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Abstract

A computer program is presented aiming at the calculation of bound and continuum states,

reduced transition probabilities, phase-shifts, photo-disintegration cross sections, radiative capture

cross sections, and astrophysical S-factors, for a two-body nuclear system. The code is based on a

potential model of a Woods-Saxon, a Gaussian, or a M3Y, type. It can be used to calculate nuclear

reaction rates in numerous astrophysical scenarios.
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PROGRAM SUMMARY

1. Title of program: RADCAP (RADiative CApture)

Computers: The code has been created on an IBM-PC, but also runs on UNIX ma-

chines.

Operating systems: WINDOWS or UNIX

Program language used: Fortran-77

Memory required to execute with typical data: 8 Mbytes of RAM memory and 2 MB

of hard disk space

No. of bits in a word: 32 or 64

Memory required for test run with typical data: 2 MB

No. of lines in distributed program, including test data, etc.: 3054

Distribution format: ASCII

Keywords: Potential model; Photodissociation; Radiative capture; Astrophysical S-

factors

Nature of physical problem: The program calculates bound and continuum wavefunc-

tions, phase-shifts and resonance widths, astrophysical S-factors, and other quantities

of interest for direct capture reactions.

Method of solution: Solves the radial Schrödinger equation for bound and for contin-

uum states. First the eigenenergy is estimated by using the WKB method. Then, a

Numerov integration is used outwardly and inwardly and a matching at the nuclear

surface is done to obtain the energy and the bound state wavefunction with good accu-

racy. The continuum states are obtained by a Runge-Kutta integration, matching the

Coulomb wavefunctions at large distances outside the range of the nuclear potential.

Typical running time: Almost all the CPU time is consumed by the solution of the

radial Schrödinger equation. It is about 1 min on a 1GHz Intel P4-processor machine

for a Woods-Saxon potential.
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LONG WRITE-UP

I. INTRODUCTION

In astrophysically relevant nuclear reactions two opposite reaction mechanisms are of

importance, compound–nucleus formation and direct reactions (for more details, see, e.g.,

[1]). At the low reaction energies occurring in primordial and stellar nucleosynthesis the

direct mechanism cannot be neglected and can even be dominant. The reason for this

behavior is that only a few levels exist for low excitations of the compound nucleus.

In order to calculate the direct capture cross sections one needs to solve the many body

problem for the bound and continuum states of relevance for the capture process. There

are several levels of difficulty in attacking this problem. The simplest solution is based

on a potential model to obtain single-particle energies and wavefunctions. In numerous

situations this solution is good enough to obtain the cross sections within the accuracy

required to reproduce the experiments.

In this article a computer program is described which aims at calculating direct capture

cross sections, based on a potential model. The program calculates bound and continuum

wavefunctions, phase-shifts, energy location of resonances, as well as the particle-decay

width, photodisintegration cross sections, radiative capture cross sections and astrophysical

S-factors. The formalism for this model has been developed in Refs. [2–4].

II. BOUND STATES

The computer code RADCAP calculates various quantities of interest for two-body fusion

reactions of the type

a + b −→ c + γ, or a (b, γ) c . (1)

The internal structure of the nuclei a and b is not taken into account. Thus, the states of the

nucleus c is obtained by the solution of the Schrödinger equation for the relative motion of

a and b in a nuclear + Coulomb potential. Particles a, b, and c have intrinsic spins labelled

by Ia, Ib and J , respectively. The corresponding magnetic substates are labelled by Ma, Mb

and M . The orbital angular momentum for the relative motion of a+b is described by l and

m. In most situations of interest, the particle b is a nucleon and a is a “core” nucleus. Thus
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it is convenient to couple angular momenta as l + Ib= j and j + Ia= J, where J is called the

channel spin. Below we also use the notation s, instead of Ib, for the intrinsic spin of particle

b.

The bound state wavefunctions of c are specified by

ΨJM (r) =
uJ

lj (r)

r
Y l

JM , (2)

where r is the relative coordinate of a and b, uJ
lj (r) is the radial wavefunction and Y l

JM is

the spin-angle wavefunction

Y l
JM =

∑
m , Ma

〈jmIaMa|JM〉 |jm〉 |IaMa〉 , with |jm〉 =
∑

ml , Mb

Ylml
(r̂) χMb

(3)

where χMb
is the spinor wavefunction of particle b and 〈jmIaMa|JM〉 is a Clebsch-Gordan

coefficient.

The ground-state wavefunction is normalized so that

∫
d3r |ΨJM (r)|2 =

∞∫

0

dr
∣∣uJ

lj (r)
∣∣2 = 1. (4)

The wavefunctions are calculated using a spin-orbit potential of the form

V (r) = V0(r) + VS(r) (l.s) + VC(r) (5)

where V0(r) and VS(r) are the central and spin-orbit interaction, respectively, and VC(r) is

the Coulomb potential of a uniform distribution of charges:

VC(r) =
ZaZbe

2

r
for r > RC

=
ZaZbe

2

2RC

(
3− r2

R2
C

)
for r < RC , (6)

where Zi is the charge number of nucleus i = a, b.

One can use two kinds of approach to build up the potentials V0(r) and VS(r). In a

Woods-Saxon parametrization they are given by

V0(r) = V0 f0(r), and VS(r) = − VS0

(
~

mπc

)2
1

r

d

dr
fS(r)

with fi(r) =

[
1 + exp

(
r −Ri

ai

)]−1

. (7)
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The spin-orbit interaction in Eq. 7 is written in terms of the pion Compton wavelength,

~/mπc = 1.414 fm. The parameters V0, VS0, R0, a0, RS0, and aS0 are adjusted so that the

ground state energy EB (or the energy of an excited state) is reproduced.

Alternatively, and perhaps more adequate for some situations, one can construct the

potentials using a more microscopic approach. Among these models, the M3Y interaction is

very popular. It has been shown to work quite reasonably for elastic and inelastic scattering

of heavy ions at low and intermediate energy nuclear collisions [5, 6]. It has been applied to

calculations of radiative capture cross sections with relative success (see, e.g., [7]).

