Free Electron Laser

Tradition Laser

Materials	Wave length (nm)
CO2	10600
TI: Sapphire	800 (650-1100)
Yb: YAG	1030
Dye lasers	390-1000

- 1: Gain Medium
- 2. Pumping energy
- 3. Reflctor
- 4. Output coupler
- 5. Laser output.

@Wikipedia

Properties of Laser I

• Almost single frequency

Properties of Laser II

 Monochromatic light source leads to 'temporal coherence'.

$$\xi(\tau) = \langle E(t)E(t+\tau) \rangle_t$$

 Beyond certain time, the wave becomes irrelevant

Properties of Laser III

• The coherence time:

$$\tau_c \sim 1/\Delta_f$$

• And the temporal coherence length

$$L_T = c\tau_c \sim \lambda^2 / \Delta \lambda$$

Properties of Laser IV

- Spatial coherence
- In Young's experiement the wave at b and c must be coherent

$$d_a \theta \le \lambda$$

Spatial coherence length:

$$L_s \sim \frac{\lambda R}{d}$$

Gaussian Wave Packet

From SR Light Source to FEL

- Transversely SR is not coherent.
 - Emittance in x is
 ~nm, too large for
 angstrom x-ray
- Longitudinal not coherent
 - Micro bunching trick

Promising New Lasing Method

 Tuning ability, wave length adjustable by undulator strength, or energy of the e-beam

• Can reach wavelength region that is lack of traditional laser. (x-ray!)

A Brief History

- 1951 Motz showed an electron beam propagating through an undulator magnet could be used to amplify radiation
- 1960 Philips developed a microwave tube which is very similar to FEL
- 1971 Madey theoretically and experimentally (10μm) proved the possibility of exchanging energy between free electrons and EM radiation
- 1980 Infrared radiation FEL (Oscillator)
- 1984 Bonifacio et al. brought up the first theory of a SASE FEL in 1-D case
- 1985 X-ray FEL
- 1992 Proved 0.1nm to 1nm SASE FEL to be possible
- 2000 First demonstration of seeded lasing (HGHG)
- 2009 4th generation X-ray light source LCLS successfully commissioned.
- On-going X-ray FEL with high rep. rate; seeded lasing in x-ray range; etc.

Layout: LCLS

LCLS Undulator

It is hard to produce such short bunch, 1nm wavelength requires 3e-18 second bunch.

FEL I: The resonance

The energy exchange has its phase as:

$$\phi = (k_u + k_r)z - \omega t + \theta_0$$

The resonance occurs when:

$$\frac{d\phi}{dt} = (k_u + k_r)v_z - \omega = 0$$

The resonance radiation wavelength at off axis angle $\boldsymbol{\psi}$

$$\lambda_r = \frac{\lambda_u}{2\gamma^2} (1 + K^2 / 2 + \gamma^2 \psi^2)$$

FEL II: Micro-Bunching

The energy change has a sinusoidal form,

Or we can write down differential equation for the energy exchange phase and the energy deviation. It is a pendulum equation which defines the separatrix.

$$\eta = \frac{\gamma - \gamma_r}{\gamma_r}, \theta = (k + k_u)z - \omega t + \theta_0$$

$$\frac{d\theta}{dz} = 2k_u\eta$$
$$\frac{d\eta}{dz} = \frac{eE_0K[JJ]}{2\gamma_r^2mc^2}\sin\theta$$

$$[JJ] = J_0(\frac{K^2}{4+2K^2}) - J_1(\frac{K^2}{4+2K^2})$$

Low Gain Regime

We identify a pendulum equation of the phase space variable pair:

- Ponderomotive phase ٠
- **Energy deviation** ٠

It is similar to the longitudinal motion.

$$\frac{d\theta}{dz} = 2k_u\eta$$
$$\frac{d\eta}{dz} = \frac{eE_0K[JJ]}{2\gamma_r^2mc^2}\sin\theta$$

Low Gain Regime II

No net gain if the average beam energy equals the reference energy, i.e. the beam is not detuned

Low Gain Regime III

FEL Oscillator

FEL III: Instability Exponential Growth

- Jump to the answer directly by assuming
 - Steady state, no energy spread, ignore transverse detail
- $\frac{da}{d\overline{z}} = -b$ a: normalized radiation field $\frac{db}{d\overline{z}} = -iP$ $b = \left\langle e^{iq_j} \right\rangle$: bunching factor

High-Gain Regime

- The field amplitude is not constant!
- Pendulum equation + Maxwell-Vlasov Equation is required.

