�� � L�L� ��

��n� L��

�
� �

�L�L� ��� �
���n� L����

�
���L��L � ��� � ���L�L� �� � ���

����n� L����

�
����L��L � ��� � ����L��L � ��� � �����L�L� ��� �����

�����n� L����
�

�VIII	��

�see Ref	 ����� page ����	

If folding is requested for some form�factors� STDP calls FOLD	

G���c�i Subroutine INTP

Interpolates the form factors between the points given multiplied by a normalisation factor g	 It is �

V �r� � g

i
�X
i
�

V �ri�
Y
j �
i

r � rj
ri�rj

�VIII	��

with� as long as possible� x� � x� � x � x� � x�	
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G���c�ii Subroutine STBF

This subroutine computes a Laguerre polynomials or search on the depth of a real Woods�Saxon
potential for a bound state with a given binding energy	 With negative binding energy� this subroutine
returns a real scattering state normalised to sinkr � � at in
nity	

For the last calculation� after return from POTE� CAL� calls SCHE if LO���
��	TRUE	� In
all other cases� the memories needed for the S�matrix� the compound nucleus results and the
integrated cross�sections are set to �� If there is compound nucleus �LO�����	TRUE	�� the
subroutine CONU is called�

G�� Subroutine CONU

This subroutine does the preliminary calculations for compound nucleus� as introduced in ANLECIS by
���� MOLDAUER� P	� A	� 	ANLECIS
� presented at the Workshop on Nuclear Model Computer Codes�
Trieste ������	 If there are uncoupled states� CONU computes their transmission coe cients� using the
subroutines MTCH and INSH or INRH in the Schr
odinger and the Dirac formalism respectively	

There is a pseudo�loop on parities ��rst� same parity for the levels and the angular momen�
tum and� last� opposite parities� and inside it� another do�loop on the total angular momentum�
Inside these two pseudo�loops� CAL� calls the subroutine QUAN�

G�� Subroutine QUAN

This subroutine 
nd the quantum numbers of all the equations coupled for a given total angular mo�
mentum J and a given parity	 If there are none for the 
rst level� it returns to CAL�	 The subroutine
computes all the coupling between equations and scans if some coe cients are zeros or can be summed
up	 The coe cients between levels I� and I� are multiplied by WV���I���WV���I��	 Results less than
����� are eliminated	 The address of the 
rst coe cient is stored in NVI���I��I��� the address of the
last one in NVI���I��I�� and the address of the last derivative one in NVI���I��I��	 The subroutine
counts the number of couplings coupling between the equations and tests if there will be derivatives of
the functions	 This subroutine calls the functions DCGS� DJ�J and DJ�J	

G���a Function DCGS

This subroutine computes special Clebsch�Gordan coe cients for which the formula involves no summa�
tion	 For more details� see section �VII	B	�	c�	

G���b Function DJ�J

Computes ��j coe cients	 The subroutine veri
es triangular relations	 For more details see section
�VII	B	�	d�	

After the return from QUAN� if there is no equation for the �rst level� the pseudo�loop is
ended� otherwise� CAL� calls the subroutine MTCH� Up to the call to subroutine SCAM� all the
levels are considered as incoming if compound nucleus or output of transmission coe�cients
are requested�



��� CHAPTER VIII� DESCRIPTION OF THE SUBROUTINES

G�� Subroutine MTCH

If LO���
��	FALSE	� as in the beginning of the do�loop on angular momenta of the subroutine CAL�� this
subroutine computes matching values for each equation and corrections to the S�matrix by integrals from
the matching radius to in
nity of regular and irregular Coulomb functions divided by some power of r
if Coulomb corrections are requested	 At the end of the do�loop� it can be called with LO���
��	TRUE	

and computes only integrals from � to in
nity of products of regular Coulomb functions to obtain the
reactance K�matrix	 MTCH calls the subroutines CORA to get the coe cients 
 and � of Equ IV	�� and
LINS to obtain the S�matrix from a K�matrix	 For more details� see section �IV	A�	