In its simplest form the M3Y interaction is given by two direct terms with different ranges,

and an exchange term represented by a delta interaction:

t(s) = A
e−β1s

β1s
+ B

e−β2s

β2s
+ Cδ(s) , (8)

where one of the possible set for these parameters is given by [5, 6] A = 7999 MeV, B =

−2134 MeV, C = −276 MeV fm3, β1 = 4 fm−1, and β2 = 2.5 fm−1.

The central part of the potential is obtained by a folding of this interaction with the

ground state densities, ρa and ρb, of the nuclei a and b:

V M3Y
0 (r) = λ0V

M3Y (r) = λ0

∫
d3r1 d3r2 ρa(r1)ρb(r2) t(s) , (9)

with s = |r + r2 − r1|. λ0 is a normalization factor which is close to unity. We assume that

the densities ρi are spherically symmetric. The nuclear densities can be taken from e.g. Ref.

[8] for the charge matter densities. To obtain the matter density one can use the relation

〈r2
m〉1/2

=
√
〈r2

ch〉 − (0.85)2, where 〈r2
ch〉1/2

and 〈r2
m〉1/2

are the charge and matter rms radii

of the nucleus and the proton radius is taken as 0.85 fm.

The spin-orbit part of the optical potential is parametrized as

V M3Y
S (r) = −λS0

(
~

mπc

)2
1

r

d

dr
V M3Y (r). (10)

The bound-state wavefunctions are calculated by solving the radial Schrödinger equation

− ~2

2mab

[
d2

dr2
− l (l + 1)

r2

]
uJ

lj (r) + [V0 (r) + VC (r) + 〈s.l〉 VS0 (r)] uJ
lj (r) = Eiu

J
lj (r) (11)

where 〈s.l〉 = [j(j + 1)− l(l + 1)− s(s + 1)] /2. This equation must satisfy the boundary

conditions uJ
lj (r = 0) = uJ

lj (r = ∞) = 0 which is only possible for discrete energies E

corresponding to the bound states of the nuclear + Coulomb potential.
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III. CONTINUUM STATES

The continuum wavefunctions are calculated with the potential model as described above.

The parameters are often not the same as the ones used for the bound states. The continuum

states are now identified by the notation uJ
Elj(r), where the (continuous) energy E is related

to the relative momentum k of the system a + b by E = ~2k2/2mab.

The radial equation to be solved is the same as Eq. 11, but with the boundary conditions

at infinity replaced by (see, e.g, Ref. [9])

uJ
Elj(r −→∞) = i

√
mab

2πk~2

[
H

(−)
l (r)− SlJH

(+)
l (r)

]
eiσl(E) (12)

where SlJ = exp [2iδlJ (E)], with δlJ (E) being the nuclear phase-shift and σl (E) the

Coulomb one, and

H
(±)
l (r) = Gl(r)± iFl (r) . (13)

Fl and Gl are the regular and irregular Coulomb wavefunctions. If the particle b is not

charged (e.g., a neutron) the Coulomb functions reduce to the usual spherical Bessel func-

tions, jl (r) and nl (r).

At a conveniently chosen large distance r = R, outside the range of the nuclear potential,

one can define the logarithmic derivative

αlJ =

(
duJ

Elj/dr

uJ
Elj

)

r=R

. (14)

The phaseshifts δlJ (E) are obtained by matching the logarithmic derivative with the asymp-

totic value obtained with the Coulomb wavefunctions. This procedure yields

SlJ =
G′

l − iF ′
l − αlJ (Gl − iFl)

G′
l + iF ′

l − αlJ (Gl + iFl)
, (15)

where the primes mean derivation with respect to the radial coordinate at the position R.

The continuum wavefunctions are normalized so as to satisfy the relation

〈
uJ

Elj|uJ ′
E′l′j′

〉
= δ (E − E ′) δJJ ′δjj′δll′ , (16)

what means, in practice, that the continuum wavefunctions uElj(r) are normalized to

−
√

2mab/π~2k eiδlJ sin(kr + δlJ) at large r.

A resonance in a particular channel lJ is characterized by

d2δlJ

dE2

∣∣∣∣
ER

lJ

= 0, and
dδlJ

dE

∣∣∣∣
ER

lJ

> 0 . (17)
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The single-particle width of the resonance can be calculated from

ΓR
lJ = 2

(
dδlJ

dE

∣∣∣∣
ER

lJ

)−1

. (18)

IV. MULTIPOLE MATRIX ELEMENTS

The operators for electric transitions of multipolarity λπ are given by (see, e.g. Ref. [11])

OEλµ = eλ rλYλµ (r̂) , (19)

where the effective charge, which takes into account the displacement of the center-of-mass,

is

eλ = Zbe

(
−ma

mc

)λ

+ Zae

(
mb

mc

)λ

. (20)

For magnetic dipole transitions

OM1µ =

√
3

4π
µN

[
eM lµ +

∑

i=a,b

gi (si)µ

]
, eM =

(
m2

aZa

m2
c

+
m2

bZb

m2
c

)
, (21)

where lµ and sµ are the spherical components of order µ (µ = −1, 0, 1) of the orbital and

spin angular momentum (l = −ir×∇, and s = σ/2) and gi are the gyromagnetic factors of

particles a and b. The nuclear magneton is given by µN = e~/2mNc.

