New Concept Acceleration and Accelerator Applications

Need for New Accelerator Concept

- Current Limiting Factor for achieving higher energy
 - Accelerator Gradient
 - <100 MeV/m ->Long Linac
 - Bending Field
 - ~10 Tesla -> Large Ring
- LHC 3.5 TeV
 - 27 Km circumference
- To reach 100 TeV
 - > 1000 Km Linac
 - ~250 Km Diameter Ring

Build a 100 TeV collider in Michigan?

Can Laser help?

- Modern Laser can provide large peak power and is focused to small cross section.
 - Example: 100TW peak power, 800nm laser is focused to a round spot of 10 micron E^2

$$|S| = \frac{L}{Z_0}$$

- This generates ~10000 GV/m electric field!
- Question is:
 - Can we really use such large field

Lawson-Woodward theorem

Energy exchange:

$$W = q \int_{-\infty}^{\infty} \boldsymbol{v} \cdot \boldsymbol{E}(\boldsymbol{r}_{0} + \boldsymbol{v}t, t) dt$$

$$E(\boldsymbol{r}, t) = \int d^{3}k \tilde{\boldsymbol{E}}(\boldsymbol{k}) e^{i\boldsymbol{k}\cdot\boldsymbol{r} - i\omega t}$$

$$W = q\boldsymbol{v} \cdot \int_{-\infty}^{\infty} dt \int d^{3}k \tilde{\boldsymbol{E}}(\boldsymbol{k}) e^{i\boldsymbol{k}\cdot\boldsymbol{r}_{0} + \boldsymbol{v}t) - i\omega t}$$

$$= 2\pi \int d^{3}k \, q\boldsymbol{v} \cdot \tilde{\boldsymbol{E}}(\boldsymbol{k}) e^{i\boldsymbol{k}\cdot\boldsymbol{r}_{0}} \delta(\omega - \boldsymbol{k}\cdot\boldsymbol{v}) \underline{Vanish!!}$$

No energy exchange is allowed with assumption:

- Laser in Vacuum
- Particle 's velocity do not change.

Walk-around: IFEL

 It is a reverse process of FEL, the beam pass through undulator, and gain energy from external EM wave.

Energy gain of IFEL

Planar Wave:

$$E_x(z,t) = E_0 \cos(\omega t - kz)$$

Velocity modulation

$$v_x = \frac{cK}{\gamma}\sin(k_u z)$$

T Z

Energy Gain

$$\Delta E = q \int E_x v_x dt$$

$$= \frac{qcK}{\gamma} \int \sin(k_u z) \cos(\omega t - kz)|_{z=z_0 + \bar{v}_z t} dt$$

IFEL Experiment

Demonstrated IFEL Acceleration

- Experiment demonstrates:
 - > 50 MeV energy gain
 - ~100 MeV/m Gradient W
- Features of IFEL
 - Well controllable, via undulator
 - Decent gradient, degrade with higher energy !
 - Good Beam quality (Energy spread)
- Still far from the gradient we are dreaming!

$$V = \frac{qKE_0L_u}{2\gamma}\sin\left((k+k_u)z_0\right)$$

Plasma Acceleration

Dimensionless vector potential of laser :

$$a_0 = \frac{eE_0\lambda_0}{2\pi mc^2} = \frac{eE_0}{mc\omega_0} = \frac{eA_0}{mc^2}$$

Plasma Frequency

$$\omega_{\rm pe} = \sqrt{\frac{n_{\rm e}e^2}{m^*\varepsilon_0}}$$

(

Plasma Wave Excitation

- Driver
 - Laser Driver
 Ponderomotive force
 - Beam Driver
 Space charge fields
- Regime of option
 - Linear Regimes, non-relativistic electron motion
 - Nonlinear Regimes, relativistic electron.

$$E \sim \left(\frac{mc\omega_p}{e}\right) \approx (96\text{V/m})\sqrt{n_0[\text{cm}^{-3}]}$$

Nonlinear Regime

Dream beam is created using nonlinear regime, 2004.

Few percent energy spread is achieved!

Laser system

~ Peta watt laser is common in latest laser-plasma accelerator. Bella laser below.

Beam Driven PWA

Figure 1: Concept for a multi-stage PWFA-based Linear Collider.