G���a Subroutine CORA

For given angular momenta� this subroutine returns the four coe cients 
 needed in the asymptotic
region in Equ IV	��� if its last argument is 	TRUE	 �this argument is LO���
�	 When this last argument
is 	FALSE	� it returns also the four other coe cients � needed for 
nite integrals	 For limitations� see
INPUT DESCRIPTION	

G���b Subroutine LINS

This subroutine solves a complex linear system of equations with real and imaginary parts in di�erent
array	 This subroutine is also called by INCH	

After return from MTCH and after some storage evaluations �

� If LO���
��	TRUE	� the subroutine CAL� skips the numerical integration and calls
SCAM at the end of the loop on total angular momentum�

� If LO��

��	TRUE	 �Dirac formalism�� the subroutine CAL� calls �rst INTR and then
SCAM�

� If LO�����	TRUE	 or LO������	TRUE	 �Schr
odinger formalism with usual coupled
equations�� the subroutine CAL� calls �rst INCH and then SCAM�

� In other cases� the subroutine CAL� calls INTI and then �

� If convergence is not obtained �LO��
���	FALSE	� and if LO�����	TRUE	 to allow
that� LO����� is set 	TRUE	 and the subroutine QUAN is called again with the same
quantum numbers�

� In any other case� the subroutine CAL� calls SCAM�

G�� Subroutine INTI

This subroutine solves the set of coupled equations by iterations	 First� it calls the subroutine INSH to
solve the diagonal homogeneous equations� unless there is indications from QUAN that this solution has
been conserved	 If all the coupling have to be computed �LO��

��	TRUE	�� their are computed and the
address of the real and the imaginary coupling between equation I� and I� are stored in NVI���I��I��
and NVI���I��I��� those of the derivative coupling in NVI���I��I�� and NVI���I��I��	 The system is
solved for each equations related to the 
rst level �

� This uncoupled solution and its phase�shift is transferred as the corresponding function of the
complete solution� eventually with a preliminary call to the subroutine INSI to derive the uncoupled
function�

� The iteration procedure is started �

� If there are Coulomb corrections� the matching conditions are computed� using the phase�
shifts known at that stage�
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� The subroutine INSI is called�

� The equations of which the coupling is too small are counted�

� The maximum phase�shift is computed to be compared to ���� to decide that it is the last
iteration	

G���a Subroutine INSH

This subroutine solves a single homogeneous equation	 It computes the potential and solve the equation
with the Numerov or the Modi
ed Numerov method� with a correction term if LO�����	TRUE		 The
matching is with two points	 If there is only elastic scattering� computation of transmission coe cients
for uncoupled state� the subroutine returns	 Otherwise� the solution is normalised� the point from which
the solution is larger than a minimumvalue obtained	 For DWBA �LO�����	TRUE	�� the subroutine returns
at this point� otherwise� the irregular solution computed by backward integration down to this point	

G���b Subroutine INSI

This subroutine solves the inhomogeneous equation	 The second members are obtained by multiplica�
tion of the coupled solution with the potentials and the geometrical coe cient or with the coupling
if LO��

��	TRUE	 �usually quicker�	 The contribution of the derivative of coupled solution is added	
the subroutine compute from which point the inhomogeneous term is not too small	 Unless there is no
inhomogeneous term �

� the integral of the regular uncoupled function with the inhomogeneous term is computed�

� the phase�shift is obtained�

� if LO�����	FALSE	 �not pure DWBA� the backward integral with the irregular uncoupled function
and the solution taking into account correction for the Green�s function are obtained in the same
loop�

� the subroutine computes the point from which the solution is not too small	

If the di�erence with last iteration is too large� that the iteration is at least the fourth one� that
convergence was obtained for all the other equations in this iteration� INSI calls the subroutine PADE	
If needed� it computes the derivative multiplied by r with formulae analogous to those of DERI	 This
subroutine can be used to do only this last derivation	