The matrix element for the transition J0M0 −→ JM , using the convention of Ref. [11],

is given by

〈JM |OEλµ| J0M0〉 = 〈J0M0λµ|JM〉 〈J ‖OEλ‖ J0〉√
2J + 1

. (22)

From the single-particle wavefunctions one can calculate the reduced matrix elements

〈lj ‖OEλ‖ l0j0〉J . The subscript J is a reminder that the matrix element depends on the

channel spin J , because one can use different potentials in the different channels. The

reduced matrix element 〈J ‖OEλ‖ J0〉 can be obtained from a standard formula of angular

momentum algebra, e.g. Eq. (7.17) of Ref. [12]. One gets

〈J ‖OEλ‖ J0〉 = (−1)j+Ia+J0+λ [(2J + 1) (2J0 + 1)]1/2





j J Ia

J0 j0 λ



 〈lj ‖OEλ‖ l0j0〉J . (23)

To obtain 〈lj ‖OEλ‖ l0j0〉J one needs the matrix element
〈
lj

∥∥rλYλ

∥∥ l0j0

〉
J

for the spherical

harmonics, e.g. Eq. (A2.23) of Ref. [13]. For l0 + l + λ = even, the result is

〈lj ‖OEλ‖ l0j0〉J =
eλ√
4π

(−1)l0+l+j0−j λ̂ĵ0

̂
< j0

1
2
λ0|j 1

2
>

∫ ∞

0

dr rλ uJ
lj (r) uJ0

l0j0
(r) , (24)
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where we use here the notation k̂ =
√

2k + 1, and k̃ =
√

k(k + 1). For l0 + l + λ = odd, the

reduced matrix element is null.

Eqs. 22 and 23 can also be used for the magnetic dipole excitations. In comparison with

the electric dipole transitions their cross sections are reduced by a factor of v2/c2, where v is

the relative velocity of the a+b system. At very low energies, v ¿ c, and the M1 transitions

will be much smaller than the electric transitions. Only in the case of sharp resonances, the

M1 transitions play a role, e.g. for the J = 1+ state in 8B at ER = 630 keV above the

proton separation threshold [4, 14]. However, the potential model apparently is not good

in reproducing the M1 transition amplitudes [15]. We only treat here the case in which the

particle b is a nucleon. For that one needs the reduced matrix elements
〈
lj

∥∥∥l̂
∥∥∥ l0j0

〉
J

and

〈lj ‖σ̂‖ l0j0〉J which are, e.g., given by Eqs. (A2.20) and (A2.19) of Ref. [13]. For l = l0 one

obtains

〈lj ‖OM1‖ l0j0〉J = (−1)j+Ia+J0+1

√
3

4π
ĴĴ0





j J Ia

J0 j0 1



 µN

×
{

1

l̂0
eM

[
2j̃0

l̂0

(
l0δj0, l0+1/2 + (l0 + 1) δj0, l0−1/2

)
+ (−1)l0+1/2−j ĵ0√

2
δj0, l0±1/2δj, l0∓1/2

]

+ gN
1

l̂20

[
(−1)l0+1/2−j0 j̃0δj, j0 − (−1)l0+1/2−j ĵ0√

2
δj0, l0±1/2δj, l0∓1/2

]

+ga (−1)Ia+j0+J+1 Ĵ0Ĵ ÎaĨa





Ia J j0

J0 Ia 1









∫ ∞

0

dr uJ
lj (r) uJ0

l0j0
(r) , (25)

The spin g-factor is gN = 5.586 for the proton and gN = −3.826 for the neutron. The

magnetic moment of the core nucleus is given by µa = gaµN . If l 6= l0 the magnetic dipole

matrix element is zero.
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V. THE ASTROPHYSICAL S-FACTOR

The multipole strength, or response functions, for a particular partial wave, summed over

final channel spins, is defined by

dB (πλ; l0j0 −→ klj)

dk
=

∑
J

|〈kJ ‖Oπλ‖ J0〉|2
2J0 + 1

=
∑

J

(2J + 1)





j J Ia

J0 j0 λ





2

|〈klj ‖Oπλ‖ l0j0〉J |2 , (26)

where π = E, or M .

If the matrix elements are independent of the channel spin, this sum reduces to the usual

single-particle strength |〈klj ‖Oπλ‖ l0j0〉|2 / (2j0 + 1). For transitions between the bound

states the same formula as above can be used to obtain the reduced transition probability

by replacing the continuum wavefunctions uJ
klj (r) by the bound state wavefunction uJ

lj (r).

That is,

B (πλ; l0j0J0 −→ ljJ) = (2J + 1)





j J Ia

J0 j0 λ





2

|〈lj ‖Oπλ‖ l0j0〉|2 . (27)

For bound state to continuum transitions the total multipole strength is obtained by

summing over all partial waves,

dB (πλ)

dE
=

∑

lj

dB (πλ; l0j0 −→ klj)

dE
. (28)

The differential form of the response function in terms of the momentum E is a result of

the normalization of the continuum waves according to Eq. 12.

The photo-absorption cross section for the reaction γ + c −→ a + c is given in terms of

the response function by [10]

σ(λ)
γ (Eγ) =

(2π)3 (λ + 1)

λ [(2λ + 1)!!]2

(mab

~2k

) (
Eγ

~c

)2λ−1
dB (πλ)

dE
, (29)

where Eγ = E+|EB|, with |EB| being the binding energy of the a+b system. For transitions

between bound states, one has

σ(πλ)
γ (Eγ) =

(2π)3 (λ + 1)

λ [(2λ + 1)!!]2

(
Eγ

~c

)2λ−1

B (πλ; l0j0J0 −→ ljJ) δ (Ef − Ei − Eγ) , (30)
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where Ei (Ef ) is the energy of the initial (final) state.

The cross section for the radiative capture process a + b −→ c + γ can be obtained by

detailed balance [10], and one gets

σ
(rc)
(πλ) (E) =

(
Eγ

~c

)2λ−1
2 (2Ic + 1)

(2Ia + 1)(2Ib + 1)
σ(λ)

γ (Eγ) . (31)

The total capture cross section σnr is determined by the capture to all bound states with

the single particle spectroscopic factors C2Si in the final nucleus

σnr (E) =
∑

i,π,λ

(C2S)i σ
(rc)
(πλ),i (E) . (32)

Experimental information or detailed shell model calculations have to be performed to obtain

the spectroscopic factors (C2S)i. For example, the code OXBASH [16] can used for this

purpose.

For charged particles the astrophysical S-factor for the direct capture from a continuum

state to the bound state is defined as

S(c) (E) = E σnr (E) exp [2πη (E)] , with η (E) = ZaZbe
2/~v, (33)

where v is the relative velocity between a and b.