$$\begin{bmatrix} \left(\frac{1}{c} \frac{\partial}{\partial t}\right)^2 - \left(\frac{\partial}{\partial z}\right)^2 - \nabla_{\perp}^2 \end{bmatrix} E_x(\mathbf{x}, t; z) = -\frac{1}{\epsilon_0 c^2} \begin{bmatrix} \frac{\partial j_x}{\partial t} + c^2 \frac{\partial (en_e)}{\partial x} \end{bmatrix},$$

$$j_x = eK_0 \cos(k_u z) \sum_{j=1}^{N_e} \frac{1}{\gamma_j} \delta[\mathbf{x} - \mathbf{x}_j(z)] \delta[t - t_j(z)]$$

• We use slowly varying phase and amplitude approximation, slow means constant within wavelength:

$$E_x = E(z,t)\cos(kz - \omega t + \phi(z,t))$$

• In 1-D theory, transverse derivative is ignored.

Dimensionless FEL Parameter

The Maxwell equation under this slow approximation:

$$\begin{aligned} \frac{d\theta}{dz} &= 2\eta k_u & \tilde{E} = \frac{E}{2} e^{i\phi} \\ \frac{d\eta}{dz} &= \Xi_1 \left(\tilde{E} e^{i\theta} + \tilde{E}^* e^{-i\theta} \right) & \Xi_1 = \frac{eK[JJ]}{2\gamma_0^2 mc^2} \\ \left(\frac{\partial}{\partial z} + \frac{1}{c} \frac{\partial}{\partial t} \right) \tilde{E} &= -\Xi_2 \left\langle e^{-i\theta} \right\rangle_\Delta & \Xi_2 = \frac{eK[JJ]n_e}{4\epsilon_0 \gamma} \end{aligned}$$

Choose the FEL scaling parameter, so that the differential equation has constant 1.

$$\bar{z} = 2k_u \rho z$$

$$\rho = \left[\frac{\Xi_1 \Xi_2}{4k_u^2}\right]^{1/3}$$

Solving the Equation

$$\frac{da}{d\overline{z}} = -b \qquad a: \text{ normalized radiation field}$$

$$\frac{db}{d\overline{z}} = -iP \qquad b = \left\langle e^{iq_j} \right\rangle: \text{ bunching factor}$$

$$\frac{dP}{d\overline{z}} = a \qquad P = \left\langle g_j e^{iq_j} \right\rangle: \text{ energy modulation}$$

$$\mu_1 = 1, \mu_{2/3} = \frac{-1 \pm \sqrt{3}i}{2}$$

The evolution dominated by the growth mode:

$$aa^* \sim e^{\sqrt{3}\bar{z}}$$

 $\frac{d^3a}{d\overline{z}^3} = ia$

$$a(\bar{z}) = \sum_{j=1}^{3} C_j e^{-i\mu_j \bar{z}}$$

Gain Length and FEL parameter

Given without proof:

 $\rho = \frac{\text{Radiation energy at saturation}}{\text{Electron beam energy}} = \text{Saturation Efficiency}$

FEL Evolution

Beam Quality Requirement

- Energy spread: $\Delta\gamma/\gamma <
 ho$
- Beam emittance:

$$\epsilon_x \le \lambda/(4\pi)$$

• Beam size

$$\sigma_x \sim \sqrt{\frac{\lambda \lambda_u}{16\pi^2 \rho}}$$

- Beam current:
 - Large enough to get reasonable FEL parameter

3-D Effects

• 3-D effect include both EM wave and particle:

Electron Emittance Parameter

Electron Energy Spread Parameter

Diffraction of Radiation

$$X_{\rm e} = \frac{L_{\rm 1D}}{{\rm b}_{ave}} \frac{4{\rm pe}_u}{\lambda_r}$$

$$X_{\gamma} = \frac{4\rho L_{1D}}{\lambda_{u}} \frac{\sigma_{\gamma}}{\gamma}$$

$$X_d = \frac{L_{1D}}{Z_R}$$

Ming-Xie 3D Parameterization

$$L_{G,3D} = L_{G,1D}F(X_d, X_\epsilon, X_\gamma)$$

F function is retrieved by fitting:

$$F(X_{d}, X_{e}, X_{\gamma}) = 1 + a_{1}X_{d}^{a_{2}} + a_{3}X_{e}^{a_{4}} + a_{5}X_{\gamma}^{a_{6}} \text{ and energy spread}$$

$$F(\eta_{d}, \eta_{\varepsilon}, \eta_{\gamma}) = a_{7}X_{e}^{a_{8}}X_{\gamma}^{a_{9}} + a_{10}X_{d}^{a_{11}}X_{\gamma}^{a_{12}} + a_{13}X_{d}^{a_{14}}X_{e}^{a_{15}} + a_{16}X_{d}^{a_{17}}X_{e}^{a_{18}}X_{\gamma}^{a_{19}}$$