G���c Subroutine PADE

This subroutine is called by INSI and INRI	 It computes Pade approximants with the results of all the
iterations	 It evaluates them with all the partial series and returns the mean value of the two nearest
successive results if convergence is obtained	

G���d Subroutine INCH

This subroutine is called by CAL� as an alternative to the call to subroutine INTI to use usual coupled
equations instead of iterations	 It solves the system of coupled equations with the Modi
ed Numerov
method	 It computes the matrices of coupling in as many points as possible� leaving free the place of
a 
rst matrix	 Then it computes V �

i�j � Vi�j � h�
P

k Vi�kVk�j���� shifting the result downwards	 These
values are used in the integration procedure	 If LO�����	TRUE	� there is a Schmidt�s orthogonalisation
procedure between the solutions every ITERM points	 The matching uses the values at two points	 The
C�matrix is obtained by a call to the subroutine LINS	 Lines of the C�matrix are computed instead of
columns	 However� if coulomb corrections� Hauser�Feshbach corrections or punch of penetrabilities are
requested� the complete matrix is computed	 For Coulomb corrections� another system of linear equations
is built and solved with the subroutine LINS �see Ref	 ���� Equ ���� and explanations above it�	
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G�� Subroutine INTR

This subroutine is similar to INTI	 It calls the subroutines INRH and INRI instead of INSH and INSI	 The
mean di�erence is the storage of tensor form factors	

G���a Subroutine INRH

This subroutine solves a single homogeneous equation with the Schr
odinger equivalent potential obtained
in POTE	 It computes the potential and solve the equation with the Numerov or the Modi
ed Numerov
method� with a correction term if LO�����	TRUE		 The matching is with two points	 If there is only
elastic scattering� computation of transmission coe cients for uncoupled state� the subroutine returns	
Otherwise� the large component is computed and the point from which it is larger than a minimum value
obtained� the two solutions are derived and the small components obtained with the Dirac equation	

G���b Subroutine INRI

This subroutine solves the inhomogeneous equation in the Dirac formalism	 With tensor interaction
instead of deformed spin�orbit� the operations are very similar to those of subroutine INSI	 The subroutine
INRI calls the subroutine PADE in the same circumstances as subroutine INSI	 Corrections for 
nite step
size are given by Equ	 �III	���� and �III	����	

G�� Subroutine SCAM

This subroutine computes the transmission coe cients if they are requested	 For compound nucleus�
SCAM computes gamma� 
ssion and 
nd transmission coe cients of uncoupled states related to this total
angular momentum	 This subroutine stores the results of coupled equations in a two dimensional array
in such a way that one index is the total angular momentum and� for a 
xed values of the other� the
quantum numbers are increased by the di�erence of total angular momentum	 This disposition will make
interpolation easier	 If iterations are used� the crude results are multiplied by WV���I� where I is the
level� to avoid any further factor in the computation of cross�sections	 If usual coupled equations are
used� they are divided by this quantities to take into account that a line of the matrix has been obtained
instead of a column	 If compound nucleus is used� results related to this total angular momentum are
computed and stored	 SCAM calls the subroutine DIAG to diagonalise the S�matrix if LO�����	FALSE		

G���a Subroutine DIAG

This subroutine diagonalises a hermitian complex matrix with an extension of Jacobi�s method	 Real
and imaginary values are in di�erent array	

In subroutine CAL�� there are the tests of convergence to end the pseudo�loop on total
angular momentum or to shift from nuclear to asymptotic region when there are coulomb
corrections�

If the pseudo�loops are ended� CAL� calls the subroutine SCHE� RESU� set LO���
��	TRUE	�
LO������	FALSE	 and returns�

