Beam Cooling

Beam Temperature

• We define the beam temperature as:

– The longitudinal temperature:

$$\frac{1}{2}kT_{\parallel} = \frac{1}{2}mv_{\parallel}^2 = \frac{1}{2}m\beta^2 c^2 \left(\frac{dp}{p}\right)^2$$

– The transverse temperature $\frac{1}{2}kT_{\perp} = \frac{1}{2}mv_{\perp}^2 = \frac{1}{2}m\beta^2c^2\gamma^2\theta_{\perp}^2$

Why beam is hot

- The beam is generated at source. They have temperature from the distribution
 - Electron come from cathodes, with initial Fermi-Dirac distribution
 - Proton come from the plasma, with Maxwell-Boltzmann distribution
- Later on the beam can be 'heated' due to mismatch, intra-beam scattering, residue gas, etc.

What is beam cooling

- Cooling is to reduce the phase space area of the beam or the temperature of the beam, or maintain the emittance against the factors to make emittance growth.
- We already learn ways to reduce emittance which are not cooling methods:
 - Acceleration
 - Collimation

Way of Cooling

- Synchrotron Radiation
- Ionization Cooling
- Electron Cooling
- Stochastic Cooling
- Coherent electron cooling

Electron does not need cooling:

- Synchrotron Radiation is a natural way of cooling (damping).
- Revisit the energy deviation motion:

$$\frac{d^2 \Delta E}{dt^2} = \frac{eV \omega_0^2 h \cos \phi_s \eta}{2\pi E_0} \Delta E - \frac{\omega_0}{2\pi} \frac{dU}{dE} \frac{\Delta E}{dt}$$

$$v \sim \frac{d\Delta E}{dt} \qquad F \sim -\alpha_E v$$

Synchrotron Radiation

 With the damping force that is proportional to the velocity, this is not a Hamiltonian system anymore.

$$\Delta E \sim \exp\left(\pm\sqrt{\alpha_E^2 - \omega^2} - \alpha_E\right)t$$

 SR is also bring large heating effect and balance out its damping effect, as we learned earlier.

Electron Cooling

Electron Cooling II

In the electron beam velocity reference frame:

Electron Cooling III

• The cooling time:

$$au_z \propto rac{A}{Q^2} rac{1}{n_e \eta} eta^3 \gamma^5 heta_z^3$$

- Therefore the electron cooling is good for:
 - Cold beam
 - Low energy beam
 - Dense electron beam
 - Highly charge beam
- Does not matter on the intensity of the ion beam.

Electron Cooling IV

- Electron is usually confined in longitudinal magnetic field. (Magnetized cooling)
- All electrons experience cyclotron motion.

 Interaction time >> cyclotron period, the transverse temperature is not important, only depend on longitudinal temperature.

Electron Cooling Example: LEReC @ BNL

- First demonstration of electron cooling using RF accelerated electron beam.
- For the low-energy RHIC run for searching QCD critical point.
- Long proton (~30 ns) vs. short electron, RF frequency 704 MHz.
 - Solution: Micro bunch trains.

E-Cooling: LEReC, bunch trains

@ A. Fedotov

E-Cooling: LEReC, setup

E-Cooling: LEReC, Observation

Ionization Cooling

• Muon collider needs much shorter cooing time, since they decay in 2.2 micro seconds.

Ionization Cooling II

 As we noticed, this is naturally a transverse process, we can use dispersive region to make it also work in longitudinal plane.

$$\frac{d\sigma_E^2}{ds} = -2\frac{\partial(dE/ds)}{\partial E}\sigma_E^2 + \frac{d\langle\Delta E_{rms}^2\rangle}{ds}$$

Figure 1. Use of a Wedge Absorber for Emittance Exchange

Figure 2. Use of Continuous Gaseous Absorber for Emittance Exchange

Stochastic cooling

First brought up and realized in CERN by Simon van der Veer.

Nobel Laureate.

A negative feedback system for individual particles' signal.

(N+0.5) pi phase advance between pickup and kicker

At kicker

Bandwidth Rules

$$\Delta x = g \times x$$

Requires infinite bandwidth

For a finite bandwidth W, the signal is averaged in time window of 1/2W.

Mixing

before kicker

relative arrival time

after kicker

after mixing

Without cooling, the cooling process will stop after the first iteration.

$$\lambda = \tau^{-1} = \frac{2W}{N} \underbrace{ \begin{array}{c} \text{cooling} & \text{heating} \\ (\underline{2g} - \underline{g^2}(M + U)) \end{array} }_{N}$$

maximum of cooling rate		
$\lambda_{max} =$	2W	1
	\overline{N}	$\overline{M+U}$

Good mixing: kicker to pickup Bad mixing: pickup to kicker

Stochastic Cooling at RHIC

Bandwidth Improvement Coherent Electron Cooling

CEC II

