PHY422/820: Classical Mechanics

FS 2020
Exam Preparation

December 1, 2020

Problem P2 - Atwood Machines

Consider the Atwood machine shown in the figure, consisting of the indicated masses, several ideal pulleys and a string of fixed length l.

1. Show that the Lagrangian of the machine is given by

$$
\begin{equation*}
L=\frac{7}{2} m \dot{x}^{2}+3 m \dot{x} \dot{y}+2 m \dot{y}^{2}+m g(x-2 y), \tag{1}
\end{equation*}
$$

where x and y are the lengths indicated in the figure. (Note that there is some flexibility in the definition of the lengths.)
2. Show that the Lagrangian is invariant under the transformation $x \rightarrow x+2 \epsilon$ and $y \rightarrow y+\epsilon$, and use Noether's theorem to compute the conserved momentum.

