PHY422/820: Classical Mechanics

FS 2021
Exam Preparation

October 6, 2021

Problem P1 - Two Masses, One Swinging

Two equal masses m that are connected by a massless string of length l hang over two ideal massless and frictionless pulleys. The left mass is guided and can only move in a vertical line, but the right mass can swing.

1. Show that the Lagrangian of the sytem is given by

$$
\begin{equation*}
L=m \dot{r}^{2}+\frac{1}{2} m r^{2} \dot{\theta}^{2}-m g r(1-\cos \theta), \tag{1}
\end{equation*}
$$

where r and θ are defined as shown in the figure.
2. Derive the equations of motion.
3. Assume the left mass starts at rest, and the right mass is undergoing oscillations with a small amplitude ϵ. What is the average acceleration \ddot{r} over a few periods of the oscillation, and what does this imply for the motion of
 the left mass?