The fitting coefficients are:

$a_1 = 0.45$	$a_2 = 0.57$	$a_3 = 0.55$	$a_4 = 1.6$
$a_5 = 3$	$a_6 = 2$	$a_7 = 0.35$	$a_8 = 2.9$
$a_9 = 2.4$	$a_{10} = 51$	$a_{11} = 0.95$	$a_{12} = 3$
$a_{13} = 5.4$	$a_{14} = 0.7$	$a_{15} = 1.9$	$a_{16} = 1140$
$a_{17} = 2.2$	$a_{18} = 2.9$	$a_{19} = 3.2$	

Initial Conditions and FEL Schemes

- The coupled differential equation can start from different initial condition
 - Initial EM wave (Case 1 and 2)
 - Initial bunching factor (Case 3)

Figure 4.3: Three FEL operating modes.

RoadMap to X-ray Laser

- SASE, do not need x-ray seed. Generate X-ray pulses from nose, poor longitudinal coherence
- Higher harmonic generation, start from large wavelength, obtain its higher harmonic as seed.
- SASE self-seeding, apply monochromator in the part of SASE radiation, and use it as seed for the second part.
- X-ray FEL oscillator

FEL Saturation

Energy spread becomes too large to maintain reasonable gain.

Our theory also break since the Vlasov approach assumes the distribution perturbation is small.

 $L_s \sim \lambda_u / \rho \sim 20 L_G$

Frequency Spectrum

Transverse Mode

FIG. 9. (Color) Evolution of the LCLS transverse profiles at different z locations (courtesy of Sven Reiche, UCLA).

The lowest transverse mode has largest gain and becomes dominant. This is usually referred as 'optical guiding'.

SASE has transverse coherence at or near saturation.

Higher Harmonic Generation Useful tool: Chicane

 $R_{56} = \frac{dz}{d\delta}$ $R_{56}\approx -2\theta_B^2\left(L_1+\frac{2}{3L_B}\right).$

High Gain Harmonic Generation

Echo-Enabled Harmonic Generation

@G. Stupakov, Phys. Rev. Lett. 102, 074801 (2009). Picture from FEL 2010 presentation

X-ray FEL amplifier

@ K-J Kim

Comparison of 3 X-ray sources

	FLASH European XFEL	LCLS	SACLA	
Wavelength X-ray energy	450 –1 Å 0.3 –12 keV	25 –1.2 Å 0.48 – 10 keV	2.3 – 0.8 Å 5.4 – 15 keV	
Beam energy	0.23 –17.5 GeV	3.3 –15 GeV	8 GeV	
Linac type Frequency Length	SRF 1.3 GHz 2.1 km	NCRF 2.856 GHz 1 km	NCRF 5.712 GHz 0.4 km	
Gun type, frequency Cathode	NCRF, 1.3 GHz Cs ₂ Te photocathode	NCRF, 2.856 GHz Cu photocathode	Pulsed DC gun CeB ₆ thermionic	
Bunch charge	130 – 1,000 pC	20 – 250 pC	200 pC	
Bunch length	70 – 200 fs	5 - 500 fs	100 fs	
rms emittance	0.4 –1 μm	0.13 – 0.5 μm	0.6 μm	
Bunches per second	27,000	120	60	
Undulator period Maximum K	2.7 cm 1.2	3 cm 3.7	1.8 cm 2.2	

SwissFEL, 2016

Project	Start of operation	Electron beam energy	Minimum photon wavelength (λ _{min})	Peak brilliance @ λ _{min}	Repetition rate	Number of X-ray pulses/ macropulse
		GeV	Å	10 ³³ ph / s mm ² mrad ² 0.1 % b.w.	macro- pulses/sec.	
LCLS	2009	13.6	1.5	1	120	1
SACLA	2010	8	1.0	0.5	60	1
European X-FEL	2014	17.5	1.0	5	10	3250
SwissFEL	2016	5.8	1.0	0.1 - 1	100	2

FERMI @ Elettra

• Cascade seeded FEL

References

- K-J. Kim and Z. Huang USPAS Lecture Notes
- D. Nguyen and Q. Marksteiner USPAS Lecture Notes