Homework 2

January 16, 2020

Problem 1. (15 pts)

We have a long straight wire place in vacuum along \hat{z}, which carries current I_{0}. The wire locates at $w_{0}=x_{0}+i y_{0}$. Please prove that the magnetic field at location $w=x+i y$ reads:

$$
B_{y}+i B_{x}=\frac{\mu_{0} I}{2 \pi\left(w-w_{0}\right)}
$$

Problem 2. (25 pts)

Instead of a long straight wire, we have a long circular current sheet place in vacuum along \hat{z}, which carries current density J. The density reads in cylindrical coordinate (r, ϕ) as:

$$
J(r, \phi)=\frac{I_{0}}{2 a} \cos \phi \delta(r-a)
$$

where I_{0} is the current of half sheet and a is the radius of the circle. Please prove that the current sheet produce a dipole field inside the sheet in vertical direction:

$$
B_{y}=-\frac{\mu_{0} I_{0}}{4 a}
$$

Problem 3. (10 pts)

Prove that a pure n-pole, $b_{m}=a_{m}=0$ when $m \neq n$, preserves under rotation with respective to the origin and along the longitudinal axis.

Problem 4. (Optional)

In many cases, the magnet design follows some symmetry. Under symmetry condition, some multipole components vanish (not allowed). Please indicate the allowed b_{n} and a_{n} terms for the inner magnetic field under the symmetry below:

1. Up-down symmetry: $J(r, \phi)=J(r, 2 \pi-\phi)$
2. Up-down anti-symmetry: $J(r, \phi)=-J(r, 2 \pi-\phi)$
3. Left-right symmetry: $J(r, \phi)=J(r, \pi-\phi)$

Hint: first prove the following relation using the result of problem 1.

$$
b_{n}+i a_{n} \propto \int_{0}^{2 \pi} e^{-i(n+1) \phi} J(r, \phi) d \phi
$$