Dielectric Laser Acceleration

- General Idea:
 - Scale down the Acc. Structure
- Laser + Dielectrics
 - High rep rate, High field
 - High breakdown field
 - Mature fabrication process

1-2 GV/m

 $\lambda = 1-10 \ \mu m$

@ R. J. England

Experiment Verification

New Applications

Compton Scattering

- Compton scattering can be used to build compact X-ray source
- We start with the rest frame of electron:

Doppler effect

• Transform from the rest frame to the lab frame.

$$f_o = \frac{f_s}{\gamma(1 + \beta \cos \theta)}$$

• With the 'back scattering', i.e. the scattered angle is ~Pi, the wavelength relation in lab frame reads:

$$\lambda' = \frac{\lambda}{4\gamma^2} (1 + \gamma^2 \theta^2)$$

• The energy ratio:

$$E_i: E'_i: E_o = 1: 2\gamma: 4\gamma^2$$

Cross Section

- The cross section of the Thomson scattering is: $3\pi r_0^2/8$
- The Klein-Nishina formula gives

 $\frac{d\sigma}{d\Omega} = \alpha^2 r_c^2 P(E_\gamma, \theta)^2 [P(E_\gamma, \theta) + P(E_\gamma, \theta)^{-1} - 1 + \cos^2(\theta)]/2$

Where P is the ratio of the photon energy before and after collision. When the electron energy is much larger, the formula reduces to Thomson case.

Example, a compact x-ray source

Proposed by W. Graves

Medical Application

Figure 3: Schematic view of HIMAC. The lower part depicts the new treatment facility addition (2011). (K. Noda, NIRS)

Medical Application around World

	HIMAC	HIBMC	HIT	CNAO	GUNMA	Marburg
	Chiba	Hyogo	Heidelberg	Pavia	Maebashi	
Particles	p, C, O, Ar, Xe	p, He, C	p, He, C, O	р, Не, С, О	С	p, C
Accelerator	2 Synchrotrons	Synchrotron	Synchrotron	Synchrotron	Synchrotron	Synchrotron
Ion Sources	PIG for low Z;	2 ECR sources	2 ECR sources	2 ECR sources	ECR source	2 ECR
	ECR for high Z					sources
Injector	RFQ (8 to 800	RFQ (1MeV/µ)	7 MeV/u linac	RFQ (8 to 400	RFQ and APFIH	
	keV/u) and	and Alvarez	injector	keV/μ) and IH-		
	Alvarez LINAC	LINAC (5 MeV/ μ)		DTL LINAC (to		
	$(0.8 \text{ to } 6 \text{ MeV}/\mu)$			7 MeV/µ)		
	at 100 MHz					
Particle Energy	C (420)	p & He(70- 230)	50 - 430	p: 250	C only: 400	100-430
(MeV/µ)	Ar (800)	C (70 - 320)	10	C: 60 - 400	0	0
Beam Intensity,		p: 7.3×10^{10}	p: $4x10^{10}$	p: $2x10^{10}$	C: 1.2×10^9	C: $3x10^8$
particles per		He: 1.8×10^{10}	He: 1×10^{10}	C: 4x10°		
spill (pps)		C: 1.2×10^{9}	C: 1x10 ⁹ O: 5x10 ⁸			
Repetition Rate		p: 1 Hz He				
-		C: 0.5 Hz				
Spill Length		400		250 - 10,000		
(msec)						
Treatment	1 H, 1 V, and 1	p: 1 H and 2 gantry	2 H and 1	2 H and 1 H&V	H, V, H&V no	3 H and 1 45
Rooms	H&V 1 gantry	rooms C: 1 H&V	gantry room		gantry	degree
	(planned)	and 1 45 degree				
Beam Delivery	Passive		Intensity	Intensity	Passive,	
Technique	scattering		controlled 3D	controlled 3D	respiration gated	
-			raster scan	raster scan		
Field Size (cm ²)		15 x 15	20 x 20	20 x 20	15 x 15	
# Pts Treated or	5189 (2010.2)	515 (2009.3)	> 1,000			1500-2000
Planned /Year	, , , , , , , , , , , , , , , , , , ,	× ,	, ,			
First patient	1994	2001	2009	2010	2010	2010

Table 3: Physical Characteristics of Ion Beam Facilities, Existing and Under Construction

Quantum Computing ?!

We need individual control qubits which can be in two base states: $|0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix} \quad |1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$

and its linear combination and entangled states.

 $\alpha |0\rangle + \beta |1\rangle$

lon trap

It is important to ensure the decoherence time of the Quantum state, while keep the strong coupling to the states to realized the 'logic gate'.

The decoherence time is largely improved in cQED from ns level to ms level in recent years, taking advantage of the high quality factor of the superconducting cavity, working at 10-20 mK.

Cavity Quantum ElectroDynamics (cQED) 2012 Nobel Prize