VI. NUCLEAR REACTION RATES IN STELLAR ENVIRONMENTS

The nuclear reaction rate, measuring the number of reactions per particle pair, a + b,

per second in the stellar environment can be calculated from the nuclear cross section σ

for a given reaction by folding it with the velocity distribution of the particles involved. In

most astrophysical applications the nuclei are in a thermalized plasma, yielding a Maxwell-

Boltzmann velocity distribution. The astrophysical reaction rate R at a temperature T can

then be written as [17]

R(T ) =
nanb

1 + δab

〈σv〉 , (34)

where ni is the number density of the nuclear species i. The denominator takes care of the

special case of two identical nuclei in the entrance channel. The quantity 〈σv〉 is given by

〈σv〉 =

(
8

πmab

)1/2
1

(kBT )3/2

∫ ∞

0

σ(E) E exp

(
− E

kBT

)
dE , (35)
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with kB the Boltzmann constant.

The threshold behavior of radiative capture cross sections is fundamental in nuclear as-

trophysics because of the small projectile energies in the thermonuclear region. For example,

for neutron capture near the threshold the cross section can be written [10] as

σif =
π

k2

−4kR Imα0

|α0|2
, (36)

where α0 is the logarithmic derivative for the s wave, given by Eq. 14. Since α0 is only

weakly dependent on the projectile energy, one obtains for low energies the well–known

1/v–behavior.

With increasing neutron energy higher partial waves with l > 0 contribute more signifi-

cantly to the radiative capture cross section. Thus the product σv becomes a slowly varying

function of the neutron velocity and one can expand this quantity in terms of v or
√

E

around zero energy:

σv = S(n)(0) + Ṡ(n)(0)
√

E +
1

2
S̈(n)(0)E + . . . . (37)

The quantity S(n)(E) = σv is the astrophysical S–factor for neutron–induced reactions and

the dotted quantities represent derivatives with respect to E1/2, i.e., Ṡ(n) = 2
√

E dS(n)

dE
and

S̈(n) = 4E d2S(n)

dE2 +2 dS(n)

dE
. Notice that the above astrophysical S–factor for neutron–induced

reactions is different from that for charged–particle induced reactions. In the astrophysi-

cal S–factor for charged–particle induced reactions also the penetration factor through the

Coulomb barrier has to be considered (Eq. 33).

Inserting this into Eq. 35 we obtain for the reaction rate for neutron–induced reactions

〈σv〉 = S(0) +

(
4

π

) 1
2

Ṡ(0)(kBT )
1
2 +

3

4
S̈(0)kBT + . . . . (38)

In most astrophysical neutron–induced reactions, neutron s–waves will dominate, result-

ing in a cross section showing a 1/v–behavior (i.e., σ(E) ∝ 1/
√

E). In this case, the reaction

rate will become independent of temperature, R = const. Therefore it will suffice to mea-

sure the cross section at one temperature in order to calculate the rates for a wider range

of temperatures. The rate can then be computed very easily by using

R = 〈σv〉 = 〈σ〉T vT = const , (39)

with

vT =

(
2kT

m

)1/2

. (40)
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The mean lifetime τn of a nucleus against neutron capture, i.e., the mean time between

subsequent neutron captures is inversely proportional to the available number of neutrons

nn and the reaction rate Rnγ:

τn =
1

nnRnγ

. (41)

If this time is shorter than the beta–decay half–life of the nucleus, it will be likely to capture

a neutron before decaying (r-process). In this manner, more and more neutrons can be

captured to build up nuclei along an isotopic chain until the beta–decay half–life of an

isotope finally becomes shorter than τn. With the very high neutron densities encountered

in several astrophysical scenarios, isotopes very far–off stability can be synthesized.

For low |EB|-values, e.g. for halo-nuclei, the simple 1/v-law does not apply anymore. A

significant deviation can be observed if the neutron energy is of the order of the |EB|-value.

In this case the response function in Eq. 28 can be calculated analytically under simplifying

assumptions (see Ref.[18]). For direct capture to weakly bound final states, the bound–state

wave function ulj(r) decreases very slowly in the nuclear exterior, so that the contributions

come predominantly from far outside the nuclear region, i.e., from the nuclear halo. For this

asymptotic region the scattering and bound wave functions in Eq. 2 can be approximated

by their asymptotic expressions neglecting the nuclear potential [19]

ul(kr) ∝ jl(kr), ul0(r) ∝ h
(+)
l0

(iηr) ,

where jl and h
(+)
l0

are the spherical Bessel, and the Hankel function of the first kind, re-

spectively. The separation energy |EB| in the exit channel is related to the parameter η by

|EB| = ~2η2/(2mab).

Performing the calculations of the radial integrals in Eq. 24, one readily obtains the

energy dependence of the radiative capture cross section for halo nuclei [18, 19]. For example,

for a transition s−→p it becomes

σ
(rc)
(E1)(s → p) ∝ 1√

E

(E + 3|EB|)2

E + |EB| , (42)

while a transition p→s has the energy dependence

σ
(rc)
(E1)(p → s) ∝

√
E

E + |EB| . (43)

If E ¿ |EB| the conventional energy dependence is recovered. From the above equations

one obtains that the reaction rate is not constant (for s-wave capture) or proportional to T
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(for p-wave capture) in the case of small |EB|-values. These general analytical results can

be used as a guide for interpreting the numerical calculations involving neutron halo nuclei.

