Beam Cooling



Beam Temperature

 We define the beam temperature as:

— The longitudinal temperature:
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Why beam is hot

* The beam is generated at source. They have
temperature from the distribution

— Electron come from cathodes, with initial Fermi-
Dirac distribution

— Proton come from the plasma, with Maxwell-
Boltzmann distribution
e Later on the beam can be ‘heated’ due to

mismatch, intra-beam scattering, residue gas,
etc.



What is beam cooling

* Cooling is to reduce the phase space area of
the beam or the temperature of the beam, or
maintain the emittance against the factors to
make emittance growth.

* We already learn ways to reduce emittance
which are not cooling methods:
— Acceleration
— Collimation



Way of Cooling

Synchrotron Radiation
lonization Cooling
Electron Cooling
Stochastic Cooling
Coherent electron cooling



Electron does not need cooling:

* Synchrotron Radiation is a natural way of
cooling (damping).

* Revisit the energy deviation motion:
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Synchrotron Radiation

* With the damping force that is proportional to
the velocity, this is not a Hamiltonian system
anymore.

AFE ~ exp (::\/@%E — w? — ozE) t

* SR is also bring large heating effect and
balance out its damping effect, as we learned
earlier.




Electron Cooling

collector electron 7\
gun
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Electron beam
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Cold electron interact
with hot ion beam via
Coulomb interaction.

Longitudinal temperature: ~1e-4eV
G. Budker Transverse temperature:~0.1eV
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Electron Cooling Il

In the electron beam velocity reference frame:
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Electron Cooling IlI

e The cooling time:
© T, X A 1 537593
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* Therefore the electron cooling is good for:
— Cold beam

— Low energy beam
— Dense electron beam
— Highly charge beam
* Does not matter on the intensity of the ion
beam.



Electron Cooling IV

e Electron is usually confined in longitudinal
magnetic field. (Magnetized cooling)

* All electrons experience cyclotron motion.

eleciron

L GB ad magnetic field
We =
Ve

* Interaction time >> cyclotron period, the
transverse temperature is not important, only
depend on longitudinal temperature.




Electron Cooling Example: LEReC @ BNL

* First demonstration of electron cooling using
RF accelerated electron beam.

* For the low-energy RHIC run for searching
QCD critical point.

* Long proton (~30 ns) vs. short electron, RF
frequency 704 MHz.

— Solution: Micro bunch trains.
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E-Cooling: LEReC, bunch trams

30 ‘micro’ electron bunch trains for one proton bunch.
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E-Cooling: LEReC, setup
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E-Cooling: LEReC, Observation
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lonization Cooling

* Muon collider needs much shorter cooing
time, since they decay in 2.2 micro seconds.

proposed for muon cooling
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lonization Cooling Il
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Stochastic cooling

First brought up and
realized in CERN by
Simon van der Veer.

Nobel Laureate.

A negative feedback
system for individual
particles’ signal.

(N+0.5) pi phase advance
between pickup and
kicker
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For individual particle
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Bandwidth Rules
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Mixing

before kicker

relative arrival time

after kicker

after mixing

Without cooling, the cooling
process will stop after the first
iteration.
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Stochastic Cooling at RHIC

Before cooling[Red], after cooling[Blue]
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Bandwidth Improvement
Coherent Electron Cooling

Bandwidth determined by FEL,
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Bunching factor
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