Homework 6

February 13, 2020

Problem 1. (15 pts)

'3-bump' method is commonly used in accelerator for local orbit correction. Let's consider three short corrector dipoles in a storage ring, each provide kicking angle $\theta_{i}(i=1,2,3)$. The dipoles locate at location $s_{i}\left(s_{1}<s_{2}<s_{3}\right)$, where the beta functions are β_{i} and phase advance are $\psi_{i}\left(\psi_{1}<\psi_{2}<\psi_{3}\right)$, measured from some reference point s_{0}. We aim on a set of parameters for an 'three-bump' setting, which as nonzero closed orbit between the correctors ($s_{1}<s<s_{3}$), while zero outside the region.

Please calculate the angle θ_{2} and θ_{3} as function of other quantities.

Problem 2. (10 pts)

Particle is extracted from a ring at locations with dispersion function $\left(D, D^{\prime}\right)$. After the extraction point, the transport line starts with a drift space l_{d}, followed by a thin length quad with focal length f, then a long dipole of length l_{b} and bending angle θ. Could you find right combination of these parameters to suppress the dispersion at the extraction $\left(D, D^{\prime}\right)$?

Problem 3. (25 pts)

For a FODO cell with dipole and quads ($\mathrm{QF} / 2$, $\mathrm{B}, \mathrm{QD}, \mathrm{B}, \mathrm{QF} / 2$), we found the optics at the middle plane of the focusing quad are β_{F} and d_{F}, from the periodic boundary condition. The bending angle of each dipole is θ. The phase advance of the cell is Φ.

1. Please find the 3 -by- 3 matrix \mathcal{M} for the cell.
2. To match the cell's dispersion function to zero, we need attach a dispersion suppressor to its end. Please show that using n same FODO cells with zero bending angle will not do the job.
3. To design a proper suppressor, we can use another two same FODO cell with reduced bending angle. The cell 1 has bending angle θ_{1} in each dipole, while cell 2 has bending angle θ_{2} in each dipole. Please find θ_{1} and θ_{2}.

Problem 4. (Optional)
Show that in a straight section, \mathcal{H} function is constant.