In the case of charged particles S(E) is expected to be a slowly varying function in energy

for non-resonant nuclear reactions. In this case, S (E) can be expanded in a McLaurin series,

S (E) = S (0) + Ṡ (0) E +
1

2
S̈ (0) E2 + · · · (44)

Using this expansion in Eq. 35 and approximating the product of the exponentials

exp (−E/kBT ) and exp [2πη (E)] by a Gaussian centered at the energy E0, Eq. 35 can

be evaluated as [1]

〈σv〉 =

(
2

mab

)1/2
∆

(kT )3/2
Seff (E0) exp

(
−3E0

kT

)
(45)

with

Seff (E0) = S (0)

[
1 +

5

12τ
+

Ṡ (0)

S (0)

(
E0 +

35E0

12τ

)
+

S̈ (0)

2S (0)

(
E2

0 +
89E2

0

12τ

)]
. (46)

The quantity E0 defines the effective mean energy for thermonuclear fusion reactions at

a given temperature T ,

E0 = 1.22
(
Z2

aZ
2
b mabT

2
6

)1/2
keV , (47)

where T6 measures the temperature in 106 K. The quantities τ and ∆ are given by

τ =
3E0

kT
, ∆ =

4√
3

(E0kT )1/2 . (48)

An analytical insight of the cross sections and astrophysical S-factors for proton-halo

nuclei can also be developed (see, e.g., Ref. [20]). However, due to the Coulomb field

the expressions become more complicated. The analytical formulas for direct capture cross

sections involving neutron and proton halo nuclei are very useful to interpret the results

obtained in a numerical calculation.

For the case of resonances, where Er is the resonance energy, we can approximate σ (E)

by a Breit-Wigner resonance formula [10, 21]:

σr(E) =
π~2

2µE

(2JR + 1)

(2Ja + 1)(2Jb + 1)

ΓpΓγ

(Er − E)2 + (Γtot/2)2 , (49)

where JR, Ja, and Jb are the spins of the resonance and the nuclei a and b, respectively, and

the total width Γtot is the sum of the particle decay partial width Γp and the γ-ray partial
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width Γγ. The particle partial width, or entrance channel width, Γp can be expressed in

terms of the single-particle spectroscopic factor S and the single-particle width Γs.p. of the

resonance state [22]

Γp = C2S × Γs.p. , (50)

where C is the isospin Clebsch-Gordan coefficient. The single-particle width Γs.p. can be

calculated from the scattering phase shifts of a scattering potential with the potential pa-

rameters being determined by matching the resonance energy (see Eq. 18).

The gamma partial widths Γγ are calculated from the electromagnetic reduced transition

probabilities B(Ji → Jf ;L) which carry the nuclear structure information of the resonance

states and the final bound states [23]. The reduced transition rates can be computed within

the framework of the shell model.

Most of the typical transitions are M1 or E2 transitions. For these the relations are

ΓE2[eV] = 8.13× 10−7 E5
γ [MeV] B(E2) [e2fm4] (51)

and

ΓM1[eV] = 1.16× 10−2 E3
γ [MeV] B(M1) [µ2

N ] . (52)

For the case of narrow resonances, with width Γ ¿ Er, the Maxwellian exponent

exp (−E/kBT ) can be taken out of the integral, and one finds

〈σv〉 =

(
2π

mabkT

)3/2

~2 (ωγ)R exp

(
−Er

kT

)
, (53)

where the resonance strength is defined by

(ωγ)R =
2JR + 1

(2Ja + 1)(2Jb + 1)
(1 + δab)

Γp Γγ

Γtot

. (54)

For broad resonances Eq. 35 is usually calculated numerically. An interference term has

to be added. The total capture cross section is then given by [24]

σ(E) = σnr(E) + σr(E) + 2 [σnr(E)σr(E)]1/2 cos[δR(E)] . (55)

In this equation δR(E) is the resonance phase shift. Close to a resonance, the phase shift

approaches the value π/2. Thus, close to a resonance one can use the expansion

δR(E) ' π

2
− (Er − E)

dδ

dE

∣∣∣∣
R

.
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Thus, using the definition given by Eq. 18, one has

δR(E) = arctan
Γ

2(E − ER)
. (56)

Only the contributions with the same angular momentum of the incoming wave interfere

in Eq. 55.

VII. COMPUTER PROGRAM AND USER’S MANUAL

All nuclear quantities, either known from experiments or calculated from a model, as well

as the conditions realized in the experiment, are explicitly specified as input parameters. The

program RADCAP then computes the potentials, bound state energies, phase-shifts, transi-

tion probabilities, photo-dissociation cross sections and astrophysical S-factors. Besides the

main program (RADCAP.FOR), it contains 5 modules (OMP M3Y.FOR, BVALUE.FOR,

EIGEN.FOR, CONT.FOR and DICAP.FOR) to compute each of the these quantities.

The units used in the program are fm (femtometer) for distances and MeV for energies.

The output cross sections are given in millibarns and the S-factors in eV.b.

The program is very fast and does not require a complicated input. It asks the user the

calculation one wants to perform. It is divided in 5 modules and one enters the following

options when prompted on the screen:

1 - for the calculation of M3Y potential,

2 - for the calculation of energy and wavefunction of bound states,

3 - for the calculation of reduced transition probabilities between bound states,

4 - for the calculation of phase shifts and wavefunctions of continuum states,

5 - for the calculation of astrophysical S-factors, response functions, photo-dissociation,

and direct capture cross sections.

For each option, a different subroutine is used: 1=OMP M3Y, 2=EIGEN, 3=BVALUE,

4=CONT and 5=DICAP.

The inputs can be commented by using the symbol ”*” at the first position of an input

line.

Note that the angular momenta described in the text have the following correspondence

in the program: l, l0 (L, L0); j, j0 (J, J0), Ia, Ib (s) (AIA, AIB), J, J0 (AICF, AIC). The

program notation for the other variables are easy to recognize.
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We now make a description of test cases. The outputs of these test cases are put together

in a separate files *.TXT which accompanies the code packages, together with the test input

files.

A. The M3Y potential

To obtain the M3Y potential one selects the option 1. This calls the subroutine

OMP M3Y, which is in a separate file called OMP M3Y.FOR. The input file is named

M3Y.INP. If the densities are not parametrized either by a Gaussian or by a Woods-Saxon

function, one can enter them in the input file DENS.INP in rows of r × ρa(r)× ρb(r). The

first line of this input file should contain only the number of points in r. The function

DENS READ will read those densities and interpolate them for use in the other routines.

An example is calculation of the M3Y potential for the system p +7 Be as follows. For

the proton one can use a Gaussian density with radius parameter R = 0.7 fm. For 7Be

a Gaussian density parametrization can be used [8] with radius parameter R = 1.96. An

appropriate input file is listed below.