G�� Subroutine SCHE

This subroutine computes an array of square roots of integer	 If LO������	TRUE	� the subroutine re�
turns� if LO���
��	TRUE	� it calls LCSP if requested and returns	 In other cases� this subroutine replaces
the values stored by the subroutine SCAM by the scattering coe cients in the helicity formalism	 First�
the subroutine computes a table of quantum numbers	 Then� the interpolations are done if they are
needed �on the complex values or on their polar expression� by the method used in subroutine INTP�	
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Then� for each total angular momentum and parity� the subroutine computes by recurrence the Clebsch�
Gordan coe cients needed to go to the helicity formalism� transforms the scattering coe cients and
computes the Hauser�Feshbach corrections if they are requested	 The scattering coe cients are sym�
metrised for identical particle and target with non zero spins	 Then� the reactions cross�sections are
computed	 If LO�����	TRUE	 �Legendre expansions printed and punched�� the subroutine LCSP is called	
If LO���
��	FALSE	 and LO�����	TRUE	 �factorisation of �� x cos ��� new amplitudes f �J are computed
as described in section �VII	C	��	

G���a Subroutine LCSP

This subroutine computes the coe cients of the expansion of the cross�sections in terms of Legendre
polynomials	 For charges particles elastic scattering� the cross�section is multiplied by ��� cos ��n where
n is given �default option n � �� for di�erent particle and target� by �� � cos� ��n for identical particle
and target	 Only even coe cients are given for compound nucleus contribution	 See section �VII	C	��	

G�� Subroutine RESU

This subroutine prints comparison of computed values and experimental values� computes experimental
normalisations and ��� prints results at equidistant angles	 In a search� if the computation is ended� the
subroutine copies the scattering matrices related to the best ��	 Then� for each angular distribution�
RESU calls the subroutine SCAT for each data and computes the partial ��	 If the �� is the best obtained
up here� the scattering matrices are copied in another array	 If complete output is requested� results are
printed and a graph can be drawn by a call to the subroutine GRAL� cross�sections and polarisations are
computed at equidistant angles by the subroutine SCAT and a graph can be drawn by the subroutine
GRAL	 If results are requested in the Laboratory system� the angles are transformed by Equ	 �VII	���
before the call to subroutine SCAT and the cross�sections multiplyed by the factor given in Equ	 �VII	���	

G���a Subroutine SCAT

This subroutine computes the observables	 In a 
rst part it computes the helicity amplitudes with
the reduced rotation matrix elements obtained by a call to subroutine EMRO	 A simple loop gives the
cross�section in all cases �they are the sum of the squares of the amplitudes multiplied by XZ computed
in subroutine LECT� and the vector polarisation and analysing power for spins �#� and �	 The other
observables involve do�loops and coe cients which were computed in subroutine OBSE and are used after
transfer in some memories in equivalence	 If observables are in the Laboratory system or with axis of
quanti
cation along the incoming direction� the collision matrix is rotated as indicated by Equ	 �VII	����
�VII	��� or the angle ��	

G���b Subroutine EMRO

This subroutine computes a series of reduced rotation matrix elements with increasing angular momentum
and the same magnetic quantum numbers	 It uses upwards recurrence relations	 Square roots are avoided
by a table of square roots of integer as argument	 In fact� there are three independent computations� one
if none of the two magnetic quantum numbers are zeros� the second if one of them is zero and the third
if both of them are zeros	

G���c Subroutine GRAL

This subroutine prints graphs of cross�sections or polarisations	 For di�erent values of its last argument�
it can print or not experimental data on the same graph	

After the return from CAL�� in the subroutine CALC �
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� if there is no automatic search of if it is to its end�

� if LO��
��	TRUE	 the subroutine EVAL is called�

� if LO��
��	FALSE	 the working array is given back and the subroutine CAL� is
called� the computation can be stopped by a card 	FIN 
�

� if there is an automatic search which is not �nished�

� the subroutine STIM is called to get the time needed in CAL��

� the subroutine VARI is called with KF���

� if LO�����	TRUE	 and it is the last run allowed for the job� the subroutine REST

is called with KF�
�

� then the subroutine FITE is called�

� the subroutine VARI is called with KF�
�

H Subroutine VARI

This subroutine is called before FITE with its 
rst argument KF�� and after the return from FITE with
KF�	 Its second argument is the control KE of FITE	 At the 
rst call �KF�� and KE�
�� the subroutine
de
nes the variables in search	 For all the calls with KF��� the �� value are only printed	 When called
after FITE� the parameters are set to their values for the next evaluation and if the calculation has to be
stopped for any reason� the 
nal parameters are printed	

I Subroutine REST

The 
rst argument of this subroutine� KF can be � or �	 If KF�
� the commons and the beginning of the
working array which is needed to restart the calculation are written on tape �	 If KF��� these commons
and the working array are read from the tape to restart the search	

J Subroutine FITE

This is the �� minimising subroutine FITEX written by G	 SCHWEIMER� slightly modi
ed	 It calls the
subroutines FIT� and FIT�	

J�� Subroutine FIT�

Minimisation of the �� for one variable	 It is used if there is only one variable in search but also if the
subroutine FITE 
nd a linear dependency of the �� on the variables	

J�� Subroutine FIT


This subroutine replaces the subroutines LILESQ and INVATA of G	 SCHWEIMER	 If the last argument
LLO�	TRUE	 � it solves a linear least square problem jjB � A �Djj � Min	 If LLO�	FALSE	� it inverses
the product matrix AyA	 The same Householder transformation is used in the two cases	

After return from the second call to VARI� CALC calls REDM if a nuclear parameter has been
changed or at the end of a search if the nuclear matrix elements have to be printed or punched�
Then� CALC calls again CAL��

If LO�����	TRUE	 after return from CALX� CAL� calls REST with KF�� to restart a search�
Then CAL� calls FITE if the search is not ended or goes to the second call of VARI if the search
was ended�

At the end of a search� CALC calls REST with KF�
 if LO�����	TRUE	 and calls EVAL if
LO��
��	TRUE	� Otherwise� CALC calls again CALX�
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K Subroutine EVAL

This subroutine is called if LO��
��	TRUE	 	 All the parameters on which there can be automatic search
can be changed for a new calculation	 The total energy can also be changed in this subroutine� to simplify
the input for the calculation of an excitation function	

After the call to EVAL� the subroutine CALC calls again the subroutine COLF if the total
energy has been changed� the subroutine REDM if some nuclear parameters or nuclear matrix
elements are modi�ed� the subroutine CAL� in the other cases�

L Summary

Without the calls to MEMO� HORA and STIM� the structure of the code is given by the following table �

� CALC CALX �INPA� INPB� INPC� LECL� LECT� DEPH� LECD� OBSE�

� �� COLF FCOU FCZ
						

� �� �� COCL

� �� �� CORI COR
 FCOU FCZ
					

� �� �� �� CORZ

� �� REDM VIBM �DJCG� DJ�J�

� �� �� ROTM DJCG

� �� �� ROAM DJCG

� �� EXTP DJCG

� �� CAL� POTE ROTP �ROTD� ROTZ� COPO� DERI�

� �� �� �� STDP STBF FCOU FCZ
						

� �� �� �� �� FOLD DERI

� �� �� �� �� �INTP� COPO� DERI�

� �� �� �� FOLD DERI

� �� �� CONU MTCh �CORA� LINS�

� �� �� �� �INSH� INRH�

� �� �� QUAN �DCGS� FJ�J� DJ�J�

� �� �� MTCH �CORA� LINS�

� �� �� INTI INSH

� �� �� �� INSI PADE

� �� �� INCH �INSH� LINS�

� �� �� INTR INRH

� �� �� �� INRI PADE

� �� �� SCAM DIAG

� �� �� SCHE �DJ�J� LCSP�

� �� �� RESU SCAT EMRO

� �� �� �� GRAL

� �� VARI

� �� REST

� �� FITE �FIT�� FIT��

� �� EVAL

where �PRO��PRO��PRO��means that these � subroutine are called by the subroutine written on the left
and call nothing by themselves	 For Coulomb functions� this Table must be complete by �

� FCOU FCZ
 YFAS

� �� �� YFIR �YFAS�PSI�

� �� �� YFRI YFCL PSI

� �� �� SIGM

which occurs in � places	





Chapter IX

Conclusion

A Test cases

Nine test cases have been chosen to help to use ECIS��	 There are quite arbitrary	 There are identifyed
by TSTx in columns �����	

The 
rst of them� with the titles �

ESSAI DU NOYAU COMPOSE � USUAL COUPLED EQUATIONS TST��




ESSAI DU NOYAU COMPOSE � USUAL ITERATIONS TST��
��

ESSAI DU NOYAU COMPOSE � ITERATIONS WITH DEFORMED SPIN�ORBIT POTENTIAL TST��
��

is compound nucleus at low energy	 The same calculation with � levels and � uncoupled levels is done �

� without spin�orbit deformation� without iterations and without angular distribution of uncoupled
states�

� without spin�orbit deformation� with iterations and with angular distribution of the 
rst uncoupled
states�

� with spin�orbit deformation� with iterations and with angular distribution of the two uncoupled
states�

Results show that the spin�orbit deformation does not matter in this case	

The second test case� with the title �

�� SI � �
� MEV ALPHAS� SYMMETRIC ROTATOR� NON STANDARD OBSERVABLES TST��




shows di�erent ways to de
ne observables	

The third test case� with the title �

CA�
 A ��
 MEV RELATIVISTE SAME AS ECIS�� TST��




shows the use of Dirac formalism	

The fourth test case� with the title �

��N��
�PB 
�
 MEV ELECTIC AND MAGNETIC COULOM INTERACTION TST��




���
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use a magnetic M� and electric E� Coulomb interactions	

The 
fth test case� with the title �

COMPARAISON AVEC CHUCK POUR BE� DWBA TST��




COMPARAISON AVEC CHUCK POUR BE� COUPLED EQUATIONS TST��
�


is the example of section �VI	D	�� and shows that the result with coupled equations is quite di�erent of
the result of DWBA	

The sixth test case� with the title �

TEST EXTERNAL POTENTIALS INPUT AS ECIS�� TST��




TEST EXTERNAL POTENTIALS NEW INPUT TST���
�

compare an input with external potentials as needed by ECIS�� with one of the new possibilities of
ECIS��	

The seventh test case� with the title �

ESSAI PARTICULES IDENTIQUES ET POLYNOMES DE LEGENDRE TST
�




is a calculation with identical particle of spin one half	 The expansion in Legendre polynomials of the
cross�sections are written on 
le �	

The eighth test case� with the title �

��SI � ��O ��	MEV G	S	 � �	
� MEV	 HEAVY IONS OPTION TST��




��SI � ��O ��	MEV G	S	 � �	
� MEV	 RESTART TST����


is an automatic search on � parameters which needs about �� calculations	 After �� calculations� the job
is saved on 
le � and restarted to the end	

The ninth test case� with the title �

NEUTRON DE ��	 MEV SUR GADOLINIUM COUL	 SPIN�ORBITE DEFORME TST��




NEUTRON DE ��	 MEV SUR GADOLINIUM COUL	 SPIN�ORBITE NON DEFORME TST��
��

is a calculation for neutron with spin�orbit Coulomb potential	 The two calculations� with and without
deformation of this interaction gives almost the same results	

B Missing topics

Many points quite important are not in this report �

� a detailed description of the reduced matrix elements used in the macroscopic models�

� relation between form factors of ECIS�� and of DWBA��

� more details on identical particle and target�

� more details on the use of form factors expanded with Bessel functions�

� details on the manipulation of symmetrised Woods�Saxon form factors�

� explanations on the interpolations�

� and so on	

The most important point missing here is Compound Nucleus	
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