**********************************************

* ******** Input of subroutine OMP M3Y *******

* IOPT = Option for densities: = 0 Gaussian or Woods-Saxon,

* = 1 densities entered in DENS.INP

* NPNTS = number of points in the radial mesh (< 10000)

* RMAX = maximum radius size (fm) ( < 250 fm)

* IOPT NPTS RMAX

0 100 10.

* If IOPT = 0, enter density parameters (if not, comment this line with a “*”)

* R1, D1 = Woods-Saxon form (radius and diffuseness)

* R2, D2 = Same but for density of nucleus 2

* For Gaussian densities, enter D1=0, or D2=0

* R1 D1 R2 D2

0.7 0. 1.96 0.

* Mass numbers

* A1 A2
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FIG. 1: M3Y potential for the system p +7 Be.

1. 7.

**********************************************

The subroutine OMP M3Y builds up the nuclear potential and calls the subroutine

TWOFOLD which does all the work. It does the integration appearing in Eq. 9. The

outputs will appear in files OMP.TXT and OMP.INP. The later one is for use as input of

the M3Y potential by the other subroutines (if required). Figure 1 shows a plot of the

potential obtained with this input.

The output file OMP.TXT with the input described above is provided with the package

B. Eigenfunctions and energies

The option 2 calls the subroutine EIGEN, which is in a separate file called EIGEN.FOR.

If the real part of the potential is given as an input file OMP.INP (e.g. the one generated

by the subroutine OMP M3Y) it should be written in rows of r×V (r). The first line of this

input file should contain only the number of points in r. The function OMP READ will read

and interpolate the potential for use in the other routines. The subroutine DERIVATIVE

calculates its derivative to be used in the calculation of Eq. 10. Let us assume we want to

find the ground state of 8B. The 2+ ground state of 8B can be described as a p3/2 proton

coupled to the 3/2− ground state 7Be. The subroutine POTENT builds up the potential.
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An example of the input file, named EIGEN.INP, which uses a Woods-Saxon potential, is

shown as follows.

**********************************************

* ******** Input of subroutine EIGEN *******

* IOPT = option for potentials: 1 (2) for Woods-Saxon (M3Y)

* NPNTS = no. of integration points in radial coordinate ( < 10000)

* RMAX = maximum radius size ( < 250 fm)

* IOPT NPTS RMAX

1 9999 250.

* N 0 = nodes of the wave function (exclude origin)

* J0 = single-particle angular momentum

* L0 = orbital angular momentum

* N 0 J0 L0

0 1.5 1

* If IOPT = 1, enter: (if not, comment this line with a “*”)

* V0 = depth of central potential

* VS0 = depth of spin-orbit potential

* R0 = radius of the potential

* AA = diffuseness of the potential

* RS0 = radius of the spin-orbit potential

* AAS = diffuseness of the spin-orbit potential

* RC = Coulomb radius (usually, RC = R0)

*—————————————————————–

* WS = V 0 f(r,R0,AA) - V S0 (l.s) (r 0ˆ2/r) d/dr f(r,RS0,AAS)

* f(r,R0,a) = [ 1 + exp((r-R 0)/a) ]ˆ(-1)

* r 0 = 1.4138 fm is the Compton wavelength of the pion.

*—————————————————————–

* V0 R0 AA VS0 RS0 AAS RC

-44.658 2.391 0.52 -9.8 2.391 0.52 2.391

* If IOPT = 2, or else (but not 1), enter FC, FSO and RC

* (in this case, insert a “*” in the above row, or delete it)

* FC = multiplicative factor of central part of M3Y potential

18



* FSO = multiplicative factor of spin-orbit part of M3Y potential

* RC = Coulomb radius

* FC FSO RC

* 1.5 0.2 2.391

* Z1, Z2 = charges of the nuclei

* A1, A2 = masses of the nuclei (in nucleon mass units)

* Z1 A1 Z2 A2

1. 1. 4. 7.

**********************************************

In the example input shown above the potential parameters were chosen so as to reproduce

the proton separation energy in 8B which is equal to 0.136 MeV. If the M3Y potential was

used, an input of the parameters λ0 (FC), λSO (FSO), and RC in Eqs. 6, 9 and 10 is needed.

Note that this input line was commented, as we did not use it.

The calculations are mainly done in the subroutine BOUNDWAVE which solves the

Schrödinger equation for the bound-state problem. When Woods-Saxon potentials are used

they are constructed in the routine POTENTIAL.

The output of the wavefunction will be printed in EIGEN.TXT and GSWF.INP. The later

is prepared for use as input wavefunction for the subroutine BVALUE (reduced transition

probabilities), or the subroutine DICAP (direct capture subroutine). The solid line in Figure

2 shows the ground state wavefunction of 8B obtained with this input.

The solid curve in figure 2 corresponds to the output file EIGEN.TXT included in the

package.

C. Reduced transition probabilities

The option 3 calls the subroutine BVALUE which calculates reduced transition proba-

bilities. This is in a separate file called BVALUE.FOR. To make and example with 8B we

artificially generate a p3/2, 1+ state, with excitation energy of 90 keV. This can be obtained

by changing the WS potential input of EIGEN.INP to the values shown below

* V0 R0 AA VS0 RS0 AAS RC

-30.55 2.95 0.52 -8.53 2.95 0.52 2.95

The output yields a state with energy of −0.05 MeV.
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FIG. 2: The solid line shows the ground state wavefunction of 8B in the potential model and the

dotted line shows the real part of the wavefunction for the 1+ resonance in 8B at 630 keV (see text

for details).

The input file with the option 3 is to be given in BVALUE.INP. To calculate the reduced

transition probability the input file should look like the example below.

**********************************************

* ******** Input of subroutine BVALUE *******

* AIA = spin of the particle A (core)

* AIB = intrinsic spin of the particle B

* AIC = total angular momentum of the ground state of C = A + B

* (channel spin)

* J0 = single particle angular momentum of B respective to A

* L0 = relative orbital angular momentum of the ground state

* AIA AIB AIC J0 L0

1.5 0.5 2 1..5 1

* N 1 = nodes of the excited state wave function (exclude origin)

* J = single-particle angular momentum

* L = orbital angular momentum

* AICF = spin of the excited state after all angular momentum coupling

* (channel spin)
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* N 1 J L AICF

0 1.5 1 1

* JOPT = 1 (0) if final state angular momentum, AICF, is (is not) to be

* summed over all possible values. If JOPT=1, AICF in the

* previous line can be entered as any value.

* JOPT

0

* Z1, Z2 = charges of the nuclei

* A1, A2 = masses of the nuclei (in nucleon mass units)

* Z1 A1 Z2 A2

1. 1. 4. 7.

* IOPT = option for potentials: 1 (2) for Woods-Saxon (M3Y)

* Integration parameters for radial wavefunctions:

* NPNTS = no. of integration points in radial coordinate ( < 10000)

* RMAX = maximum radius size ( 250 fm)

* IOPT NPTS RMAX

1 9999 250.

* V0 = depth of central potential

* R0 = radius of the central potential

* AA = diffuseness of the central potential

* VS0 = depth of spin-orbit potential

* RS0 = radius of the spin-orbit potential

* AAS = diffuseness of the spin-orbit potential

* RC = Coulomb radius (usually, RC = R0)

*—————————————————————–

* WS = V 0 f(r,R0,AA) - V S0 (l.s) (r 0ˆ2/r) d/dr f(r,RS0,AAS)

* f(r,R0,a) = [ 1 + exp((r-R 0)/a) ]ˆ(-1)

* r 0 = 1.4138 fm is the Compton wavelength of the pion.

* (if IOPT=2, comment the input line with a “*”)

*—————————————————————–

* V0 R0 AA VS0 RS0 AAS RC

-30.55 2.95 0.52 -8.53 2.95 0.52 2.95
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* If IOPT = 2, or else (but not 1), enter FC, FSO and RC:

* (in this case, insert a ’*’ sign in above row, or delete it)

* FC = multiplicative factor of central part of M3Y potential

* FSO = multiplicative factor of spin-orbit part of M3Y potential

* RC = Coulomb radius

* (if IOPT=1, comment the input line with a “*”)

* FC FSO RC

* 1.5 0.2 2.391

* MP = multipolarity: 0 (M1), 1 (E1), 2 (E2)

* MP

2

* GA = magnetic moment (in units of the nuclear magneton) of

* particle A (core)

* GB = magnetic moment of particle B

* GA GB

2.79 -1.7

**********************************************

The output of this run yields B (E2; i −→ f) = 3.76 e2 fm4. The spectroscopic factors for the

initial and final states are taken as the unity. If they are known one just multiply this result by

their corresponding values.

The output file BVALUE.TXT with the input described above is provided with the package.

The bound state is calculated by the routine BOUNDWAVE and the 3-j and 6-j coefficients are

calculated in the routines THREEJ and SIXJ, respectively.

D. Phase-shifts and resonances

If one uses the option 4 the program will calculate the scattering phase-shifts for a given set

of potential parameters and angular momentum quantum numbers for the continuum waves. This

is in a separate file called CONT.FOR. For example, one might want to calculate the phase-shifts

for the p+8Be system in the energy interval E = 0 − 3 MeV. The input file CONT.INP could be

written as follows.
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**********************************************

* ******** Input of subroutine CONT *******

* IOPT = option for potentials: 1 (2) for Woods-Saxon (M3Y)

* NPNTS = no. of integration points in radial coordinate ( < 10000)

* RMAX = maximum radius size (< 250 fm)

* NEPTS = number of points in energy ( < 1000)

* IOPT NPNTS RMAX NEPTS

1 9999 250. 200

* V0 = depth of central potential

* VS0 = depth of spin-orbit potential

* R0 = radius of the potential

* AA = diffuseness of the potential

* RS0 = radius of the spin-orbit potential

* AAS = diffuseness of the spin-orbit potential

* RC = Coulomb radius (usually RC = R0)

*—————————————————————-

* WS = V 0 f(r,R0,AA) - V S0 (l.s) (r 0ˆ2/r) d/dr f(r,RS0,AAS)

* f(r,R0,A) = [ 1 + exp((r-R0)/a) ]ˆ(-1)

* r 0 = 1.4138 fm is the Compton wavelength of the pion.

* (if IOPT=2, comment the input line with a “*”)

*—————————————————————-

* V0 R0 AA VS0 RS0 AAS RC

-42.3 2.391 0.52 -9.8 2.391 0.52 2.391

* If IOPT = 2, or else (but not 1), enter FC, FSO and RC:

* (in this case, insert a ’*’ sign in above row, or delete it)

* FC = multiplicative factor of central part of M3Y potential

* FSO = multiplicative factor of spin-orbit part of M3Y potential

* RC = Coulomb radius

* (if IOPT=1, comment the input line with a “*”)

* FC FSO RC

* 1.5 0.2 2.391
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* Z1, Z2 = charges of the nuclei

* A1, A2 = masses of the nuclei (in nucleon mass units)

* Z1 A1 Z2 A2

1. 1. 4. 7.

* EI, EF = initial energy, final energy

* L, J = orbital angular momentum, angular momentum j (l+s)

* EI EF L J

0. 3. 1 1.5

**********************************************

A run with this input file will show the presence of a sharp resonance at 631 keV with a width

of approximately 50 keV. As for the case of bound states, the same resonance can be obtained with

a different set of WS potential parameters, e.g. with the parameters shown below.

* V0 R0 AA VS0 RS0 AAS RC

-28.65 2.95 0.52 -8.5 2.95 0.52 2.95

The continuum states are calculated by the subroutine CONTWAVE and the Coulomb wave-

functions are calculated by the subroutine COULOMB.

The dashed curve in Figure 2 corresponds to the output file CWAVE.TXT with the input

described above and provided with the package.

The phase-shifts and their derivatives with respect to energy are printed in the output file

CONT.TXT, listed in M3Y.TXT. The Figure 3 shows these quantities for the test case above.

The program also allows for the output of the continuum wavefunction for a given energy.

The output of the wavefunction is printed in CWAVE.TXT. The real part of the continuum wave

function of the 1+ resonance state at 630 keV is shown in Figure 2 (dotted line).

E. Direct capture cross sections

By choosing the option 5 the program calculates the direct capture cross sections and related

quantities. This is in a separate file called DICAP.FOR. The input file is DICAP.INP. The calcu-

lations are done in the subroutine DICAP. The output files are DICAP.TXT where the strength

functions (in units of e2 fm2λ), photodissociation cross sections (in mb), direct capture cross sec-

tions (in mb), and the astrophysical S-factors (in eV.b) are printed; DICAPL.TXT where the
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FIG. 3: Phase-shift (solid line) and its derivative (dashed line) for the p+7Be system with the

potential parameters described in the text. The 1+ resonance at 630 keV is observed.

same output is printed, prepared for using in a plot program; and SFAC.TXT where the S-factor

and its first and second derivatives with respect to the energy are printed. These can be used in

the calculation of the reaction rates by using Eqs. 44, 45 and 46.

An input example is presented below.

**********************************************

* ******** Input of program DICAP *******

* IOPT = option for potentials: 1 (2) for Woods-Saxon (M3Y)

* NPNTS = no. of integration points in radial coordinate ( < 10000)

* RMAX = maximum radius size (< 250 fm).

* NEPTS = number of points in energy ( < 1000)

* IOPT NPNTS RMAX NEPTS

1 9999 250. 200

* N 0 = nodes of the ground state wave function

* AIA = spin of the particle A (core)

* AIB = intrinsic spin of the particle B

* AIC = total angular momentum of the ground state of C = A + B

* (channel spin)
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* J0 = single-particle angular momentum

* L0 = orbital angular momentum

* EBOUND = binding energy of the ground state (absolute value)

* N 0 AIA AIB AIC AJ0 L0 EBOUND

0 1.5 0.5 2 1.5 1 0.14

* JOPT = 1 (0) if final state angular momentum, AICF, is (is not) to be

* summed over all possible values. If JOPT=1, AICF can be

* entered as any value.

* AICF = spin of the excited state after all angular momentum coupling

* (channel spin)

* JOPT AICF

1 1.

* Z1, Z2 = charges of the nuclei

* A1, A2 = masses of the nuclei (in nucleon mass units)

* Z1 A1 Z2 A2

1. 1. 4. 7.

* V0 = depth of central potential

* R0 = radius of the central potential

* AA = diffuseness of the central potential

* VS0 = depth of spin-orbit potential

* RS0 = radius of the spin-orbit potential

* AAS = diffuseness of the spin-orbit potential

* RC = Coulomb radius (usually, RC = R0)

*—————————————————————–

* WS = V 0 f(r,R0,AA) - V S0 (l.s) (r 0ˆ2/r) d/dr f(r,RS0,AAS)

* f(r,R0,a) = [ 1 + exp((r-R 0)/a) ]ˆ(-1)

* r 0 = 1.4138 fm is the Compton wavelength of the pion.

* (if IOPT=2, comment the input line with a “*”)

*—————————————————————–

* V0 R0 AA VS0 RS0 AAS RC

-44.658 2.391 0.52 -9.8 2.391 0.52 2.391
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* If IOPT = 2, or else (but not 1), enter FC, FSO and RC:

* (in this case, insert a ’*’ sign in above row, or delete it)

* FC = multiplicative factor of central part of M3Y potential

* FSO = multiplicative factor of spin-orbit part of M3Y potential

* RC = Coulomb radius

* (if IOPT=1, comment the input line with a “*”)

* FC FSO RC

* 1.5 0.2 2.391

* EI,EF = initial relative energy, final relative energy

* EI EF

0. 3.

* NS1,NP1,NP3,ND3,ND5,NF5,NF7 = (1) [0] for inclusion (no inclusion)

* of s1/2, p1/2, p3/2, d3/2, d5/2, f5/2, and f7/2 partial waves

* NS NP1 NP3 ND3 ND5 NF5 NF7

1 0 0 1 1 0 0

* MP = multipolarity: 0 (M1), 1 (E1), 2 (E2)

* SF = Spectroscopic factor

* MP SF

1 1.

* GA = magnetic moment (in units of the nuclear magneton) of

* particle A (core)

* GB = magnetic moment of particle B (proton, neutron, alpha, etc.)

* GA GB

-1.7 5.58

**********************************************

Only the results for the astrophysical S-factor, S17, for the reaction p+8B will be shown. They

are plotted in Figure 4, together with the experimental data of several experiments [25, 26, 28, 29].

The first three set of data (MSU, GSI-1, and GSI-2) were obtained by using the Coulomb dissocia-

tion method [30]. The other experimental results [29] were obtained via a direct measurement. The

dashed line shows the result of the calculated S-factor, obtained with the bound state wavefunction

calculated with the same Woods-Saxon parameters as in the above input file. The dashed line
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FIG. 4: Astrophysical S-factor for the reaction p+8B. The data are the experimental points of

recent experiments [25–29]. The solid and dashed curves are results of calculations with different

choices of the Woods-Saxon potential which reproduces the binding of 8B.

represents the S-factor one obtains by changing the bound and continuum states using another set

of Woods-Saxon potential parameters, which yields the same binding for 8B, namely:

* V0 R0 AA VS0 RS0 AAS RC

-30.55 2.95 0.52 -8.53 2.95 0.52 2.95

The dashed curve in Figure 4 corresponds to the output file DICAPL.TXT (last column) ob-

tained with the input described above. It is included in the package for checking purposes.

VIII. THINGS TO DO

1 - Use the input files described above and reproduce the Figures 1-4.

2 - Try to reproduce some of the radiative capture cross sections presented in the compilation

of Ref. [31].

3 - Show that for neutron halo nuclei the radiative capture cross sections follow the dependence

described by equations 42 and 43.
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